
i-SAIRAS 2024 

Information Gathering Path Planning with Minimal Environmental 
Disruption  

1,2*Strooper, K., 2Lawrance, N., 2Bandyopadhyay, T., 2 Talbot, F., 2Fiamingo, R. & 1,2Chung, 
J. J. 

*lead presenter 
1k.strooper@ uq.net.au, The University of Queensland, Australia 
2 CSIRO Robotics, Australia 

Abstract 

Ground robots are often tasked to autonomously explore and characterise unknown and 
sensitive environments. While performing these searching tasks, for applications such as 
interplanetary exploration, it is important that these robots also minimise how much they disturb 
the area that they are exploring to decrease contamination of the original environment. This 
work develops a Minimising Disturbance Informative Path Planner (MDIPP) which models an 
unknown environment using discrete observations whilst prioritising finding high 
concentrations of samples of interest. Disturbance to the environment is also incorporated into 
the path planner to minimise how much of the environment is being disturbed. MDIPP uses 
Gaussian processes (GPs) to model the unknown environment and Bayesian optimisation (BO) 
to determine the next best position to move to. MDIPP reduces the disturbance to the 
environment by at least 48.6% compared to a baseline informative path planner (BIPP), without 
sacrificing accuracy in the GP prediction generated from its online observations. The results 
have been validated in hardware on a tracked ground vehicle at CSIRO’s lunar testbed in 
Queensland, Australia to mimic planetary exploration. The project website is available here. 

I. INTRODUCTION 
Consider an interplanetary rover equipped with a probe that must autonomously find and locate 
mineral samples. The robot must predict the locations of substances of scientific interest (e.g. 
searching for high concentrations of hydrogen) based on measurements taken online–an 
important and common objective in space exploration [1], [2], [3], [4]. While performing this 
primary searching task, these robots must also minimise how much their motions disturb the 
surrounding environment to preserve the original geological formations on the planetary body’s 
surface and avoid potential contamination [1]. This can be formulated as a multi-objective 
informative path planning (IPP) problem where the planner must balance the potential 
information gain from moving to and revealing new parts of the scene to the sensor, with the 
cost incurred from disturbing the environment.   

Indeed, few works explicitly consider the effect of the robot’s movement on its environment. 
Those that do are typically applied to needle-steering robots [5] or crowd-navigating robots 
[6]. The former assumes shared control via live teleoperation, while the latter requires a goal 
pose and computes velocity commands to match the overall dynamics of the crowd flow. In 
contrast, environment disturbance in our problem is defined as the swept footprint of the robot, 
presenting the unique challenge of trading off the need to visit new locations to gather high-
quality information, while simultaneously attempting to reduce the total swept area. 

https://kstro33.github.io/mdipp.github.io/


We propose the Minimising Disturbance Informative Path Planner (MDIPP) which uses 
Gaussian processes (GPs) to model the unknown environment and Bayesian optimisation (BO) 
for active perception to determine the next best position to move to. The GP provides a 
probabilistic regression model of mineral density, where density is considered as a continuous 
function from which the robot makes noisy observations. Disturbance to the environment is 
considered binary, i.e. once an area has been disturbed, it does not matter if that same area is 
disturbed again, thus the robot would ideally plan routes through previously disturbed regions 
when moving between viewpoints. Our proposed BO acquisition function models such 
disturbances as a function of the new area that would be disturbed during movement, and 
weights this against the exploitation and exploration elements from the GP mean and variance. 

Results comparing MDIPP against a Baseline Informative Path Planner (BIPP) show that 
MDIPP reduces environmental disturbance by at least 48.6% without sacrificing accuracy in 
the GP predictions generated from its online observations. Adjusting the exploration and 
disturbance hyperparameters within MDIPP results in a trade-off between model accuracy and 
the amount of disturbance, which can be tuned to suit the application. Further testing in a high-
fidelity simulator allowed us to quicky evaluate different tuning parameters and provided a 
stepping stone to testing on hardware. Finally, we validated MDIPP on a ground robot in 
CSIRO’s lunar testbed in Queensland, Australia to mimic a planetary exploration mission.  

II. RELATED WORK 
Previous methods of information gathering for unknown environments typically favour 
previously planned offline full coverage solutions [7], [8], [9]. In contrast to these offline 
methods, online methods actively integrate live observations to improve performance using 
next-best-view (NBV) paths [10], [11], [12]. However, while these planners integrate online 
observations to improve performance, their methods assume that the information about the 
environment is uniformly distributed, and that each observation is equally weighted. In 
contrast, our solution aims to provide an online information gathering approach to optimise 
observations to maximise finding high concentrations of samples of interest (e.g. minerals 
beneath extraterrestrial surfaces). Similar approaches have been presented in [13], [14], [15], 
which feed observation information back into the planner to efficiently identify the maxima of 
the distribution, rather than attempting to accurately reconstruct the full distribution.  

To model such spatial correlations, GPs [16] are a popular regression method and have been 
successfully applied to predicting distributions of an information field (e.g. temperature 
distribution) [15], [17]. However, these methods typically have unconstrained coverage and 
plan on a time/distance or computational budget, which means they do not consider the impact 
of the robot’s motion through the environment which is particularly important for planetary 
exploration scenarios. To combine our multiple objectives of exploration (finding high 
concentrations of samples of interest) and minimising disturbance to the environment our 
solution uses BO to select informative samples from GPs [18]. 

BO is a process for finding the extrema of an acquisition function that is expensive to observe 
or evaluate [19]. It is applicable in situations where you don’t have a closed-form expression 
for the objective function, but where you can obtain values at sampled locations with 
optimisation methods such as genetic algorithms [14], [20], [21], [22]. Much of the efficiency 
comes from the ability of BO to incorporate prior belief about the problem to help direct the 
sampling, and to trade off exploration and exploitation of the search space [23].  



III. MINIMISING DISTURBANCE INFORMATIVE PATH PLANNER 
Our proposed Minimising Disturbance Informative Path Planner (MDIPP) uses Gaussian 
process (GP) regression to model the predicted field from local, noisy observations. To 
determine ‘informative’ sample locations, we use acquisition functions within a Bayesian 
optimisation (BO) framework to balance the objectives of information gathering and 
disturbance minimisation when determining the next best position to move to and take a new 
observation. MDIPP maintains a binary ‘disturbance array’ over the environment. Each cell 
within the grid is approximately the size of the robot's footprint. For the purpose of path 
planning, the disturbed cells have a lower traversal cost of 0.1 compared to the undisturbed 
cells which have a cost of 1. MDIPP creates an 8-connected grid cost map from these values 
and uses A* over the resulting graph to plan and quantify the disturbance induced by travelling 
through the environment to a target observation location. This cost is then incorporated into 
the BO acquisition function for evaluating potential viewpoints. 

Figure 1 gives an overview of MDIPP which also explains each section of the decision logic 
in more detail. Disturbance minimisation is considered in two parts of our algorithm where it 
has two distinct objectives. Including disturbance information in the acquisition function 
influences the high-level decision of selecting the next most valuable observation location. In 
the A* search path planner, the disturbance information sets the traversal costs, affecting low-
level decisions of how the robot will move to a viewpoint. 

Figure 1: Logic overview of MDIPP. 1) The current GP prediction of the field and disturbance array are passed into the BO, 
which determines the next best viewpoint to move to based on the acquisition function (Section IIIA). 2) If the sampling budget 
is not exceeded, this next viewpoint, along with the robot’s current position is passed to the path planner. 3) The path planner 
for MDIPP uses A* search where the edge traversal costs are drawn from the disturbance array over the environment. 4) 
After the robot reaches the next target observation location, it takes a new observation with its sensor and the disturbance 
array is updated to reflect newly disturbed cells. 5) The GP prediction is updated with the new observation. 

A. Acquisition Function 

While a complete treatment of GP regression is beyond the scope of this work (interested 
readers are referred to [24]), we briefly outline the process for consistent notation. GP 
regression provides a tool for estimating an underlying function 𝑓(𝑥): 𝑅! → 𝑅 based on 
discrete, noisy observations 𝑦 = 𝑓(𝑥) + 𝜀, where ε ∼ 𝒩(0, σ"#). The GP provides a posterior 
distribution over functions, conditioned on the set of observations 𝑦, by relating the input points 
of those observations 𝑋 via a covariance function 𝐾(⋅). The resulting model can be queried to 
provide the predictive likelihood 𝑓∗(𝑥∗) at a location 𝑥∗ as a normal distribution, 



𝑝(𝑓∗(𝒙∗)|𝑋, 𝒚, 𝒙∗) = 𝒩 7𝑓∗8(𝒙∗), 𝜎∗#:𝑓∗(𝒙∗);< , 𝑤ℎ𝑒𝑟𝑒 (1) 

𝑓∗8(𝒙∗) = 𝐾(𝒙∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎!#𝐼]%&𝒚 (2) 
𝜎∗#:𝑓∗(𝒙∗); = 𝐾(𝒙∗, 𝒙∗) − 𝐾(𝒙∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎!#𝐼]%&𝐾(𝑋, 𝒙∗). (3) 

We use the common squared exponential covariance function, with fixed length scale and noise 
hyperparameters learned by maximising marginal likelihood over a representative sample 
dataset. 

BO takes advantage of the probabilistic GP predictions via an acquisition function that balances 
finding high values in the field (high estimated GP mean 𝑓∗8(𝑥)), with uncertain places in the 
field (high cov:𝑓∗(𝑥∗);). Equation (4) shows the acquisition function used by MDIPP to 
determine the next best viewpoint 𝑥∗ = argmax[𝑓()*++(𝑥)], where, 

𝑓()*++(𝒙) = 𝑓∗8(𝒙) + 𝐾,-+ × 𝜎∗:𝑓∗(𝒙); − 𝐾)*./ × 𝐷(𝒙). (4) 
𝐾,-+ and 𝐾)*./ are the ‘exploration’ and ‘disturbance’ scaling factors and 𝐷(𝑥) is the 
disturbance cost for traversing to location 𝑥 from the robot’s current position according to the 
planned A* path over the disturbance cost map. These parameters strongly affect how MDIPP 
behaves and it is important to identify which values of 𝐾,-+ and 𝐾)*./ provide appropriate 
scaling between the three terms for different applications.  

B. Baseline Informative Path Planner (BIPP) 

To provide an understanding of the effectiveness of MDIPP, we compare the performance 
against a baseline planner, BIPP, which does not incorporate disturbance minimisation in its 
planning. BIPP is very similar to MDIPP, except for two main differences. First, BIPP assumes 
uniform edge traversal costs during the A* search (hence returning the shortest path on the 
graph). Second, the BIPP acquisition function does not consider the number of disturbed cells, 
effectively equivalent to MDIPP𝐾)*./ = 0: 

𝑓0*++(𝒙) = 𝑓∗8(𝒙) + 𝐾,-+ × 𝜎∗:𝑓∗(𝒙);. (5) 
Comparing the performance of BIPP and MDIPP provides an ablation study on the impact of 
including the disturbance minimisation components in our planner. It also reflects the current 
state in IPP solutions, which do not consider the impact of the robot’s motion on the 
environment when moving to take samples. 

IV. RESULTS 
A. Trade-Off Between Exploration and Disturbance 

To provide statistical results on each planner's performance, we first evaluated the two methods 
on a set of simple simulated environments where the underlying ground truth field is generated 
by sampling from a GP prior. The robot takes point observations to simulate taking 
measurements with a ground penetrating radar (GPR) or a probe. Simulated robot observations 
of the ground truth include additive Gaussian noise to emulate real-world sensor measurements, 
and the robot motion is deterministic and assumed to travel in straight lines. 

We performed a parameter sweep testing 𝐾,-+ values in a range of 0 to 20 with increments of 
0.2, and 𝐾)*./ values of {0, 0.01, 0.1, 0.5, 1}, since 𝐷(𝑥) can be quite large compared to the 
other terms motivating a smaller scaling factor. 20 trials (20 different environments) were 
completed for each combination of values of 𝐾,-+ and 𝐾)*./. The results after 15 observations 
are shown in Figure 2a. The top plot displays the percentage of the environment that was 



disturbed at the end of each run. The middle plot shows the root mean square error (RMSE) of 
the final GP prediction, and the bottom plot shows the RMSE weighted by the absolute value 
of the field, to help analyse the ability of the planner to accurately predict regions of high 
concentration. 

  
(a) (b) 

Figure 2: Results from parameter experimentation for BIPP and MDIPP over 20 trials for the (a) full parameter sweep after 
15 observations, and (b) intra-episode results over the 15 observations for 𝐾!"# = 20. The solid lines represent the mean 
values and the shaded area represents one standard deviation above/below the mean. 

The results show that MDIPP disturbs less of the environment than BIPP and continues to 
disturb less as 𝐾)*./ increases. Even without accounting for the disturbance in the acquisition 
function (𝐾)*./ = 0), MDIPP already reduces the disturbance to the environment by 48.6%. 
This shows that our method of path planning over the disturbance cost map already meets our 
objective of reducing environmental disturbance during exploration. As 𝐾)*./ increases, there 
remains very little difference in the RMSE between the path planners (≤ 7%). Therefore, the 
robot’s prediction of the environment does not suffer when incorporating this disturbance 
minimisation objective. Furthermore, the results show that various combinations of 
{𝐾)*./ , 𝐾,-+} lead to the same RMSE after 15 observations, with {0.5, 20} causing the least 
disturbance.  

B. Informative Path Planning (IPP) Performance within an Episode 

We analysed the results after each observation for different 𝐾,-+ values, focusing on 𝐾,-+ =
20 due to similar trends across all cases. As shown in Figure 2b, MDIPP consistently caused 
less environmental disturbance than BIPP across all 𝐾)*./ values, with an accuracy trade-off 
only at the highest tested 𝐾)*./ value of 1. 

Additionally, we analysed the robot’s cumulative traversal distance (number of cells that the 
robot travels between observation points – regardless of whether it has previously been 
disturbed) for each observation as a proxy for time. The traversal distance for MDIPP was 
similar to BIPP, with small 𝐾)*./ values resulting in almost identical cumulative traversal 
distance, showing that MDIPP does not significantly increase travel distance despite 
minimising disturbance. These results suggest that similar outcomes could be expected in larger 
environments with adjusted 𝐾,-+ and 𝐾)*./ values. 

C. High-Fidelity Simulation Validation 

As an initial step toward hardware validation we tested MDIPP in a high-fidelity lunar 
simulation with a complete robot navigation stack [25]. The navigation stack has its own 
integrated path planner for robot navigation including global planning and local obstacle 
avoidance. To account for the differences in the planner architecture relative to the simple 



simulation, we modified the main logic for BIPP and MDIPP for the high-fidelity simulation 
environment. First, the true robot position is used to update the disturbance array and sample 
observations to capture the localisation and motion planning differences that arise in real-world 
deployment. Secondly, to minimise disturbance, MDIPP generally does not return the straight-
line path to the next sample point, instead it will prefer to reuse pathways. Thus, to integrate 
with the high-fidelity planner, the computed MDIPP path is first decomposed into straight-line 
segments and the resulting sequence of sub-waypoints are sent to the planner. 

Preliminary trials were conducted for all pareto-front combination values, but the results 
confirmed that 𝐾,-+ = 20 and 𝐾)*./ = 0 yielded the best performance for our objectives. The 
results from Figure 3a show that from the start there is a clear distinction between the 
disturbance to the environment from BIPP and MDIPP. Furthermore, the accuracy remains 
similar between both methods with consistent overlap between the truth-weighted RMSE in 
the bottom-right plot. Finally, the cumulative time in the bottom-left plot also shows that the 
results overlap for both methods even as the mean of the MDIPP cumulative time increases 
with the number of observations. 

  
(a) (b) 

Figure 3: Results over 15 observations for 𝐾!"# = 20 and 𝐾$%&' = 0.5	in (a) CSIRO's High-Fidelity Lunar Simulation over 
5 trials, and (b) on hardware at CSIRO's Lunar Environment over 5 trials. 

D. Hardware Validation 

Our final results validate MDIPP on hardware at CSIRO’s lunar testbed in Queensland, 
Australia in a mock planetary exploration mission. The purpose of the hardware testing was to 
validate the binary representation of the disturbance compared to the physical disturbance of 
the lunar testbed, and to demonstrate the system running in real time on-board a robot in a 
representative environment. We used top-down views of the lunar testbed from an aerial drone 
and compared it to the disturbed area from the computer-generated binary disturbance array 
results. The lunar testbed was between trials so that track marks from the rover could clearly 
be distinguished in the sand. 

Five trials were conducted with each planner, using the same ground truth maps for both 
planners. The quantitative results shown in Figure 3b are very similar to the high-fidelity 
simulation results. Importantly, MDIPP still disturbs distinctly less of the environment than 
BIPP while returning similarly accurate predictions.  

To validate whether our binary representation accurately captures the true disturbance we 
collected aerial infrared footage of the trials using a Mavic 2 drone. The videos were processed 
using frame alignment and differencing to aggregate the robot movements and generate the 
final images shown in Figure 4 and Figure 5 for BIPP and MDIPP, respectively. 



There is significant alignment between the planner’s predicted disturbance and the actual 
disturbance in the lunar testbed. Some regions that do not perfectly overlap, e.g. bottom-left 
quadrant of Figure 4c, may be attributed to slight differences in the orientation of the computed 
disturbance and the true disturbance, possibly due to variations in the drone’s positioning. 
Nevertheless, the overall disturbance values were well-aligned in both cases. 

   
(a) (b) (c) 

Figure 4: BIPP disturbance comparison from hardware testing. (a) Top-down view of the computed binary disturbance. (b) 
Top-down view of the drone footage of the disturbance. (c) Drone footage superimposed over the computed disturbance. 

   
(a) (b) (c) 

Figure 5: MDIPP disturbance comparison from hardware testing. (a) Top-down view of the computed binary disturbance. (b) 
Top-down view of the drone footage of the disturbance. (c) Drone footage superimposed over the computed disturbance. 

V. FUTURE WORK AND CONCLUSIONS 

This project proposed the Minimising Disturbance Informative Path Planner (MDIPP), which 
selects and plans paths to observation points that minimise the robot’s disturbance to the 
environment while accurately modelling the underlying field. By treating disturbance as a cost 
map and planning paths using A* search, environmental disturbance is significantly decreased. 

Since this is the first minimising disturbance informative path planner application for ground 
robots, several key areas for further development have been identified. First, hardware testing 
showed that the robot generates more disturbance when turning, which should be considered 
in the planner. Second, adapting MDIPP for continuous observations would allow the robot to 
dynamically adjust its path based on real-time data, although this would require updates to the 
acquisition function logic and consideration of time delays to prevent excessive redirection. 
Third, testing MDIPP with real-world sensor data, such as LIDAR or camera inputs, could help 
assess its functionality across different sensing modalities, potentially requiring preprocessing 
of sensor outputs and updating the underlying GP model for more complex sensor models. 

ACKNOWLEDGEMENTS 
This work was supported in part by CSIRO’s Space Future Science Platform. The authors 
would also like to thank Kartik Yellapantula for his assistance with the trajectory planner. 



REFERENCES 
[1] M. Allan et al., “Planetary Rover Simulation for Lunar Exploration Missions,” in 2019 IEEE Aerospace Conference, 

Mar. 2019, pp. 1–19. doi: 10.1109/AERO.2019.8741780. 
[2] K. Schilling and C. Jungius, “Mobile robots for planetary exploration,” Control Eng. Pract., vol. 4, no. 4, pp. 513–524, 

Apr. 1996, doi: 10.1016/0967-0661(96)00034-2. 
[3] T. Kubota, R. Ejiri, Y. Kunii, and I. Nakatani, “Autonomous behavior planning scheme for exploration rover,” in 2nd 

IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT’06), Jul. 2006, p. 7 
pp.-. doi: 10.1109/SMC-IT.2006.22. 

[4] A. Arora, P. M. Furlong, R. Fitch, S. Sukkarieh, and T. Fong, “Multi-modal active perception for information gathering 
in science missions,” Auton. Robots, vol. 43, no. 7, pp. 1827–1853, Oct. 2019, doi: 10.1007/s10514-019-09836-5. 

[5] K. B. Reed et al., “Robot-Assisted Needle Steering,” IEEE Robot. Autom. Mag., vol. 18, no. 4, pp. 35–46, Dec. 2011, 
doi: 10.1109/MRA.2011.942997. 

[6] T. Fraichard and V. Levesy, “From Crowd Simulation to Robot Navigation in Crowds,” IEEE Robot. Autom. Lett., vol. 
5, no. 2, pp. 729–735, Apr. 2020, doi: 10.1109/LRA.2020.2965032. 

[7] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robot. Auton. Syst., vol. 61, no. 12, 
pp. 1258–1276, Dec. 2013, doi: 10.1016/j.robot.2013.09.004. 

[8] R. Bähnemann, N. Lawrance, J. Chung, M. Pantic, R. Siegwart, and J. Nieto, “Revisiting Boustrophedon Coverage 
Path Planning as a Generalized Traveling Salesman Problem,” 2021, pp. 277–290. doi: 10.1007/978-981-15-9460-
1_20. 

[9] G. Mier, J. Valente, and S. de Bruin, “Fields2Cover: An Open-Source Coverage Path Planning Library for Unmanned 
Agricultural Vehicles,” IEEE Robot. Autom. Lett., vol. 8, no. 4, pp. 2166–2172, Apr. 2023, doi: 
10.1109/LRA.2023.3248439. 

[10] C. Connolly, “The determination of next best views,” in 1985 IEEE International Conference on Robotics and 
Automation Proceedings, Mar. 1985, pp. 432–435. doi: 10.1109/ROBOT.1985.1087372. 

[11] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding Horizon ‘Next-Best-View’ Planner for 
3D Exploration,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 1462–
1468. doi: 10.1109/ICRA.2016.7487281. 

[12] M. Naazare, F. G. Rosas, and D. Schulz, “Online Next-Best-View Planner for 3D-Exploration and Inspection With a 
Mobile Manipulator Robot,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 3779–3786, Apr. 2022, doi: 
10.1109/LRA.2022.3146558. 

[13] G. Flaspohler, V. Preston, A. P. M. Michel, Y. Girdhar, and N. Roy, “Information-Guided Robotic Maximum Seek-
and-Sample in Partially Observable Continuous Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3782–
3789, Oct. 2019, doi: 10.1109/LRA.2019.2929997. 

[14] M. Popović et al., “An informative path planning framework for UAV-based terrain monitoring,” Auton. Robots, vol. 
44, no. 6, pp. 889–911, Jul. 2020, doi: 10.1007/s10514-020-09903-2. 

[15] H. Zhu, J. J. Chung, N. R. J. Lawrance, R. Siegwart, and J. Alonso-Mora, “Online Informative Path Planning for Active 
Information Gathering of a 3D Surface,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 
May 2021, pp. 1488–1494. doi: 10.1109/ICRA48506.2021.9561963. 

[16] C. E. Rasmussen and C. K. I. Williams, “Gaussian Processes for Machine Learning: Book webpage.” Accessed: Apr. 
25, 2024. [Online]. Available: https://gaussianprocess.org/gpml/ 

[17] K. Jakkala and S. Akella, “Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes,” 
in 2024 IEEE International Conference on Robotics and Automation (ICRA), May 2024, pp. 12382–12388. doi: 
10.1109/ICRA57147.2024.10610484. 

[18] A. Hebbal, M. Balesdent, L. Brevault, N. Melab, and E.-G. Talbi, “Deep Gaussian process for multi-objective Bayesian 
optimization,” Optim. Eng., vol. 24, no. 3, pp. 1809–1848, Sep. 2023, doi: 10.1007/s11081-022-09753-0. 

[19] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with 
Application to Active User Modeling and Hierarchical Reinforcement Learning,” arXiv.org. Accessed: Oct. 26, 2023. 
[Online]. Available: https://arxiv.org/abs/1012.2599v1 

[20] K. C. T. Vivaldini, V. Guizilini, M. D. C. Oliveira, T. H. Martinelli, D. F. Wolf, and F. Ramos, “Route planning for 
active classification with UAVs,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 
2016, pp. 2563–2568. doi: 10.1109/ICRA.2016.7487412. 

[21] G. Hitz, E. Galceran, M.-È. Garneau, F. Pomerleau, and R. Siegwart, “Adaptive continuous-space informative path 
planning for online environmental monitoring,” J. Field Robot., vol. 34, no. 8, pp. 1427–1449, 2017, doi: 
10.1002/rob.21722. 

[22] G. Francis, L. Ott, R. Marchant, and F. Ramos, “Occupancy Map Building through Bayesian Exploration,” arXiv.org. 
Accessed: Sep. 09, 2024. [Online]. Available: https://arxiv.org/abs/1703.00227v1 

[23] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms,” Aug. 
29, 2012, arXiv: arXiv:1206.2944. doi: 10.48550/arXiv.1206.2944. 

[24] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Accessed: Sep. 25, 2024. [Online]. 
Available: https://direct.mit.edu/books/monograph/2320/Gaussian-Processes-for-Machine-Learning 

[25] N. Hudson et al., “Heterogeneous Ground and Air Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach 
to the DARPA Subterranean Challenge,” Field Robot., vol. 2, pp. 595–636, Mar. 2022, doi: 10.55417/fr.2022021. 

 


