
Reinforcement Learning for Active Search and Grasp in Clutter

Thomas Pitcher1, Julian Förster2, Jen Jen Chung1

Abstract— This paper presents an Active Search policy that
balances between moving the camera and removing occluding
objects to search for and retrieve a target object in clutter.
While both types of action can reveal unobserved parts of a
scene, they typically vary in execution complexity and time. Our
proposed method explicitly reasons about the occluded spaces
in the scene where the target object may be hidden, and uses
reinforcement learning to compute the value of each action with
the ultimate goal of finding and retrieving the target object in
minimal time. Results in simulation and real-world experiments
demonstrate a significant improvement in both task execution
speed and success rate compared to baseline grasping strategies.

I. INTRODUCTION

When humans need to find and retrieve hidden objects we

are able to fluently reason between changing our viewpoint

and moving objects within the space. Robots typically ap-

proach such a task as a mechanical search problem, where

the goal is to locate a target object via physical interaction

with the environment [1]. Recent work has explored the

application of mechanical search in structured environments,

however, human-centred spaces, such as the home or work-

place, generally lack such fixed structure and require more

adaptable solutions.

Prior work into making more informed interactions with

objects in the environment has evolved from database-driven

approaches such as the Columbia Grasp Database [2], [3] to

learning-based approaches [4]–[6]. Such work has targeted

a range of environments including top-down retrieval of

objects in bins [1] and lateral access shelves [6], with

grasping being performed by different end-effectors such

as parallel jaw grippers [1], [5] or suction grippers [1],

[6]. Furthermore, approaches that apply deep reinforcement

learning (RL) have targeted generalisability by training the

grasping and interaction policies solely as a function of raw

sensor inputs such as optical or depth images [7]–[9].

While these existing methods variously consider the confi-

dence of a grasp or the value of a new viewpoint, they lack a

framework to explicitly combine and compare between these

two action modalities, which is needed when the goal is to

find and retrieve a hidden object in clutter. For example, if

your keys are under a hat, no viewing action will reveal the

keys. Applying mechanical search to environments in which

a target object is hidden needs to involve the possibility of

both changing the robot’s viewpoint and removing blocking

1 School of Electrical Engineering and Computer Science, The University
of Queensland, Brisbane 4072, Australia, t.pitcher@uq.net.au,

jenjen.chung@uq.edu.au
2 Autonomous Systems Lab, ETH Zürich, Zürich 8092, Switzerland

{fjulian}@ethz.ch

Fig. 1: Interactive search combines novel viewpoints and removal
of occluding objects, such as the purple cup, to find and retrieve
hidden objects in clutter.

objects from the scene. In both instances, the goal is to

expose occluded parts of the scene where the target object

may be hiding, bearing in mind that if the size of the target

object is known, we can already discard some occluded

regions from the set of potential hiding places. In this case,

the reduction in the number of possible target locations given

an object removal action or a viewpoint change action can

be cast as a form of information gain.

In this work, we present an RL framework for active search

and grasp in cluttered environments. The proposed frame-

work comprises four main components: target object location

estimation, a state encoding method for efficient depth sensor

data processing, action generation to give the robot a set

of possible viewing and grasping actions, and an RL agent

for information gain optimisation over the generated action

set. Our method continuously integrates depth images from a

wrist-mounted camera into a truncated signed distance field

(TSDF) representation, which we directly exploit to identify

potential target locations given a known target object size.

To maintain tractability, the volumetric scene information is

first compressed through an encoder to generate a lower-

dimensional representation that is then passed as part of

the state to the RL agent. Action generation is handled

by the Active Grasp [4] and Volumetric Grasping Network



(VGN) [5] implementations from our prior work. We trained

the RL policy in simulated PyBullet [10] scenarios where,

when interacting with the environment, the robot reasons

whether to move occluding objects or change its wrist-

mounted camera viewpoint. These actions have trade-offs

that are formulated via the RL reward function.

We evaluated our active search pipeline in randomly

generated PyBullet scenes where the target object is initially

hidden from view. This includes a mix of scenes where the

target may be behind other objects or completely covered

by another object such as a mug (see Figure 1). Our results

show that our approach is able to retrieve the target in all

scenarios and on average is 22% faster than state-of-the-art

baselines. We also validated the approach using a Franka

Emika Research 3 arm to demonstrate sim-to-real transfer

of the learned policy.

II. RELATED WORK

Retrieving fully occluded objects in clutter requires robots

to explore and interact with their environment [11]. The

proposed method involves synthesizing an overarching de-

cision framework to select between next-best-view planning,

mechanical search, and grasp planning.

A. Information Gain

Many prior works select actions based on some quantified

information gain metric. This has been applied to tasks like

next-best-view decision making [4], [12], as well as object

segmentation [13]–[15]. In particular, [14] uses an online

implementation that continuously samples the environment

such that if a better action arises during the motion sequence

it can transition seamlessly. This is similar to our proposed

method where actions are continuously queried as more of

the environment is revealed. However, unlike previous work,

our method offers a way to compare the potential benefits

of moving the camera or removing an occluding object from

the scene in order to find and retrieve a hidden target object.

B. Action Planners

Action planning can be framed as selecting between a

set of skills, for example moving the camera, pushing an

object or grasping an object. [16] proposed a method for

finding hidden objects using either push or grasp actions

where action values were proposed by two separate pushing

and grasping networks. In [17], the pushing action was

formulated from a depth map used to recognize whether

objects may be stacked, thereby occluding the target below.

Recent work has also looked into revealing objects on shelves

where an overhead view is not possible [6]. Similar to the

previous two papers, [6] trains separate neural networks for

the different actions, however, here the actions are whether

to destack objects or stack them in an effort to reveal a target

object behind. This work assumes a fixed-size environment

in the form of lateral access shelves with limited object

variability as all cuboid objects must be positioned with a

face aligned normal to that of the rear wall.

C. Learning-based Methods for Mechanical Search

There have been recent extensions to the large body of

work in learning-based approaches for grasping and ma-

nipulation towards solving mechanical search problems [1],

[18]. These works propose approaches that combine visual

perception and robotic manipulation to recover a target

object. The visual perception elements reason about which

occluding objects need to be removed in cases where the

target object is initially seen [1] or unseen [18], while Dex-

Net 2.0 [19] is queried to synthesise grasps on different parts

of the scene. In contrast to our approach, these works have

a fixed camera setup and use the image segmentation and

object recognition confidence scores to estimate the location

of the target. In our work, we exploit the viewpoint changes

available with a wrist-mounted camera to extend the search

capabilities into full 3D.

III. ACTIVE SEARCH

Our proposed RL framework for learning an active search

policy is shown in Fig. 2. The state information primarily

consists of an encoding of the observed 3D scene alongside

the robot arm’s configuration. The action space is populated

by a predefined set of camera viewpoints as well as the set of

grasps output from our grasp synthesis network (VGN [5]).

The interactive search policy is then trained to evaluate each

possible action based on the potential information gain and

the time required for execution.

A. Encoded State Representation

We integrate the stream of depth images from the wrist-

mounted camera into a TSDF where each element of the

resulting 40 × 40 × 40 matrix represents the distance to

the nearest observed surface. As the target object must be

specified as part of the task, we assume that a volumetric

bounding box is directly available or that one can be readily

derived e.g. from a point cloud or mesh of the object. We can

therefore combine this knowledge with the current TSDF to

generate an accurate map of all the hidden voxels the target

could occupy, i.e. in contiguous occluded (negative) parts

of the TSDF that are large enough to contain the object.

By exploiting the parallelism of a graphical processing

unit (GPU), we are able to conduct this search extremely

efficiently. An example of this evaluation can be seen in

Fig. 3. The resultant mask of potential target locations is

then appended to the TSDF as a second channel.

To enable tractable learning, we compress the scene rep-

resentation through the encoder head of an autoencoder that

was pretrained offline on randomised scenes. The encoder

reduces the size of the volumetric scene information from

2× (40× 40× 40) = 128000 to a vector of 512. The robot

arm’s 7 joint angles are then appended to this vector as well

as the action’s pose, defined in section III-B, to form the

full state representation used for learning.

B. Action Generation

Two types of actions are available to the robot, view

actions define a camera pose, while grasp actions define



State

Pose

TSDF

Active Search

Grasp RL Agent

View RL Agent

Set of Weighted
Actions

View Generation

Grasp Generation (VGN)

El
se

If Target Grasp Found

Take Best
Action

Target Size

Grasp Target
Object

 

Target Locations

 

Grasp

Grasp

Grasp

View
View

View
...

...

Network
Input

Encoded State R
epresentation

Pose
Action

 

 

State Auto-Encoder

 

Fig. 2: Our active search policy encodes the volumetric scene information, robot pose, and each view or grasp action to evaluate the best
action to execute . The network is structured as a Branching Dueling Q-Network [20] where separate view and grasp agents are trained
to output the value of each type of action.

an end-effector pose. Both actions are represented by a 7-

dimensional vector of position and orientation (quaternion).

1) View Generation: Similar to the method used in [4], the

available view actions are pre-defined as a set of 10 poses

spawned above the scene and positioned on a hemisphere

facing the centre of the task space. An example of the

spawned views can be seen in the “View Generation” inset

in Fig. 2. The volumetric scene information is updated using

all incoming depth images as the robot moves. In contrast to

[4], selected view actions are executed to completion, that is,

the robot will move the camera to the commanded viewpoint

before querying for the next action. In our experience, this

resulted in more stable learning compared to training the

policy at the TSDF update rate, which typically lead to much

noisier reward signals.

2) Grasp Generation: Grasps are synthesised using the

volumetric grasping network (VGN) from our previous

work [5]. VGN takes as input the current TSDF of the scene

and outputs a set of grasps computed over the full volume

of the workspace. Due to its fast inference speed, we are

able to synthesise grasps in real-time at the TSDF update

rate. However, unlike the view generation pipeline, the set of

synthesised grasps from VGN is not guaranteed to be a fixed

size. Indeed, there may sometimes be no predicted grasps

for a particular scene. We handle this variability through the

design of our RL network architecture, which we describe

in Section III-D.

Grasps are filtered based on whether they are reachable,

determined using Trac-IK. To execute grasps, trajectories

are planned using MoveIt’s RRT-Connect motion planner.

During grasp execution, depth image integration is paused

to avoid introducing errors in the TSDF, which would arise

when the robot moves the objects in the scene. To account for

the scene change after a grasp is successfully executed, we

reinitialise the TSDF voxels that correspond to the volume

of the extracted object.

C. Information Gain Reward Function

The goal is to train an active search policy that allows the

robot to find and retrieve the target object in minimum time.

Therefore, the RL reward function (1) trades off between

the execution time and the amount of newly revealed space

generated by each action. In particular, we are only interested

in revealing unobserved voxels where the target object may

be hidden (see Fig. 3), and so we compute the information

gain component of the reward function as the relative change

in possible target locations:

R = ω ×

∆Possible target locations

Possible target locations
− t, (1)

where t is the time taken to perform the chosen action.

The first term is multiplied by a scaling factor ω to weight

the relative importance of information gain versus execution

time. In this work we use a scaling factor of ω = 10. In

general, grasp actions take longer to complete, however, they

can uncover large parts of the scene that are inaccessible

to viewing actions especially later in task execution. It’s

worth noting that the reward function (1) doesn’t explicitly

reward retrieving the target object. Target grasp success

would only offer a very sparse learning signal compared to

the information gain, and by default the downstream grasp

execution is instructed to attempt any valid grasp that is

found on the target. Thus, the primary role of the active

search policy is to sufficiently reveal the target object such

that a successful grasp can be found.

D. RL Architecture

As described in Section III-B, there are two classes of

actions available to the robot, views or grasps, both of which

are represented by 7D vectors of position and orientation

in quaternions. Since the number of available grasp ac-

tions is not fixed over the states, we structure our learning

architecture to evaluate each available action individually.



(a) (b) (c)

Fig. 3: (a) The target object is hidden under the white mug. (b)
The TSDF surface reconstruction from the first viewpoint. A small
part of the true target object bounding box (red) is also visible in.
(c) Initial evaluation of the TSDF to reduces the search volume to
the green voxel mask (the true bounding box is also shown). This
mask is included as an additional channel to the TSDF encoded in
the RL state-space.

In addition, we learn a separate value network for each

class of action. The main motivation for this design choice

was to manage the data imbalance between the view and

grasp actions, where in general there are fewer grasp actions

available, and at the start of learning, view actions tend to

be prioritised as they are faster to execute. This architecture

can be seen as a Branching Dueling Q-Network [20]. The

two value networks share the same lightweight three-hidden-

layer MLP architecture, 526 → 256 → 128 → 1 neuron/s,

and take as input the encoded state representation, the robots

pose, and the relevant action pose. Each set of actions is

batch-processed through their respective network and are

first scaled by softmax against their intra-class actions before

being compared across the full set of inter-class actions.

E. Training

We trained our Active Search policy in randomised Pybul-

let [10] simulation scenes using objects from the ShapeNet

dataset [21]. We generate two types of scenes for training

and testing, under and behind, which refers to the main

type of occlusion in the scene. For the under scenes, the

simulation spawns a target object at some uniformly random

(x,y) location in the robot’s workspace with some uniformly

random bounded scale to ensure that it is graspable with the

robot’s end-effector. The occluding object is then randomly

sampled from the “mug” or “cup” class of ShapeNet objects

and dropped on top of the target object. Occlusion is checked

by ensuring the bounding box of the target object is within

the bounding box of the occluding object. After this, a

random number of decoy objects are spawned around the

scene at random locations and with random scale. The behind

scenes spawn the target object in the same fashion, however,

we then spawn a larger object in front of the target to occlude

it in the initial camera view followed by some random

number of randomly placed decoy objects.

Training is completed over 10000 learning epochs with

each epoch sampling 5 experiences from a replay memory

buffer of the last 100 epochs. Over 1200 unique scenes are

used during training, where (similar to [5]) each scene is

automatically terminated if:

• The target object is retrieved.

• The robot takes greater than 30 actions.

(a) (b)

(c) (d)

Fig. 4: Examples of scenes that are used to test the performance
of each implementation. (a)-(b) The target object is hidden behind
occluding objects in the initial camera view. (c)-(d) The target object
is fully covered by another object, which must be removed before
the target can be retrieved.

• There are greater than 4 failed grasp attempts in total.

IV. EXPERIMENTAL SETUP

A. Simulation Experiments

We evaluated our Active Search policy in 22 simulation

test scenes and compared its performance to running pure

VGN and a baseline heuristic search method. VGN is setup

to execute the highest quality grasp, part of the network

output, and returns to a fixed top-down camera view between

each grasp. The top-down viewpoint is selected to ensure that

the full workspace is within the camera frame. The baseline

heuristic, which we call Baseline 50/50, computes the infor-

mation gain of each potential view or grasp action according

to the same voxel-based calculation we use in (1). However,

it has an equal probability of selecting either the highest

value view or grasp action to execute. Compared to VGN

and Active Search, Baseline 50/50 is a stochastic policy1,

therefore, in the following experiments, we conducted 15

statistical trials of Baseline 50/50 for each test scene and

recorded the best-performing run.

The test scenes are generated using the same procedure

as the training environments but include objects and con-

figurations not seen during training. Of the 22 test scenes,

7 are configured with the target object behind occluding

objects and 15 where the target object is positioned under an

occluding object (see Fig. 4 for two examples of each type

of test scene). All three policies have the same termination

behaviour whereby if a valid grasp is found on the target

object, the robot will be commanded to execute that grasp.

An episode terminates under the same three conditions as

described in Section III-E.

B. Hardware Experiments

We demonstrate the sim-to-real transfer of Active Search

by executing the learned policy on a Franka Emika Research

3 robot arm in the three real-world test scenes shown in

1The only source of stochasticity in VGN and Active Search arises from
the MoveIt RRT connect planner used to execute the commanded grasps.



(a) (b) (c)

Fig. 5: Real-world test scenes. The robot is shown in its initial pose and the target object in all scenes is the green prism.

Fig. 5. The three scenes were designed to vary in complexity.

In scenes (a) and (b), the target object (the green prism)

is occluded from the initial camera view by a large white

block. In addition, in scene (b), there is a blue triangular

block that partially occludes the target from top-down views

and prevents the robot from grasping the target directly from

above. For both of these scenes, it is possible for the robot

to grasp the target object without removing any other objects

from the scene. However, it is considerably more challenging

to do so in scene (b) as the robot would first need to

reconstruct the far side of the object for VGN to return a

reachable and collision-free grasp. In scene (c), the target

is covered by a cup, which must first be removed before

the green block can be retrieved. Other distractor objects of

varying size are also placed in the scene.

When an object is removed from the scene, the TSDF vox-

els corresponding to the object must be reset. In simulation

we use the known object bounding box to identify the rele-

vant voxels that need updating; however, in the real world, we

generally do not have known object bounding boxes. Thus,

we applied a conservative estimate and reset all voxels within

a 20×20 column around the grasp pose, where the top of the

column starts 10 voxels above the grasp point and extends all

the way down to the workspace surface. In future, we plan

to integrate a multi-object volumetric segmentation pipeline

such as [22] to automate this procedure.

V. RESULTS AND ANALYSIS

A. Simulation Experiments

Performance of VGN, Baseline 50/50 and Active Search

over the 22 simulation test scenes was measured using:

• Success rate: Where success is defined as the robot

retrieving the target object without exceeding 30 actions

or 4 total grasp failures.

• Average completion time: Time taken to retrieve the

target object averaged over all scenes.

Table I shows the results of these experiments. Active

Search achieves the highest success rate at 100% across

both scene types, along with this it also achieves the fastest

object retrieval performance. The Baseline 50/50 and VGN

implementations are able to solve all of the behind scenes,

however, the performance of both methods drops in the

under scenarios, with Baseline 50/50 completing 13 of the

15 tasks while VGN is only able to retrieve the hidden

object in 9 of the cases. Interestingly, VGN is faster than

Baseline 50/50 at retrieving the object in behind cases,

but this result is reversed for the under scenarios. Overall,

however, Active Search is faster than both other methods

in all cases, achieving task completion times that are up to

33.6% (behind), 24.3% (under) and 22.0% (combined) faster

than VGN or Baseline 50/50.

Across all tested scenarios it was observed that Active

Search was able to solve complex cluttered scenes in fewer

moves than its counterparts, thus allowing it to retrieve

the target object faster. A prime example of this was test

case 7 shown in Fig. 4c. Active Search’s policy for this

particular scene was 5 consecutive grasps allowing it to

complete the scene in 86.75s as opposed to 135.8s and 163.6s

from the Baseline 50/50 and VGN, respectively. Baseline

50/50 performed the action sequence V-G-G-V-G-V-G-G-V-

G, where V is a view and G is a grasp, as this scene is

highly cluttered there are many grasps needed to de-clutter.

The solution found by Active Search uses only 5 total grasps

instead of the 6 used by the Baseline. As VGN has no

concept of information gain it results in removing all 8 decoy

objects from the scene before finally revealing and retrieving

the target, resulting in 9 grasps.

B. Hardware Experiments

Experiments in the three real-world test cases were re-

peated five times for each method to account for slight

variations in the scene setup and stochasticity in the tested

policy. We report the average task completion time and the

number of grasped objects in Table II.

We observe that Active Search is on average 11.8s slower

to retrieve the target object in the least cluttered scene (a)

where it consistently uses two grasps, the first to remove

the large white occluding block and the second to retrieve

the object. In 3 of the 5 runs, Baseline 50/50 was able to

complete this scene in a single grasp by first selecting an

advantageous view, which it is able to compute from its ray-

casting method adapted from [4]. Each action taken by VGN

returns to a top-down view of the scene, which is also an

advantageous position for this specific scene. Thus, although

it also takes executes two grasps, it is able to retrieve the

target on average 6.6s faster than Active Search.

The following two scenes (b) and (c) present substantially

more clutter, and in the case of (c), requires removing

another object before the target object can be reached.



TABLE I: AGGREGATED RESULTS FROM SIMULATION EXPERIMENTS OVER 22 SCENES. THE TIMING RESULTS SHOW

MEAN AND ONE STANDARD DEVIATION OVER THE SUCCESSFUL RUNS.

Method
Behind (7) Under (15) All (22)

Success rate Time (s) Success rate Time (s) Success rate Time (s)

VGN [5] 100% 59.30± 50.93 60.0% 100.04± 35.96 72.7% 84.31± 47.40
Baseline 50/50 100% 66.80± 66.40 86.7% 80.63± 37.57 90.9% 75.79± 48.26
Active search 100% 44.33± 28.30 100% 75.78± 31.40 100% 65.77± 33.33

TABLE II: RESULTS FROM REAL-WORLD CASE STUDIES.

Scene Method Time (s)
Number of

grasped objects
(min/mode/max)

(a)
VGN [5] 38.0± 4.24 2/2/2
Baseline 50/50 32.8± 15.06 1/1/2
Active Search 44.6± 7.40 2/2/2

(b)
VGN [5] 76.6± 25.63 3/3/5
Baseline 50/50 81.6± 20.97 3/4/4
Active Search 69.8± 18.09 2/4/4

(c)
VGN [5] 82.6± 19.11 2/2/3
Baseline 50/50 81.8± 23.78 2/3/4
Active Search 54.2± 18.70 2/2/2

Active Search is able to solve both of these scenes faster

and with fewer grasps compared to VGN ((b) 6.8s and (c)

28.4s faster) and Baseline 50/50 ((b) 11.8s and (c) 27.6s

faster). This is particularly evident in scene (c) where Active

Search consistently solves the scene with just two grasps,

demonstrating that the learned policy transfers well to real-

world search and retrieval tasks in cluttered, complex scenes.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present Active Search, a Reinforcement

Learning agent for reasoning and acting in cluttered environ-

ments to retrieve a hidden target object. We showed that it

is possible to learn the trade-off between the potential infor-

mation gain of removing an occluding object or moving the

camera viewpoint given the current knowledge of the scene

and the robot pose. This work shows considerable gains

over conventional algorithmic methods, namely a heuristic

baseline approach based only on information gain and a pure

object-agnostic grasping approach. We demonstrated that

Active Search is directly transferable to real-world scenarios

remaining performant and effective on complex search tasks.

In future we would like to add a volumetric segmentation

pipeline to perform bounding box and pose estimation to

improve real-world performance.

REFERENCES

[1] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martı́n-Martı́n, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,” in
2019 Int. Conf. on Robot. and Autom., 2019, pp. 1614–1621.

[2] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The Columbia
grasp database,” in 2009 IEEE Int. Conf. on Robot. and Autom., 2009,
pp. 1710–1716.

[3] C. Goldfeder, M. Ciocarlie, J. Peretzman, H. Dang, and P. K. Allen,
“Data-driven grasping with partial sensor data,” in 2009 IEEE/RSJ Int.

Conf. on Intell. Robot. and Sys., 2009, pp. 1278–1283.
[4] M. Breyer, L. Ott, R. Siegwart, and J. J. Chung, “Closed-loop next-

best-view planning for target-driven grasping,” in 2022 IEEE/RSJ Int.

Conf. on Intell. Robot. and Sys., 2022, pp. 1411–1416.

[5] M. Breyer, J. J. Chung, L. Ott, R. Siegwart, and J. Nieto, “Volumetric
Grasping Network: Real-time 6 DOF grasp detection in clutter,” in
2020 Conf. on Robot Learning, 2020.

[6] H. Huang, L. Fu, M. Danielczuk, C. M. Kim, Z. Tam, J. Ichnowski,
A. Angelova, B. Ichter, and K. Goldberg, “Mechanical search on
shelves with efficient stacking and destacking of objects,” in The Int.

Symp. of Robot. Res., 2022, pp. 205–221.
[7] M. Breyer, F. Furrer, T. Novkovic, R. Siegwart, and J. Nieto, “Com-

paring task simplifications to learn closed-loop object picking using
deep reinforcement learning,” IEEE Robot. and Autom. Lett., vol. 4,
no. 2, pp. 1549–1556, 2019.

[8] S. Joshi, S. Kumra, and F. Sahin, “Robotic grasping using deep
reinforcement learning,” in 2020 IEEE 16th Int. Conf. on Autom. Sci.

and Eng., 2020, pp. 1461–1466.
[9] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, “Review of

deep reinforcement learning-based object grasping: Techniques, open
challenges, and recommendations,” IEEE Access, vol. 8, pp. 178 450–
178 481, 2020.

[10] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2022.

[11] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Manipulation-
based active search for occluded objects,” in 2013 IEEE Int. Conf. on

Robot. and Autom., 2013, pp. 2814–2819.
[12] W. Bejjani, W. C. Agboh, M. R. Dogar, and M. Leonetti, “Occlusion-

aware search for object retrieval in clutter,” in 2021 IEEE/RSJ Int.

Conf. on Intell. Robot. and Sys., 2021, pp. 4678–4685.
[13] H. Van Hoof, O. Kroemer, and J. Peters, “Probabilistic segmentation

and targeted exploration of objects in cluttered environments,” IEEE

Transactions on Robot., vol. 30, no. 5, pp. 1198–1209, 2014.
[14] T. Patten, M. Zillich, and M. Vincze, “Action selection for interactive

object segmentation in clutter,” in 2018 IEEE/RSJ Int. Conf. on Intell.

Robot. and Sys., 2018, pp. 6297–6304.
[15] B. Serhan, H. Pandya, A. Kucukyilmaz, and G. Neumann, “Push-

to-see: Learning non-prehensile manipulation to enhance instance
segmentation via deep Q-learning,” in 2022 Int. Conf. on Robot. and

Autom., 2022, pp. 1513–1519.
[16] Y. Yang, H. Liang, and C. Choi, “A deep learning approach to grasping

the invisible,” IEEE Robot. and Autom. Lett., vol. 5, no. 2, pp. 2232–
2239, 2020.

[17] T. Novkovic, R. Pautrat, F. Furrer, M. Breyer, R. Siegwart, and J. Ni-
eto, “Object finding in cluttered scenes using interactive perception,”
in 2020 IEEE Int. Conf. on Robot. and Autom., 2020, pp. 8338–8344.

[18] M. Danielczuk, A. Angelova, V. Vanhoucke, and K. Goldberg, “X-
Ray: Mechanical search for an occluded object by minimizing support
of learned occupancy distributions,” in 2020 IEEE/RSJ Int. Conf. on

Intell. Robot. and Sys. (IROS), 2020, pp. 9577–9584.
[19] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,

and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” 2017.

[20] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching archi-
tectures for deep reinforcement learning,” in AAAI Conf. on Artificial

Intelligence, 2018, pp. 4131–4138.
[21] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,

S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University, Princeton University, Toyota Technological Institute at
Chicago, Tech. Rep., 2015.

[22] M. Grinvald, F. Tombari, R. Siegwart, and J. Nieto, “TSDF++: A
multi-object formulation for dynamic object tracking and reconstruc-
tion,” in 2021 IEEE Int. Conf. on Robot. and Autom., 2021, pp. 14 192–
14 198.


