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Abstract. Many robotic tasks in real-world environments require phys-
ical interactions with an object such as pick up or push. For successful
interactions, the robot needs to know the object’s affordances, which are
defined as the potential actions the robot can perform with the object.
In order to learn a robot-specific affordance predictor, we propose an
interactive exploration pipeline which allows the robot to collect interac-
tion experiences while exploring an unknown environment. We integrate
an object-level map in the exploration pipeline such that the robot can
identify different object instances and track objects across diverse view-
points. This results in denser and more accurate affordance annotations
compared to state-of-the-art methods, which do not incorporate a map.
We show that our affordance exploration approach makes exploration
more efficient and results in more accurate affordance prediction models
compared to baseline methods.
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1 Introduction

Mobile robots operating in human spaces often need to interact with objects, for
example for a task such as finding and retrieving a laptop, the robot needs to pick
up the laptop before placing it on top of a table. To perform such manipulations
of the environment, a robot must know the potential interactions it can perform
with the objects in the world, which are known as affordances [1]. Most recent
works on visual affordance estimation are supervised learning approaches that
rely on pre-existing single-object affordance datasets [2–6]. In contrast, we take
the view that affordances for interactions are not only an object property but
also depend on the robot’s intrinsic capabilities [7]. For example, whether an
object is pickupable depends on the strength and the gripper type of the robot
arm. Therefore, a model learned using the experiences of one robot is not directly
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Fig. 1: An object-level map of a living room scene generated by TSDF++ [8] with the
robotic agent from the iTHOR simulation framework [9].

applicable to another robot with a different morphology. Additionally, to obtain
good performance transfer between training and testing, the training data should
ideally consist of objects contextualized in the environment and not of isolated
objects, as is the case in most existing affordance datasets. Consequently, this
work explores how to leverage self-supervised learning to create a robot-specific,
scene-level affordance dataset without relying on manual labels.

With this in mind, a promising approach is to learn affordances from data
generated by a robot interacting with its environment in a photo-realistic sim-
ulator. Recently, Nagarajan and Grauman [10] proposed such an approach for
learning affordances from interactions. They use deep reinforcement learning
(RL) to explore a new 3D environment while, in parallel, training an affordance
model based on the results of the executed interactions. The authors showed that
affordance-based exploration leads to faster discovery of interactable regions. Ad-
ditionally, their learned affordance model proved helpful in complex downstream
tasks like washing the dishes. However, since the exploration framework of Na-
garajan and Grauman [10] operates on each frame individually, it is unable to
exploit structural scene information to expedite the agent’s affordance explo-
ration and learning, i.e. the learned exploration agent has no sense of object
permanence. In contrast, modern robotic mapping pipelines provide representa-
tions at the object level [8, 11] and explicitly offer dense object segmentations
that can be associated across multiple viewpoints. This information can be di-
rectly applied to extrapolate observed interaction data across the full exploration
sequence and substantially improve learning efficiency by providing higher inter-
action success rates.

In this work, we create and use an explicit map of the environment in
which each discovered object and interaction is stored (see Fig. 1). We integrate
TSDF++ [8], a dynamic object-level mapping framework, into the pipeline to
enable the agent to identify different object instances and track their movements
across different viewpoints. Our approach consists of an RL agent exploring the
simulated training environments by interacting with various objects and storing
this data in the object-level map. From this, we periodically extract a dataset
to concurrently train an affordance classifier that learns to accurately predict
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agent-specific object affordances. While the RL policy ensures that the robot
efficiently explores the scene during training, the final output of the system is
the learned affordance predictor.

Our contribution is the introduction of an object-level map into an interac-
tive affordance learning pipeline. The benefits of an explicit map representation
are twofold: Firstly, storing the interaction experiences in the object-level map
permits the propagation of interaction outcomes across different viewpoints, cre-
ating more accurate and complete annotations. Secondly, explicitly including
object information as state information improves the interaction success rate
and efficiency, leading to higher-quality training data. Overall, we show that the
usage of an object-level map improves the quality of the affordance predictions,
therefore allowing a robot to explore a new scene more efficiently.

2 Related work

2.1 Visual Affordance Learning

Affordances are defined as the actions that an agent can apply to an object [1,
12]. They are usually learned from visual inputs by either segmenting the ob-
jects and extracting the parts that are relevant for an interaction [13, 14], or by
performing dense, pixel-wise affordance predictions [2–5]. Most state-of-the-art
approaches focus on affordance learning via supervised learning, for which anno-
tated datasets of object affordances are required [2–5]. However, most datasets
only contain single-object affordances [2, 6, 15, 16] and do not consider the
context in a scene. Additionally, due to the physical constraints of each robot,
affordance definitions can vary from robot to robot. Therefore labels extracted
either from human annotation or from demonstrations [17–22] do not always gen-
eralize across different robots. Rather than learning affordances from annotated
datasets, we therefore propose to learn affordances from data generated by an
agent interacting with different objects in a scene-level simulation environment.

2.2 Interactive Exploration

Most works on the exploration of unknown environments focus on navigation
actions, using either learning-based methods like reinforcement learning [23–27]
or classical SLAM-based methods [28, 29]. Recently, Liang et al. [30] proposed
an embodied learning framework that uses the data collected during active ex-
ploration of a 3D environment to learn visual representations. However, not
only navigation but also interactions with objects, e.g. opening the fridge or
picking up a pillow, are important for using robots in our daily lives. Recently
developed simulators with high-level interaction capabilities [9, 31, 32] enable
pipelines where agents can follow instructions or answer questions that require
interaction [32–35]. While these works focus on task-driven goals, we aim to use
the interactions in order to build up an explicit knowledge of affordances.
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2.3 Map Representations for Exploration

A structured representation of visited locations is beneficial for effectively ex-
ploring a new environment. Gervet et al. [36] show that the usage of explicit
maps as a state compared to an implicit memory improves the generalization
performance of the agent. [25, 26] use a top-down occupancy map to keep track
of explored areas and the obstacles in them. In [37] 3D information is crucial
since the goal is to find a specific object in a scene, so they use fused 3D point
clouds as observations. Similarly to our approach, Chaplot et al. [38] build a 3D
semantic map for self-supervised label propagation. Specifically, the labels are
stored in a 3D semantic map and then projected onto the agent’s frame-wise
observations from different viewpoints, thereby generating pixel-wise instance
labels for new frames. In this work, we will use a similar approach to generate
additional affordance labels.

2.4 Learning Affordances from Interactions

In previous works, interactive exploration has been used to learn affordances for
simple objects in table-top environments [39, 40] and for block pushing tasks
[41]. Wang et al. [42] focus on learning affordances for moving obstacles out
of the way when navigating through a cluttered scene. Most relevant to our
work, Nagarajan and Grauman [10] recently proposed a method to interactively
learn generic object affordances on a scene-level. Their approach consists of a
reinforcement learning algorithm that learns the interactive exploration strategy
and an affordance network that is trained with the interactions executed during
exploration. For each executed interaction, they mark the point of interaction
and back-project it to the previous frames in order to annotate objects from
different viewpoints. However, since they do not create an explicit map, they
cannot re-identify an object instance, leading to very sparse annotations and a
low interaction success rate.

3 Approach

Our approach aims to train an affordance model using an agent’s previous ex-
periences, which are stored in an object-level map. Fig. 2 shows an overview of
our approach. The first component on the top shows the simulation environment
where the RL agent can collect experiences by moving around and attempting
to either pick up or push the objects in the scene. The simulator then returns
the result of whether the interaction was successful or not. Once an RL episode
finishes, the collected experience, in conjunction with the object level map and
the RGB-D data from the onboard sensor, is used to generate new labels to im-
prove the affordance network. In the following, we provide detailed descriptions
of these components.

3.1 Mapping Framework

An object-level map is used to reconstruct the environment during exploration.
At every step, the RGB-D frame and the instance segmentation mask are used
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Fig. 2: Overview of our method during training. At each time step, an action
is executed and the simulator (blue) outputs if the action was successful, as well as
the RGB-D image, ground truth instance segmentation mask, and robot pose. The
mapping module (red) updates the map with this data, while the affordance module
(yellow) predicts the affordances. The RL exploration policy module (green) estimates
the next optimal action using the current state of the object-level map, RGB-D image,
and affordance estimation as input. At the end of the episode, the label module (purple)
annotates each object instance based on the interaction data and estimations from the
current affordance network. Finally, the affordance network is retrained after every
episode with the new data.

to update the map. Additionally, the affordance label is stored in the map for
those objects which have already been annotated. We use TSDF++ [8] which
is a voxel-based mapping framework that models each object instance as a sep-
arate truncated signed distance function (TSDF) layer. An important feature
of TSDF++ is that it is a dynamic object-level framework, allowing it to track
object movements when the agent interacts with an object. The advantage of
tracking the object is that the affordance label can be applied to the same object
observed from different viewpoints. One limitation of TSDF++ is that it can
only be used with rigid objects, i.e. affordances such as slice or open cannot be
represented in the map. With a more flexible mapping framework however, the
approach presented here would also extend to such actions.

3.2 Interactive Exploration Policy

We model this exploration task as a Markov decision process and use reinforce-
ment learning to learn the best policy. The action space, state space, and reward
are described in the following.

State space The state space of the agent is a combination of the raw perception
input, affordance estimation, spatial representations, and action history. Fig. 3
shows the visual representation of the state space. From the onboard sensor the
RGB image as well as the depth image are used, from which we create a so-called
distance image by projecting the depth image into the robot arm’s base frame
to indicate if an object is within reach. The output of the current affordance
estimation network indicates whether an object is likely to be interactable. Ad-
ditionally, the state space contains the action history of the last five actions with



6 Paula Wulkop et al.

Fig. 3: Visual representation of the state space. The elements in the top row do
not require a map, while the states in the bottom are obtained through the map.

their obtained success and reward as well as the inventory indicating if the robot
currently holds a picked up object. In addition to these states derived from the
current RGB-D input, we add states based on the object-level map to improve
exploration efficiency. An egocentric 2D grid map of the previously visited posi-
tions as well as the interacted objects mask with the labels interaction successful,
interaction unsuccessful and no interaction attempted are used as states. Fur-
thermore, we create an occupancy map and an interacted and a non-interacted
objects map by projecting the 3D voxels into 2D. While the compression into 2D
space, which is necessary to ensure computational feasibility of the RL pipeline,
inevitably leads to a loss of information about the vertical arrangement of ob-
jects, it captures the planar layout which is crucial for navigation. All maps are
used once as global maps with a size of 10m× 10m and once as local egocentric
maps of size 2m× 2m.

Action space The action space of the robot in the iTHOR [9] simulation environ-
ment consists of navigation actions and interactions with objects. The discrete
navigation actions are: forward movement by 0.25m, rotate right by 30◦, rotate
left by 30◦, look up by 15◦, look down by 15◦. The possible interactions with
objects are pick up, drop and push. Once the robot picks up an object, it can
attempt to move the object by ±0.1m along the three axes.

Interaction selection For every robot pose there are usually multiple objects that
the robot could try to interact with. [10] solve this ambiguity by always selecting
the object that is most centered in the current RGB frame. We however want to
enable the robot to actively select the object to interact with as we believe that
this will lead to a more targeted exploration. Since the number of objects varies
from frame to frame but the RL action space has a fixed size, we implemented
the following approximation for the object selection: The center region of the
image frame is split up in a grid of nine equal-sized cells and the objects are
assigned to the grid cell that they are closest to. In this way, the robot selects
the object by selecting the corresponding grid cell, where empty grid cells cannot
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be selected due to a mask and for cells with multiple objects the largest object
will be selected. Additionally, we use the output of the affordance network to
filter out objects with a low confidence score.

Reward To train the agent, we use a reward function with three components,
as shown in (1). Rnav encourages spatial exploration by rewarding each newly
visited position as well as each new orientation at a previously visited position.
Rint rewards each interaction with a new object instance, preventing exploitation
of known objects. Rfail punishes each failed action, for example if the agent
tries to pick up a couch which is non-pickupable, discouraging repeat negative
interactions.

R = α1Rnav + α2Rint + α3Rfail (1)

Rnav =







1 if novel position
0.3 if novel orientation at prev. pose
0 otherwise

(2)

Rint =

{

1 if successful new interaction
0 otherwise

(3)

Rfail =

{

−1 if action failed
0 otherwise

(4)

Exploration policy learning The policy network is trained using Proximal Policy
Optimization (PPO) [43] with rollouts of 600 time steps. All the elements of
the state space are encoded using 2D convolutional encoders for the image-like
inputs with a dimension of (128, 128) and MLPs for 1D states. These encodings
are concatenated and then passed through two three-layer MLPs to separately
predict the action function and the value function, with MLP layer dimensions
of (64, 32, 21) and (64, 32, 1), respectively. Additionally, to obtain faster conver-
gence, we apply an action mask which disables actions that are infeasible given
the current state, e.g. the action drop is disabled if the agent does not hold any
object.

3.3 Affordance Learning

The affordance estimation network is trained on the interaction data collected
during exploration, as shown in Fig. 2. In the following, we will explain how the
interaction data collected by the robot during an episode is labeled and used
to retrain the affordance model. The improved affordance model is then used in
the exploration pipeline, thereby ensuring that the two components are helping
each other to converge.

Data generation and labeling To generate data, the exploration policy executes at
each RL time step an action and the simulator returns whether it was successful
or not. Rather than annotating the object directly on a single RGB-D frame
after each interaction, we annotate the object instance in the map. This method
is similar to SEAL [38] which also uses a map to propagate annotations. The
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labelled map allows us to annotate each frame of the episode in which this
object instance has been visible, thereby applying the information of a single
interaction to multiple frames. For each frame we use the segmentation mask to
create dense labels for all pixels of an annotated object. In our implementation,
the segmentation mask comes directly from the simulator, but it could also easily
be obtained by a separate state-of-the-art segmentation network, e.g. [44]. The
baseline [10] instead does not use a segmentation mask and instead labels a
sphere of radius 20 cm centered on the interaction position (see Fig. 4). Since
this sphere is of a fixed size, this strategy can lead to false positive labels for
small objects and false negative labels for large objects.

Overall, the instance mapping allows us to consistently annotate objects
across different viewpoints and robot movements and thereby creating more
densely labeled datasets. The first and most straightforward annotation ap-
proach is to perform annotation by interaction, meaning that if the agent per-
formed a successful or unsuccessful interaction with an object instance, it is
annotated accordingly. However, since these interactions are sparse, we propose
to additionally apply a self-supervised annotation strategy which we call anno-
tation by confidence. This approach takes advantage of the classifier likelihoods
outputted by the affordance network to label additional data. After the affor-
dance network starts to converge, the affordance prediction is queried for each
frame Fi and is used to further annotate objects with which the robot has not
interacted. For each frame Fi in which the object appears, the percentiles of
the affordance predictions are computed. If the maximum of the 95th percentile
over all these frames is higher than a threshold ξT = 0.9, or if the minimum of
the 5th percentile is lower than ξF = 0.1, then the object instance is annotated
accordingly as a successful or unsuccessful interaction, i.e.:

label =







1 ifmax {{Fi}P95 ∀i} > ξT
0 ifmin {{Fi}P5 ∀i} < ξF
none otherwise.

(5)

Note that since neural networks are known to be over-confident in their predic-
tions, it could be beneficial to apply a calibration method, as suggested in [45].
At the end of each episode a partially annotated RGB-D affordance dataset is
created by combining the object interaction annotations, RGB-D images and
segmentation masks for each frame. In order to ensure a balanced dataset, we
only use frames that contain pixels with both positive and negative labels.

Training procedure The affordance network is based on a U-Net architecture [46]
with a loss function that is a combination of binary cross entropy and dice loss.
The U-Net implementation contains an encoder and a decoder with 4 downscale
layers each, with output sizes of (24, 48, 92, 164). To train the affordance network,
we use the Adam optimizer with weight decay. After each episode, the newly
generated dataset is split up into training, validation, and testing sets and added
to a global affordance dataset. The training of the affordance network is then
continued with this global dataset, whereby the dataset of an episode is removed
from the global dataset after its 35th usage in the training loop. If the newly
trained affordance network outperforms the previous one, it replaces it.
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Fig. 4: An example image of the annotation approach used by [10] and the No Map +
No Seg ablation (middle) compared to our approach which uses object segmentation
and is therefore able to annotate the full object (right). Annotation masks are shown
in green.

4 Experiments

In this section we evaluate the effect of using an object-level map for the af-
fordance learning. First, we evaluate if it increases the efficiency of the policy
learning. Second, we evaluate the accuracy of the resulting affordance model.

4.1 Experimental Setup

Simulation environment We evaluate our pipeline on the iTHOR [9] simulation
environment, which supports high-level interactions with various types of objects
in realistic 3D indoor scenes. We use living room scenes such as the one shown
in Fig. 1 since they contain a large variety of objects that the agent can interact
with and also have large areas to explore. The scenes contain up to 50 different
object categories which support 0 to 2 interactions (push, pick up). We split
the 30 living room scenes into 25 training scenes (20% of this data is used for
validation) and five testing scenes.

Baseline We compare our method to the best-performing method in the state-
of-the-art paper by Nagarajan and Grauman [10] which they call “IntExp(PT)”.
Note that they also evaluated a different version of their method that uses object
segmentation instead of spherical labels (“IntExp(Obj)”), but this method was
outperformed by “IntExp(PT)”. For this reason, we compare against the “Int-
Exp(PT)” approach, which we implemented in our framework and call it here
IntExp [10]. The following adaptions were necessary to make their approach
directly comparable to our results: We retrained their code on the two affor-
dances pick up and push, since they had used additional affordances which are
not covered by our approach. Additionally, we used the AI2-THOR living room
environments instead of the kitchen and we increased the image size slightly
from 80x80 pixels to 128x128 pixels, since these settings were also used in our
approach. Finally, our computational hardware - which we also used to train our
approach - limited us to run 8 parallel processes during the RL training instead
of 16 as in the original implementation, while still keeping the total number of
training steps the same.

Ablations To evaluate how the integration of an object-level map impacts the
affordance prediction and the exploration rate, we compare our approach to two
ablations of our full method:
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– Ours: The full method using the object-level map as described in Section 3. It
uses the ground truth segmentation mask for labeling and applies annotation
by interaction and confidence.

– No Map + Seg: This ablation evaluates the contribution of the map, therefore
the state space contains only elements that do not require a map (RGB image,
distance image, affordance estimates). As in IntExp [10], instead of a map
we use a Gated Recurrent Unit (GRU) module in the RL part to aggregate
observations over time.

– No Map + No Seg: This ablation aims to evaluate the importance of object
segmentation. Instead of the ground truth segmentation mask used in our full
approach, we apply the annotation strategy from IntExp [10]. Annotations
from multiple viewpoints are generated by projecting 3D interaction points
obtained during the episode (successful and unsuccessful) into all captured
images where the object was visible shortly before and after the interaction. As
objects have a volume, a sphere of radius 20 cm centered on these interactions
is used to generate interaction labels.

4.2 Affordance-based Interactive Exploration

In this section, we address the question of whether the interactive exploration
strategy is made more efficient by using an explicit map. To evaluate the perfor-
mance during training of our pipeline compared to the ablation baselines without
a map, we use the following metrics:

– Affordance IoU: Intersection over Union of affordance predictions compared
to ground truth labels per frame.

– Object-level Accuracy: The ratio of objects with correctly predicted affordance
labels over all visible objects in a frame. Object-level labels are obtain by
performing a majority vote of all pixels within the object boundaries.

– Interaction Success Rate: The ratio of successful interactions over all at-
tempted interactions during an episode.

– Interacted Object Rate: The ratio of the objects that the robot interacted
with during an episode over all interactable objects in the scene.

– Interactable Annotation Rate: The ratio of pixels that are correctly annotated
as interactable over all pixels.

– Non-interactable Annotation Rate: The ratio of pixels that are correctly an-
notated as non-interactable over all pixels.

In each episode, the object positions, object states, initial position of the
agent, and initial camera viewpoint are sampled randomly. At every time step,
the agent executes an action from its action space (Section 3.2) and obtains
feedback from the simulator on whether or not the action was successful. Fig. 5
shows the behavior of the system over the course of the RL training episodes.
For our approach the agent not only interacts with more distinct objects per
episode, but it also is more successful when trying out interactions with objects
(Fig. 5a and b). This shows that our approach leads to a more targeted ex-
ploration which results in more informative labels. Interestingly, annotation by
confidence, which is activated after an empirically determined number of 400 000
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Fig. 5: The training curves for the pick up affordance show that our approach leads to
a higher interaction success rate and a better affordance estimation performance.

steps, seems to boost the performance of the Interaction Success Rate since more
informed interactions can be executed by leveraging the knowledge of the pre-
trained affordance model.
Fig. 5c and d show that our approach leads to a higher ratio of annotated pixels
compared to the approaches that do not accumulate information in a map. Our
approach can annotate more pixels as pickupable for multiple reasons: Not only
does our agent interact with more objects successfully, it also processes these an-
notations more efficiently by propagating them to multiple frames using the map.
Similarly, the high non-interactable annotation rate of our approach is mostly
caused by the annotation of large objects like the floor and walls which can be
annotated either through interaction or through annotation by confidence and
then re-identified in every frame thanks to the map. Overall this suggests that
retaining knowledge about object instances, which is only possible when using
a map, provides an advantage over just annotating images by backprojecting
interaction points as done by [10].
Finally, we evaluate the quality of the resulting affordance predictions over time
by looking at the pixel-level score Affordance IoU and the Object-level Accuracy
(Fig. 5e and f). Our approach shows a faster and larger increase of the Affor-
dance IoU than for the baselines, which means that the model quickly learns to
predict the affordances accurately. The Object-level Accuracy converges quickly
to a high level in all approaches, which is partially due to the fact that the pre-
dictions on an object level are more forgiving to pixel misclassifications.
To visualize the annotation quality, Figure 6 shows a qualitative comparison
between our approach and the ablation baselines. As highlighted by the cyan
colored circle, the labeling of the No Map + No Seg baseline especially leads to
wrong annotations for very small objects since the labeling sphere has a fixed
size. The magenta colored circle highlights an object that is annotated in our
approach but not in the baselines. This is due to the annotation by confidence
process which leverages the pretrained affordance model to label new objects.
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Fig. 6: Pickupable annotations for an example frame. The cyan circle shows a small
pickupable object for which the No Map + No Seg baseline annotates a fixed big area
since it does not use the segmentation mask. The magenta circle shows an object that
the baseline methods fail to label but our approach is able to annotate by confidence.

Table 1: Affordance prediction (Median and [10th, 90th] percentile), averaged over 611
frames of the test scenes.

IntExp [10] No Map + No Seg No Map + Seg Ours

Pick up

Precision 0.03 [0.00, 0.22] 0.00 [0.00, 0.06] 0.10 [0.00, 0.75] 0.20 [0.00, 0.99]
Recall 0.07 [0.00, 0.51] 0.0 [0.00, 0.15] 0.22 [0.00, 0.96] 0.37 [0.00, 0.99]
F1 0.04 [0.00, 0.26] 0.00 [0.00, 0.08] 0.13 [0.0, 0.65] 0.22 [0.00, 0.85]
OAcc 0.86 [0.74, 1.00] 0.82 [0.69, 1.00] 0.87 [0.77, 1.00] 0.89 [0.78, 1.00]

Push

Precision 0.36 [0.06, 0.68] 0.30 [0.09, 0.52] 0.52 [0.15, 0.85] 0.99 [0.23, 1.00]
Recall 0.52 [0.24, 0.69] 0.93 [0.52, 1.0] 0.83 [0.12, 0.99] 0.48 [0.01, 0.96]
F1 0.41 [0.09, 0.63] 0.44 [0.14, 0.67] 0.58 [0.12, 0.83] 0.60 [0.01, 0.96]
OAcc 0.65 [0.47, 0.85] 0.70 [0.50, 0.86] 0.80 [0.60, 0.92] 0.76 [0.57, 0.92]

4.3 Affordance Prediction

In this section, we evaluate the performance of the learned affordance model in
comparison to our ablations as well as to the state-of-the-art work IntExp [10].
To evaluate the frame-wise affordance predictions, we created a test dataset by
manually steering the agent through five unseen iTHOR living room scenes and
recording each frame of the trajectories, resulting in 611 frames. In addition to
the previously introduced Object-level Accuracy (OAcc), we use Precision, Re-
call, and F1 Score. Table 1 shows that for the pick up affordance our approach
outperforms the baseline and the ablations for all metrics. As expected, the In-
tExp [10] method and the No Map + No Seg ablation behave similarly, since
the ablation was designed to mimic the assumptions of [10]. They obtain low
scores in precision and recall, which can be explained by the fact that the pick-
upable objects are usually sparse and small and therefore difficult to learn with
the sphere-based annotation strategy. The comparison of the ablations shows

Table 2: Interaction Success Rate, calculated over the 236 objects of the test scenes.

IntExp [10] No Map + No Seg No Map + Seg Ours

Pick up Push Pick up Push Pick up Push Pick up Push

Accuracy 0.72 0.58 0.69 0.76 0.75 0.72 0.81 0.61
Precision 0.75 0.76 0.50 0.77 0.76 0.94 0.85 0.90
Recall 0.12 0.51 0.03 0.91 0.30 0.60 0.47 0.43
F1 0.21 0.61 0.05 0.83 0.43 0.73 0.60 0.58
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Fig. 7: Affordance predictions for an example test frame. For the pick up affordance
our approach results in more true positives and fewer false negatives. Similarly, for the
push affordance our approach results in fewer false positives.

clearly that the usage of both the segmentation masks and the map have a posi-
tive impact on all metrics. Fig. 7 shows the qualitative prediction results for one
example test frame. The pickupable objects on the table are mostly correctly
identified by our approach, whereas the IntExp [10] and the No Map + No Seg
approaches misclassify all of these small pickupable objects. While our approach
predicts some false positives on the table surface, those will tend to be averaged
out when evaluating the predictions on an object-level. For the push affordance,
Table 1 shows a trade-off between precision and recall. Our approach reaches a
precision of 0.99, which means that it has a very low number of false positives.
The baseline and the ablations on the other hand have a lower precision but a
higher recall instead, meaning they are overly likely to predict pushable. This
is clearly visible in Fig. 7, where the baseline approaches wrongly predict parts
of the floor as pushable, while our approach only labels pixels that belong to
pushable objects. Interestingly, in terms of object-level accuracy the No Map
+ Seg ablations outperforms our approach, which could be caused by the fact
that for larger objects the misclassification of a few pixels is averaged out on an
object-level.
Finally, we also evaluate the Interaction Success Rate to show whether the
trained affordance model can correctly predict the feasibility of an interaction.
We collected a dataset by placing the robot in front of every object in the
test scenes and attempting the pick up and push actions, storing the outcome as
ground truth labels. The affordance prediction modules are queried on the image
frame and an object level prediction is calculated as the mean of the pixel-wise
predictions of the object. In Table 2 we report the Accuracy, Precision, Recall
and F1 score of the predicted object-wise interaction labels compared to the
ground truth labels. The results show that for the pick up affordance our ap-
proach outperforms the baselines. For the push affordance, the No Map + No
Seg baseline achieves a higher Recall and Accuracy than our approach, while
the Precision is lower. Similar to the results from Table 1, this indicates that
they are overly likely to predict pushable, which could be caused by the spherical
annotations spilling over onto other objects.
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5 Conclusion and Future work

In this work, we proposed a reinforcement learning pipeline to learn robot-centric
affordances from interactions. Our approach allows an interactive exploration
agent to learn how to efficiently explore an unseen environment while collect-
ing a robot-specific dataset to train an object affordance model. To enable the
agent to identify object instances and track object movements, we integrated
an object-level map into our pipeline. This allows the agent to re-identify differ-
ent object instances, thereby obtaining denser annotations from different view-
points. Additionally, leveraging the information from the object-level map dur-
ing exploration increases the interaction success rate and efficiency, leading to
higher-quality training data. As a result, our method successfully learns to pre-
dict robot-centric object affordances.

The next step would be to transfer the learned affordance model to a real-
world scenario. Given the domain gap of both the sensor data and the robot
morphology, we envision a fine-tuning step in the real-world. We propose to use
the pretrained affordance model and RL policy from simulation to collect ad-
ditional interaction data in the real-world, using a modular robot-specific skill
library to execute the high-level interaction commands. Another future step
could be to introduce additional actions such as break or open. While our ar-
chitecture in general is modular and easily allows adding additional affordances,
our chosen TSDF++ representation would have to be developed further to also
handle articulated, separable or deformable objects.
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