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Abstract

Surface normal integration is a fundamental problem in
computer vision, dealing with the objective of reconstruct-
ing a surface from its corresponding normal map. Exist-
ing approaches require an iterative global optimization to
jointly estimate the depth of each pixel, which scales poorly
to larger normal maps. In this paper, we address this prob-
lem by recasting normal integration as the estimation of rel-
ative scales of continuous components. By constraining pix-
els belonging to the same component to jointly vary their
scale, we drastically reduce the number of optimization
variables. Our framework includes a heuristic to accurately
estimate continuous components from the start, a strategy to
rebalance optimization terms, and a technique to iteratively
merge components to further reduce the size of the prob-
lem. Our method achieves state-of-the-art results on the
standard normal integration benchmark in as little as a few
seconds and achieves one-order-of-magnitude speedup over
pixel-level approaches on large-resolution normal maps.

1. Introduction

The problem of reconstructing a surface from its normal
map, known as normal integration, arises naturally in many
applications of computer vision, particularly in photometric
shape recovery, such as shape from shading [12] and from
polarization [1, 2] and photometric stereo [13, 25], in which
the objective is to reconstruct a 3D surface from shading in-
formation, using estimated normals as an intermediate step.

The mathematical problem underlying normal estima-
tion has been extensively studied and several recent meth-
ods have been proposed that achieve sub-millimeter accu-
racy on object-level normal maps [5, 16, 19]. While accu-
rate, state-of-the-art approaches are predominantly based on
a costly global optimization that jointly estimates the depth
value at each pixel, with the number of optimization vari-
ables and constraints thereby scaling with the number of
pixels. Additionally, multiple optimization steps with iter-
ative reweighting are necessary to capture surface disconti-
nuities, which cannot be correctly estimated a priori in the

general case and would otherwise cause the reconstruction
to be suboptimal [5]. As a consequence, these methods have
runtimes in the order of minutes for relatively low scales
(typically in the order of 104 valid pixels) and up to hours
for high resolutions and scales.

To address the above limitation, we observe that natu-
rally occurring surfaces are often made of several smooth
regions. If each such region was independently recon-
structed, obtaining a single, global surface would reduce to
optimally aligning each region to one another. Thus, we
propose to recast normal integration into the estimation of
the relative scales of continuous surface components. We
introduce a simple and effective heuristic, based on normal
similarity, to identify continuous components, and indepen-
dently reconstruct each of them using the state-of-the-art
formulation of [19]. We then jointly scale the depth of all
pixels in each component by optimizing a single scale pa-
rameter for each component. For this, we reframe [19] and
the discontinuity model of BiNI [5] to use relative compo-
nent scales as optimization variables, and additionally intro-
duce an outlier reweighting mechanism that rebalances the
optimization terms. Importantly, we find that this reweight-
ing significantly speeds up convergence also for previous,
pixel-level methods, although their scalability remains lim-
ited due to the size of their optimization problem. Through
its component-based formulation, our method greatly re-
duces the number of variables and constraints used in the
optimization, resulting in a reduction of one order of magni-
tude in the execution time for mid-to-high resolution normal
maps. Additionally, our approach achieves state-of-the-art
reconstruction accuracy on the DiLiGenT benchmark [22]
for normal integration in as little as a few seconds.

Thus, our contribution is a framework that recasts normal
integration as an estimation of relative scales of continuous
components, which (i) achieves state-of-the-art reconstruc-
tion accuracy on normal integration benchmarks, and (ii)
enables scaling discontinuity-preserving normal integration
to larger resolutions with an order of magnitude reduction
in the execution time. Our code is publicly available1.

1https://github.com/francescomilano172/normal_
integration_continuous_components.
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2. Related work
We refer the reader to [20, 21] for extensive surveys of
methods for normal integration. In the following Section,
we focus on the most recent, state-of-the-art approaches.

A key challenge in normal integration is that the input
normal map might represent a surface with discontinuities,
which naturally arise, for instance due to self-occlusions.
Failure to preserve such discontinuities results in overly
continuous reconstructions with global distortions [4, 28].
To address this problem, a number of single-analysis meth-
ods have proposed detecting discontinuities as a preprocess-
ing step, according to different strategies [15, 24, 26, 27].
These methods, however, tend not to be robust, since er-
rors in the initial discontinuity detection cannot be later cor-
rected during the reconstruction process. Recently, large
improvements have been achieved by methods that estimate
discontinuities through an iteratively reweighted optimiza-
tion problem [5, 15, 19]. While accurate, these methods
suffer from long execution times and scale poorly to larger
resolutions, due to the need to jointly recover a depth value
at all pixels through a single, global optimization problem.

To address this problem, Heep and Zell [10] have re-
cently proposed a meshing-based approach for normal in-
tegration, in which a triangle mesh is precomputed from
the input normal map based on estimated curvature and a
surface reconstruction is obtained by optimizing the depth
of each mesh vertex. While greatly reducing the num-
ber of variables and the execution time, the single, fixed
mesh representation does not support modeling discontinu-
ities, which is admittedly not straightforward and would re-
quire operations to realign the mesh and adjust its topol-
ogy [10]. In this work, we aim at achieving the best of both
discontinuity-preserving and computationally efficient ap-
proaches. Our component-based formulation is naturally
compatible with state-of-the-art pixel-level methods, but
also allows effectively preserving discontinuities while sig-
nificantly improving scalability.

3. Surface normal integration using continuous
components

An overview of our method and of its components is shown
in Fig. 2 and in the form of pseudocode in Algorithm 1
(Supplementary). Section 3.1 formally introduces the prob-
lem and reviews state-of-the-art approaches from a unifying
perspective. Section 3.2 illustrates our general framework
and presents our reformulation of the underlying mathe-
matical model. Section 3.3 describes our proposed heuris-
tics to form continuous components from an input normal
map (Fig. 2a), and Section 3.4 presents our strategy for op-
timizing their relative scales to retrieve a globally optimal
reconstruction (Fig. 2b). Finally, Section 3.5 describes an
optional step to merge multiple components (Fig. 2c).

3.1. Background
Surface normal integration is the problem of reconstruct-
ing a depth map from an input surface normal map, as-
suming known camera intrinsic parameters. Using the no-
tation of [19], for a generic pair of neighboring pixels
(a, b) with pixel coordinates (ua, va)

T and (ub, vb)
T, re-

spectively, we denote with na = (nax, nay, naz)
T and

nb = (nbx, nby, nbz)
T the surface normal vectors at those

pixels. The values of the depth za, zb at these pixels can
then be modeled through a linear relationship in logarith-
mic space, which we refer to as a model of continuity:

z̃a − z̃b − ω̃b→a = 0, (1)

where z̃a := log(za), z̃b := log(zb), and the coefficient
ω̃b→a assumes a different value depending on the formu-
lation. For instance, in BiNI [5], ω̃b→a has the following
form for a pinhole camera of focal lengths fx and fy and
principal point (cx, cy):

ω̃b→a :=
δb→a

nax(ua − cx) + nay(va − cy) + nazf
, (2)

with f = fx, δb→a = ±nax i.f.f. (ub, vb) = (ua ± 1, va)
and f = fy, δb→a = ±nay i.f.f. (ub, vb) = (ua, va ± 1).

Milano et al. [19] instead derive the following alternative
equation for generic central cameras:

ω̃b→a := log

(
na

Tτm · nb
Tτb

na
Tτa · nb

Tτm

)
, (3)

where τa, τb, and τm denote, respectively, the ray direction
vectors at pixel a, pixel b, and at a subpixel m that interpo-
lates between a and b.

Typically, a global least-squares optimization problem is
set up to recover the depth map, jointly enforcing the con-
straint (1) at all pairs of neighboring pixels. However, all
models of continuity are approximate, since the input nor-
mal map only provides a discrete sampling of the surface
normals. In addition, surface discontinuities may be present
between two neighboring pixels, which act effectively as
unknown constants of the integration problem and there-
fore cannot be estimated beforehand in the general case.
As an example, consider the case of the chair in Fig. 1:
while the surface of the chair and that of the wall behind
it can be separately reconstructed, the exact depth disconti-
nuity at the boundary cannot be estimated from the normals
alone, since infinitely many solutions exist. As a result, an
unknown residual term χb→a should be introduced in the
model of continuity to account for discontinuities:

χb→a := z̃a − z̃b − ω̃b→a. (4)

While in the general case the integration solution is up
to these residuals, a number of assumptions can be made
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Figure 1. Example of surface discontinuities. Left: The chair in
the foreground is separated by a full surface discontinuity from the
wall in the background. Infinitely many depth maps can describe
the input normal map, and solutions of the integration are up to
the relative scales of the chair and the wall. Right: The surface
points pa and pb are separated by a discontinuity along the path
in red, but the yellow path connects them along the surface without
discontinuities. Source of object meshes : [17] (left), [22] (right).

about the discontinuities. In particular, discontinuities of-
ten arise from self-occlusions rather than from fully discon-
nected surfaces, for instance, in normal maps that capture a
single object [22]. In general, even in the presence of multi-
ple objects, while the residual χb→a between two neighbor-
ing pixels a and b might be significant in magnitude, there
often exists an alternative path along the surface that con-
nects the two corresponding surface points along a trajec-
tory with no discontinuities (Fig. 1, right).

State-of-the-art methods implicitly exploit this fact by
assigning a lower weight in the optimization objective to
the constraints (1) that, over the course of the optimization,
are found to have a large residual magnitude. The ratio-
nale is that if all constraints were equally weighted, those
associated with discontinuities would incorrectly drive the
optimization to assign them a small residual, causing the
reconstruction to converge to an overly continuous surface.
By iteratively adapting the weights of the constraints, these
methods instead focus on the more continuous paths along
the surface, and thereby more accurately recover disconti-
nuities, while still reconstructing a connected surface. A
complementary approach, recently proposed by [19], con-
sists in dynamically updating the coefficients ω̃b→a in the
equations (1) that have large residuals, so as to explicitly
take into account the magnitude of the discontinuities. This
is achieved through an additive term in the logarithm (3),
which admits a geometrical interpretation. We refer to the
exact mechanism by which the above methods achieve the
reweighting of the constraints as a model of discontinuity.

The leading model of discontinuity is the bilateral
weighting scheme proposed by BiNI [5] which acts through
two different mechanisms. First, it relies on the assump-
tion that surfaces are semi-smooth. This implies that, index-
ing the two neighboring pixels b and −b on opposite sides
of a pixel a, the depth map has a discontinuity between at
most one of the sides (a, b) or (a,−b). This is modeled by
weighting the constraint (1) between a and b by the factor,

wBiNI
b→a = σk

(
γ2
b→a ·

(
(z̃−b − z̃a)

2 − (z̃b − z̃a)
2
))

, (5)

where σk(x) is the sigmoid function
(
1 + e−kx

)−1
with hy-

perparameter k, and γb→a is a pixel-specific factor. If at a
given point in the optimization it holds that (z̃−b − z̃a)

2 ≪
(z̃b − z̃a)

2, i.e., the surface is estimated to be significantly
more continuous on the side (a,−b) than on the side (a, b),
the value of wBiNI

b→a will tend to 0 and the constraint between
a and b will therefore be down-weighted.

The second mechanism is through the factor γb→a itself,
the square of which is used to scale the term wBiNI

b→a , so that
the overall weight associated to each constraint (1) is,

Wb→a = γ2
b→a · wBiNI

b→a . (6)

As noted by [19], the factor γb→a can be expressed as

γb→a = f · na
Tτa, (7)

where f is the focal length of the camera, and is crucial to
the optimization convergence, which it affects through (6)
by introducing a multiplicative factor (na

Tτa)
2. Since

the quantity na
Tτa tends to 0 for pixels a that lie close

to an object boundary [18], this weighting effectively as-
signs lower confidence to constraints involving pixels that
are likely to lie next to a depth discontinuity.

These approaches enforce all constraints in a global op-
timization problem of the form (Az̃ − b)TW(Az̃ − b),
where W := diag(Wb→a). The optimization variable z̃
represents the log-depth at each pixel and has dimensional-
ity equal to the number of pixels. Similarly, the design ma-
trix A, while sparse, scales with the number of constraints
and the number of pixels. Thus, the overall complexity of
the optimization scales poorly as the input dimensionality
increases, quickly becoming infeasible for medium-to-large
resolution normal maps. In the next Sections, we present
our method for effective and scalable discontinuity-aware
normal integration using continuous components.

3.2. General framework
Our proposed framework draws inspiration from the obser-
vation that surfaces typically consist of large regions that are
locally smooth, and therefore contain no surface discontinu-
ities. As a consequence, if each of these surface “patches”
– which we refer to as continuous components – was inde-
pendently described using the model of continuity (4), the
residuals χb→a within the component would all be close to
0 in magnitude. As a result, each of the component-level re-
constructions, taken separately, would approximate the cor-
responding surface patch with high accuracy. Obtaining a
global reconstruction of the full surface would then reduce
to estimating the discontinuities between each pair of neigh-
boring components, which as detailed in the previous Sec-
tion, could be achieved through a model of discontinuity.
Crucially, since these components separately and accurately
describe a fixed surface patch, estimating the discontinuities
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Figure 2. Method overview. We recast normal estimation as the estimation of the relative scale of continuous components. (a) Form
continuous components based on the similarity of normals at neighboring pixels, independently reconstruct associated surface patches via
per-component optimization (Sec. 3.3). (b) Align surface patches and recover discontinuities using relative scale optimization based on
inter-component constraints (Sec. 3.4). (c) Optionally, during optimization, merge components to further reduce complexity (Sec. 3.5).

between them can be reframed as adjusting the scale of each
component relative to one another (Fig. 2b). For instance,
in Fig. 1, a different magnitude of discontinuity between the
chair and the wall in the background could be achieved by
scaling the depth of all points on the surface of the chair
by the same factor s1; a factor s1 > 1 would allow rigidly
moving the chair closer to the wall, while a value s1 < 1
would move the chair further away from it and closer to the
camera. While conceptually similar to optimizing the depth
of each chair- and wall pixel, which relies on all inter-pixel
constraints, estimating the relative scales of the chair and
the wall greatly reduces the optimization complexity, since
it only requires solving for two values and involves only
constraints on the inter-object boundaries.

To better appreciate the difference in complexity, let
us look at the problem from a graph-theoretic perspective,
which also allows us to introduce a notation that will be con-
venient to describe our framework’s components in the sub-
sequent Sections. Existing approaches based on global op-
timization of per-pixel (log-)depth values are akin to mod-
eling the problem using a dense graph G0 = (V,E), where
the set of vertices V comprises a node for each valid pixel
in the input normal map and the set of edges E is defined by
all pairs of valid neighboring pixels according to the chosen
pixel connectivity (Fig. 3a). The optimization problem then
consists of estimating the value of a variable for each node
in the graph, with constraints defined by the graph edges.

When operating with our proposed continuous compo-
nents, optimization can instead be seen as based on a meta-
graph, or quotient graph Qm, obtained from G0 by parti-
tioning its vertices V into a set of components {C(m)

c }, s.t.
V =

⋃
c C

(m)
c (Fig. 3b), where we index with m a spe-

cific version of the partitioning, which can subsequently
be updated. In particular, since all pixels in a component
C(m)
c belong to the same surface patch, we let their scale

change jointly and define a single meta-node Ĉ(m)
c in the

meta-graph. Since each surface patch is considered fixed
up to scale, all constraints relating pixels in the same com-
ponent are ignored when optimizing the relative scale of the
components. Therefore, the edges in the meta-graph only
include constraints between pixels in different components.

Formally, for each component C(m)
c let us denote the set

of its intra-component edges (with both endpoints in C(m)
c )

and the set of its inter-component edges (with only one end-
point in C(m)

c ) as

E(C(m)
c ) := {(a, b) ∈ E | a, b ∈ C(m)

c }
∂C(m)

c := {(a, b) ∈ E | a ∈ C(m)
c ∧ b /∈ C(m)

c }.
(8)

Let us further refer to the set of all intra-component edges
and the set of all inter-component edges respectively as

E
(m)
intra :=

⋃
c

E(C(m)
c ), E

(m)
inter :=

⋃
c

∂C(m)
c , (9)

and let us denote with πm the mapping from a pixel to the
index of its corresponding node in the quotient graph Qm:

πm : V 7→ {0, . . . , |C(m)| − 1}, s.t. ∀a ∈ V, a ∈ C(m)
πm(a).

(10)
With the above notation, we define the quotient graph as

Qm = (C(m), E
(m)
inter), with C(m) := {Ĉ(m)

c }. (11)

At optimization iteration t, with partitioning version m,
the goal of the optimization is to scale, for each component
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(a) G0 = (V,E) (b) Partition of V (c) Q0 (d) Q1

Figure 3. Graph-theory interpretation of our framework. (a)
Pixel-level optimization can be seen as operating on a dense graph
G0 = (V,E). (b) We propose partitioning the per-pixel vertices V
into components. (c) The resulting optimization operates on a quo-
tient graph Q0 (11). (d) Optionally, components can be merged
into one another, forming a reduced quotient graph (Sec. 3.5).

C(m)
c , the depth values zc(t) := (za | a ∈ C(m)

c )T of all pix-
els in C(m)

c by a multiplicative factor sc, or equivalently to
estimate an additive factor s̃c := log(sc) to apply to all cor-
responding log-depth values z̃(t)c = (z̃a | a ∈ C(m)

c )T. We
therefore set as optimization variable the vector of relative
scales to apply to each component,

s̃(t) :=
(
s̃
(t)
0 , . . . , s̃

(t)

|C(m)−1|

)T

, (12)

and we define the optimization constraints by imposing
the following updated version of the model of continuity
uniquely on the inter-component edges (a, b) ∈ E

(m)
inter:

χ
(t)
b→a := z̃(t−1)

a − z̃
(t−1)
b − ω̃b→a+ s̃

(t)
πm(a)− s̃

(t)
πm(b). (13)

After each optimization iteration, the log-depth at each pixel
is efficiently updated in parallel by rigidly scaling all pixels
in the same component by the same factor, i.e., ∀a ∈ V ,

z̃(t+1)
a ← z̃(t)a + s̃

(t)
πm(a), (14)

or equivalently, ∀c ∈ {0, . . . , |C(m)| − 1},

z̃(t+1)
c ← z̃(t)c + s̃(t)c 1. (15)

As a final remark, it is worth noting that our relative-
scale framework can also be applied in the limit where each
component only contains a single pixel. In this case, the
quotient graph coincides with the dense graph G0, hence
there are no advantages over per-pixel log-depth optimiza-
tion in terms of number of variables and constraints. How-
ever, as we show in Section 4, we find that our formulation
converges to a slightly more accurate solution.

3.3. Formation and filling of the initial components
To exploit the computational advantages of our relative-
scale framework, we need a decomposition of the input nor-
mal map into regions that are likely to correspond to contin-
uous surface patches. For this, we propose a simple but ef-
fective heuristic based on the observation that if the deriva-
tive f ′ of a generic signal f is continuous at a point, then
the signal itself is continuous at that point. Since surface

normals represent a form of derivative of the depth map
to reconstruct (hence the name “normal integration”), we
propose to exploit the local continuity of surface normals
as a proxy for the continuity of the underlying surface. In
particular, for each pair of neighboring pixels (a, b) ∈ E,
we compute the relative angle, θa,b := arccos

(
na

Tnb

)
,

between the normals na and nb at each pixel. We then
form continuous components {C(0)c } by finding the con-
nected components of the subgraph obtained from G0 by
only selecting edges for which θa,b < θc, where θc is a hy-
perparameter. As we show in Section 4, we find that for
small values of θc, this simple heuristic allows effectively
recovering large, approximately continuous surface regions.

Once the continuous components are detected, we per-
form a separate optimization for each component C(0)c ,
through which we “fill” the log-depth values of its pixels.
We apply a regular log-depth model of continuity (4) and
the BiNI model of discontinuity (6) on its intra-component
edges (a, b) ∈ E(C(0)c ), expressed in matrix form as:

Ac =

 1 −1 0 · · ·
−1 1 0 · · ·

...
...

...
. . .

 , bc =

ω̃b→a

ω̃a→b

...

 ,

Wc = diag
(
{Wb→a}(a,b)∈E(C(0)

c )

)
.

(16)

Importantly, since no two components share any vari-
ables or constraints, the above optimization problem can be
solved independently and in parallel for each of the com-
ponents. Similarly to previous log-depth-based methods [5,
19], we initialize all log-depth values to 0 and perform opti-
mization using the conjugate-gradient method [11], denoted
as cg(A,b), on the normal equations:

z̃(0)c ← cg
(
Ac

TWcAc,Ac
TWcbc

)
. (17)

We find a single iteration of the above optimization to be
sufficient to accurately reconstruct each surface patch.

3.4. Relative scale optimization
Once the continuous components have each been indepen-
dently reconstructed, an optimization of their relative scales
is necessary to recover the full surface. For a given par-
titioning version m and an optimization iteration t, we
rewrite our updated model of continuity (13) as follows,

Am =

πm(a) πm(b)· · · 0 1 · · · −1 · · ·
· · · 0 −1 · · · 1 · · ·
...

...
...

...
...

. . .

,

bm =


ω̃b→a − (z̃

(t−1)
a − z̃

(t−1)
b )

ω̃a→b − (z̃
(t−1)
b − z̃

(t−1)
a )

...

 ,

(18)
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where the constraints are defined on the inter-component
edges (a, b) ∈ E

(m)
inter, rearranged so that the non-zero

columns of the design matrix correspond to the indices
πm(a) and πm(b) of the connected components. We then
retrieve the logarithmic scale to be applied to each compo-
nent ((14), (15)) through conjugate gradient:

s̃(t) ← cg
(
A

T

mW
(t)

m Am,A
T

mW
(t)

m bm

)
. (19)

Importantly, we note that after the initial filling of the
components, the scale of each per-component reconstruc-
tion might differ significantly, since each optimization re-
trieves log-depth maps only up to scale (Fig. 2a). Thus, the
inter-component residuals may be arbitrary and hence im-
balance the subsequent optimization. Therefore, in the first
iterations of relative scale optimization (we find 2 iterations
to yield accurate results), we weight all constraints (13)
equally, to align the components in the most continuous way
possible; i.e., for t ≤ 1, we set W

(t)

m = diag(1). In subse-
quent iterations, to retrieve the discontinuities we adopt the
BiNI model of discontinuity (6).

However, we find that directly applying such a model
results in suboptimal reconstructions. The reason for this
is that the quotient graph Qm has in general a much lower
number of edges than G0. As a consequence, constraints
with large residuals that might have only partially affected
the optimization in a dense graph assume a much larger
weight in the smaller component-based optimization. To
address this, we introduce an outlier reweighting strategy
that reduces the influence of large residuals in subsequent it-
erations. In particular, we define two thresholds L,U , with
0 < L < U , such that an equation with residual χb→a

is considered an outlier if |χb→a| ≥ U and an inlier if
|χb→a| ≤ L. We model this through a soft weight,

W out(t)

b→a := σ1

(
4

L̃− Ũ
(2 log10(|χ

(t−1)
b→a |)− (L̃+ Ũ))

)
,

(20)
where ·̃ := log10(·), and we set in our experiments U =
10−3 and L = 10−5. This provides an affine mapping in log
space, with U mapped to −4 and L mapped to 4, resulting
in an outlier weight of σ1(−4) ≈ 0.02 when |χb→a| = U
and of σ1(4) ≈ 0.98 when |χb→a| = L. For all iterations
t > 1, we multiply (20) to the BiNI weight, so that the
overall weight matrix is,

W
(t)

m = diag
(
{Wb→a ·W out

b→a}(a,b)∈E
(m)
inter

)
. (21)

We run relative scale optimization until the optimization
energy Et := (Ams̃(t)−bm)TW

(t)

m (Ams̃(t)−bm) changes
in relative terms by less than a threshold ∆Emax or the num-
ber of iterations reaches a pre-defined value T .

3.5. Optional merging
Optionally, to further reduce the number of variables and
constraints of the optimization, components can be itera-
tively merged into one another (Fig. 2c). After a certain
number, freqmerging, of relative-scale optimization itera-

tions with a specific partitioning {C(m)
c }, we can identify

a new set of components as follows: (i) For each node
Ĉ(m)
c in the quotient graph Qm, select the edge among

those incident to it that has the smallest residual magnitude
|χb→a|, i.e., (â, b̂)(m)

c := argmin
(a,b)∈∂C(m)

c
|χb→a|. (ii)

Form a subgraph Q̂m = (C(m), {(â, b̂)(m)
c }) from Qm us-

ing the selected edges. (iii) Find a new set of components
{C(m+1)

c } by computing the connected components of Q̂m.
The process can then continue by optimizing for the relative
scale of the new components (Sec. 3.4).

4. Experiments
4.1. Experimental settings
Our implementation relies on a combination of GPU-
accelerated tensor operations and CPU-based operations
(e.g., conjugate-gradient-based optimization, for which we
use the SciPy library [23]). We compare our method to the
current state-of-the-art approach of [19], noting that we also
use their model of continuity in our framework. We reim-
plement the baseline and integrate it into our framework, to
decouple the effects of GPU acceleration and formulation-
specific computational aspects. All experiments are run on
a single NVIDIA RTX 3080 Laptop GPU.

4.2. Benchmark experiments
We evaluate on the DiLiGenT benchmark [22] for normal
integration, which features ground-truth, object-level nor-
mal maps of resolution 608× 512. In these maps the back-
ground is masked out, and a normal vector is defined only at
the object pixels, resulting in 24 706 to 56 560 depth values
to be estimated. For each object and run we report the mean
average depth error (MADE) and the total execution time.

For both methods we use 8-connectivity and conver-
gence parameters ∆Emax = 10−3, T = 150. We refer the
reader to the Supplementary for ablations on these param-
eters. Additionally, while slight speed-ups of our method
can be achieved through our optional merging (see Supple-
mentary), we find that this effect is not particularly signif-
icant, given the small number of valid pixels in the input
normal maps. We therefore do not use merging in our DiLi-
GenT experiments, and show instead its benefit on larger-
resolution maps in the next Section. We test our method for
different values of the normal similarity threshold θc, in-
cluding the limit case in which each pixel is assigned to a
component, which we denote as θc = None. For the base-
line, we include both the version with and without discon-
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tinuity computation (αb→a in [19]). Finally, we note that
our proposed outlier reweighting mechanism can also be
applied to the log-depth-based optimization of [19] and we
therefore evaluate both methods with and without it.

The results of our evaluation are shown in Table 1. We
start by noting that our outlier reweighting significantly im-
proves the convergence time for pixel-level approaches, not
only for our relative scale optimization, but also for the log-
depth-based baseline of [19]. Importantly, for this baseline,
outlier reweighting also improved accuracy, although with
the exception of some objects (cf ., buddha, cow, pot1).
Additionally, we note that while the discontinuity computa-
tion strategy of [19] is beneficial for objects with large dis-
continuities (buddha, harvest, D vs. ND in Table 1), its
effect is partially reduced by the use of outlier reweighting.

Crucially, for our component-level versions, outlier
reweighting is critical for achieving optimal accuracy, re-
sulting in significantly better and more stable convergence
across the board, particularly for objects with large disconti-
nuities (buddha, harvest, reading, goblet), as can
be seen by comparing successive rows in Table 1. Over-
all, while with outlier reweighting the performance of the
two methods is comparable for the most continuous objects,
our component-based variants achieve better accuracy than
log-depth optimization for the more discontinuous objects
(buddha, harvest, reading). This effect is a function
of the chosen value for the threshold θc, with smaller values
generally resulting in lower error at the cost of slightly in-
creased runtime. We refer to the Supplementary for details
on the minimum theoretical error that can be achieved for
different values of θc. Notably, our pixel-level version also
slightly outperforms the (pixel-level) formulation of [19],
suggesting that solving for relative scales instead of log-
depth may lead to a more well-posed optimization problem.

Finally, we note that, when using outlier reweighting
both our component-based formulation and the pixel-level
method of [19] achieve comparable runtime on the DiLi-
GenT benchmark. As we show in the next Section, however,
the gap between the execution times of the two frameworks
becomes significantly larger as the number of valid pixels
in the normal map increases.

4.3. Evaluation of scalability

To assess the scalability of component-based and pixel-level
formulations, we evaluate our method and the baseline on
a set of mid-to-high-resolution normal maps that, unlike
those from object-level datasets, have no masked-out pixels.
We include normals rendered from meshes (using Blender-
Proc [8]), real-world normals from photometric stereo [13],
and normals predicted by the state-of-the-art normal estima-
tion method DSINE [3] on in-the-wild images. The number
of pixels with a valid normal vector varies between 311 296
and 1 264 640. We run our method with merging enabled

(with freqmerging = 5) both in its component-based version
(with θc = 2.0◦) and in its pixel-level variant, including for
the latter also the version without merging. For all meth-
ods, we use outlier reweighting, with convergence criteria
∆Emax = 10−3 and T = 15.

The results of our evaluation, together with the input
normal maps and the output reconstructions, are shown in
Fig. 4. Our component-based framework achieves conver-
gence on average one order of magnitude faster than our
pixel-level version and the pixel-level method of [19]. This
result is a consequence of the smaller scale of our optimiza-
tion problem. Using our normal similarity criterion, our
method is able to detect large continuous regions in the in-
put maps and thereby reduce the number of optimization
variables by a factor between 5 and 50. It follows that while
pixel-level methods require several minutes for convergence
even at the same resolution used in the DiLiGenT dataset
(cf . first column in Fig. 4), our method converges in a few
seconds for the same input and in less than 2 minutes for
the larger resolutions. While the log-depth-based formula-
tion of [19] converges on average faster than our pixel-level
variant under the same conditions, we note that, as opposed
to the small-scale DiLiGenT normal maps, enabling merg-
ing for our version on large-scale normal maps results in
significantly reduced runtime with little to no impact on the
reconstruction. This highlights that merging can be partic-
ularly beneficial in settings where iterations with the full
number of pixels are costly and therefore a reduction in the
number of variables is desirable.

Our component-based approach achieves more accu-
rate reconstructions than pixel-level methods also for these
large-scale normal maps. Importantly, we note that our
identification and separate optimization of components al-
lows more accurately reconstructing particularly large con-
tinuous regions, for which the global optimization of pixel-
level methods tends to introduce spurious discontinuities
(Fig. 4: floor in columns 1, 4 and wall in column 6). We
note however that, for a similar reason, due to the model of
discontinuity, our method may occasionally separate con-
tinuous surface regions from one another if these are as-
signed to different components, particularly to background
ones (Fig. 4: tentacles of the octopus in column 5). We
discuss this and other limitations in more detail in Sec. H.

5. Conclusions
We proposed a framework for fast and scalable normal in-
tegration by reframing the problem as the optimization of
the relative scales of continuous surface components. Our
approach achieves state-of-the-art accuracy on the standard
normal integration benchmark and enables scaling normal
integration to large-resolution normal maps, with an order
of magnitude reduction in the execution time while preserv-
ing discontinuities.
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Method bear buddha cat cow harvest pot1 pot2 reading goblet*

θc W out
b→a Err t Err t Err t Err t Err t Err t Err t Err t Err t

[19], D N/A ✓ 0.02 2.70 0.62 3.32 0.05 2.98 0.13 1.49 2.07 6.96 0.47 3.74 0.15 2.86 0.25 2.02 4.04 3.45
N/A ✗ 0.07 5.02 0.44 19.89 0.04 32.68 0.06 15.18 2.80 51.00 0.36 54.31 0.14 24.73 0.92 6.57 7.96 31.52

[19], ND N/A ✓ 0.02 1.84 0.70 3.04 0.05 1.87 0.13 1.15 2.21 5.99 0.47 4.13 0.14 1.79 0.24 1.62 4.04 1.62
N/A ✗ 0.05 20.62 0.49 37.97 0.21 90.13 0.07 21.73 2.38 73.30 0.37 5.31 0.14 6.96 1.31 59.01 9.38 27.67

Ours

None ✓ 0.02 7.39 0.20 19.56 0.03 36.98 0.09 3.35 1.31 44.35 0.36 32.51 0.13 9.83 0.17 3.40 9.41 4.78
None ✗ 0.06 143.81 0.46 18.25 0.20 119.53 0.06 63.15 10.10 181.82 0.36 81.85 0.13 40.81 1.24 48.81 9.33 71.70
2.0◦ ✓ 0.02 2.55 0.17 19.07 0.03 3.11 0.09 2.54 1.04 28.33 0.36 6.26 0.14 5.59 0.10 6.54 9.37 2.33
2.0◦ ✗ 0.02 7.86 0.42 6.39 0.04 3.21 0.10 7.28 1.94 6.19 0.38 28.34 0.14 11.51 0.74 3.43 9.56 4.90
3.5◦ ✓ 0.02 1.27 0.11 8.03 0.04 1.50 0.09 1.53 1.07 18.81 0.38 3.51 0.14 2.66 0.09 2.68 9.49 1.40
3.5◦ ✗ 0.20 3.16 0.91 2.91 0.16 1.54 0.10 3.19 2.17 4.39 0.46 8.21 0.14 6.50 0.87 1.77 5.37 0.80
5.0◦ ✓ 0.02 0.88 0.15 2.76 0.51 1.24 0.39 1.04 1.75 7.29 0.55 5.80 0.13 1.92 0.16 1.49 9.62 0.84
5.0◦ ✗ 0.17 0.82 1.04 2.23 0.51 1.10 0.40 0.97 2.51 3.51 0.39 4.89 0.14 1.97 0.24 3.40 6.78 0.68

Table 1. Mean absolute depth error (MADE, abbreviated as Err) [mm] and total execution time (abbreviated as t) [s] on the
DiLiGenT benchmark [22]. For each object, bold and underlined denote respectively the best and the second-best result across the
methods. All experiments use ∆Emax = 10−3, T = 150, and 8-connectivity, without merging. D and ND denote the version of [19] with
and without discontinuity computation, respectively (αb→a in [19]). *This object contains a full depth discontinuity.
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Figure 4. Evaluation on large-scale normal maps. All experiments use ∆Emax = 10−3, T = 15, outlier reweighting, and freqmerging =
5 (where applicable). Total execution time t and, where ground-truth reconstruction is available, mean relative depth error (RE) are
reported. M and NM denote our version with and without merging, respectively. Sources of the normal maps: col. 1-2: rendered from
meshes [9], [7]; col. 3-4: from photometric stereo [13], data from [13]; col. 5-6: predicted by DSINE [3] on in-the-wild images [3], [6].
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İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen,
E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:
261–272, 2020. 6

[24] Yinting Wang, Jiajun Bu, Na Li, Mingli Song, and Ping
Tan. Detecting Discontinuities for Surface Reconstruction.
In ICPR, 2012. 2

[25] Robert J. Woodham. Photometric Method For Determining
Surface Orientation From Multiple Images. Optical Engi-
neering, 19(1):139–144, 1980. 1

[26] Tai-Pang Wu and Chi-Keung Tang. Visible Surface Recon-
struction from Normals with Discontinuity Consideration. In
CVPR, 2006. 2

[27] Wuyuan Xie, Miaohui Wang, Mingqiang Wei, Jianmin Jiang,
and Jing Qin. Surface Reconstruction From Normals: A Ro-
bust DGP-Based Discontinuity Preservation Approach. In
CVPR, 2019. 2

[28] Dizhong Zhu and William A. P. Smith. Least Squares Sur-
face Reconstruction on Arbitrary Domains. In ECCV, 2020.
2

9

https://doi.org/10.1109/TIP.2006.871114
https://doi.org/10.1109/TIP.2006.871114
https://doi.org/10.1007/978-3-030-58586-0_33
https://doi.org/10.1109/CVPR52733.2024.00911
https://doi.org/10.1109/CVPR52733.2024.00911
https://doi.org/10.1109/CVPR46437.2021.00241
https://doi.org/10.1109/CVPR46437.2021.00241
https://doi.org/10.1007/978-3-031-19769-7_32
https://commons.wikimedia.org/wiki/File:Winter_Wedding_Cake.jpg
https://commons.wikimedia.org/wiki/File:Winter_Wedding_Cake.jpg
https://sketchfab.com/3d-models/cozy-living-room-baked-581238dc5fda4dc990571cdc02827783
https://sketchfab.com/3d-models/cozy-living-room-baked-581238dc5fda4dc990571cdc02827783
https://sketchfab.com/3d-models/cozy-living-room-baked-581238dc5fda4dc990571cdc02827783
https://doi.org/10.21105/joss.04901
https://doi.org/10.21105/joss.04901
https://sketchfab.com/3d-models/cozy-modern-bedroom-ea25adc53f514eaba9dd043f5eac9c77
https://sketchfab.com/3d-models/cozy-modern-bedroom-ea25adc53f514eaba9dd043f5eac9c77
https://sketchfab.com/3d-models/cozy-modern-bedroom-ea25adc53f514eaba9dd043f5eac9c77
https://doi.org/10.1007/978-3-031-72920-1_25
https://doi.org/10.1007/978-3-031-72920-1_25
https://doi.org/10.6028/jres.049.044
https://doi.org/10.6028/jres.049.044
https://people.csail.mit.edu/bkph/articles/SfS_Psychology_of_Computer_Vision.pdf
https://people.csail.mit.edu/bkph/articles/SfS_Psychology_of_Computer_Vision.pdf
https://doi.org/10.1109/CVPR52729.2023.01268
https://doi.org/10.1109/CVPR52729.2023.01268
https://commons.wikimedia.org/wiki/File:Cake_Pops_(8445856654).jpg
https://commons.wikimedia.org/wiki/File:Cake_Pops_(8445856654).jpg
https://commons.wikimedia.org/wiki/File:Cake_Pops_(8445856654).jpg
https://doi.org/10.1016/S1077-3142(03)00095-X
https://doi.org/10.1016/S1077-3142(03)00095-X
https://doi.org/10.1016/S1077-3142(03)00095-X
https://doi.org/10.1109/CVPR52733.2024.01132
https://doi.org/10.1109/CVPR52733.2024.01132
https://sketchfab.com/3d-models/office-props-lowpoly-36b97aeac9fc46499262c036eea265f3
https://sketchfab.com/3d-models/office-props-lowpoly-36b97aeac9fc46499262c036eea265f3
https://sketchfab.com/3d-models/office-props-lowpoly-36b97aeac9fc46499262c036eea265f3
https://doi.org/10.1098/rspb.1977.0080
https://www.arxiv.org/abs/2507.06075
https://www.arxiv.org/abs/2507.06075
https://doi.org/10.1007/s10851-017-0773-x
https://doi.org/10.1007/s10851-017-0777-6
https://doi.org/10.1109/CVPR.2016.403
https://doi.org/10.1109/CVPR.2016.403
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://ieeexplore.ieee.org/document/6460577
https://doi.org/10.1117/12.7972479
https://doi.org/10.1117/12.7972479
https://doi.org/10.1109/CVPR.2006.331
https://doi.org/10.1109/CVPR.2006.331
https://doi.org/10.1109/CVPR.2019.00547
https://doi.org/10.1109/CVPR.2019.00547
https://doi.org/10.1007/978-3-030-58542-6_32
https://doi.org/10.1007/978-3-030-58542-6_32


Supplementary Material
The following Sections constitute the Supplementary Ma-
terial. Section A provides a pseudocode of our method. In
Sec. B, a detailed profiling of our run time is presented. Sec-
tion C investigates the effect of different hyperparameters
for our outlier reweighting. Section D studies the impact
of the convergence parameters. Section E provides visu-
alizations of our continuous components on the DiLiGenT
dataset. In Sec. F we analyze the impact of our merging
operation on reconstruction error on the DiLiGenT dataset.
Section G provides an ablation on the pixel connectivity
used by our method. Finally, in Sec. H we discuss the limi-
tations of our method.

A. Pseudocode of our method
A pseudocode for our method is shown in Algorithm 1.

Algorithm 1 Pseudocode of our method.

Require: θc, can merge (bool), freqmerging, ∆Emax, T .
1: Initialize z̃← 0
2: Form components {C(0)c } based on θa,b < θc
3: Compute intra-component matrices

Ac, bc, Wc = diag
(
{Wb→a}(a,b)∈E(C(0)

c )

)
(16)

4: Fill each component Cc in parallel:
z̃
(0)
c ← cg

(
Ac

TWcAc,Ac
TWcbc

)
5: converged← False, m← 0, t← 0, E0 ← ϵ
6: Form inter-component matrices A0, b0 (18)
7: while not converged do ▷ Relative-scale optimization
8: if t ≤ 1 then ▷ Alignment optimization
9: Uniform weights: W

(t)

m ← diag(1)
10: else ▷ Discontinuity-aware optimization
11: BiNI weights with outlier reweighting (20):

W
(t)

m ← diag
(
{Wb→a ·W out

b→a}(a,b)∈E
(m)
inter

)
12: end if
13: s̃(t) ← cg

(
A

T

mW
(t)

m Am,A
T

mW
(t)

m bm

)
14: Scale components (in parallel, via broadcasting):

∀c ∈ {0, . . . , |C(m)| − 1}, z̃(t+1)
c ← z̃

(t)
c + s̃

(t)
c 1

15: t← t+ 1
16: if can merge ∧ (t ≡ 0

(
mod freqmerging)

)
then

17: ∀C(m)
c , (â, b̂)(m)

c ← argmin
(a,b)∈∂C(m)

c
|χb→a|

18: Compute subgraph Q̂m ← (C(m), {(â, b̂)(m)
c })

19: {C(m+1)
c } ← connected components(Q̂m)

20: m← m+ 1
21: Form inter-component matrices Am, bm (18)
22: end if
23: Et ← (Ams̃(t) − bm)TW

(t)

m (Ams̃(t) − bm)

24: converged← |Et−Et−1|
Et−1

< ∆Emax ∨ t = T

25: end while
26: return z̃

−5 −4.5 −4 −3.5 −3 −2.5
0

0.5

1

log10(|χ
(t−1)
b→a |)

W out(t)

b→a

Figure 5. Outlier reweighting (20) as a function of
log10(|χ

(t−1)
b→a |), for L = 10−3 and U = 10−5.

B. Detailed profiling of our run time
We provide a detailed profiling of the run time of our
method for the parameter configuration used in our main
experiments, both on the DiLiGenT dataset (Tab. 2) and on
the large-scale normals maps of Fig. 4 (Tab. 3).

It is worth noting that, in both cases, two operations
that account for a significant fraction of the total exe-
cution time are the two pre-processing steps of forming
the intra-component matrices Ac, bc, and Wc and fill-
ing the components. For the latter, we use the Python
joblib library to parallelly execute multiple instances
of per-component conjugate-gradient optimization. While
this usually converges in few fractions of a second due to
the smaller scale of the per-component optimization com-
pared to the global optimization, larger resolutions might
produce larger components, resulting in increased time for
this initial step. Additionally, parallelization is capped
by the number of processes that are available to the pro-
gram (we set this to 4 in our experiments), thereby still
requiring iterative processing. On the other hand, the for-
mation step of the intra-component matrices Ac, bc, and
Wc is non-optimized in our current implementation, and
alone contributes to a factor of up to respectively 39%
(coinskeyboard) and 44% (cow) of the total execution
time for the large-scale normal maps and the smaller-scale
DiLiGenT dataset. The reason for the long time required to
perform this step lies in the fact that the matrices Ac and
Wc are represented in our implementation as sparse matri-
ces (scipy.sparse.csr_matrix) of different shape,
and as such cannot benefit from parallel-access optimized
broadcasting operations. Implementation improvements in
this direction are left to future work.

C. Ablation on outlier reweighting
To complement the definition provided in the main paper,
we provide an illustration of our outlier reweighting func-
tion in Fig. 5, using the parameters from the main experi-
ments. Additionally, we ablate on different values for its hy-
perparameter L and also include a variant of the reweighting
which introduces a hard outlier thresholding, so that equa-
tions with residual magnitude |χ(t−1)

b→a | are assigned weight
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bear buddha cat cow harvest pot1 pot2 reading goblet

Formation of G0 0.020 0.018 0.019 0.020 0.019 0.018 0.019 0.019 0.020

Computation of {C(0)c } 0.092 0.090 0.091 0.087 0.091 0.097 0.089 0.088 0.094
Formation of Ac, bc, Wc 0.546 1.857 0.731 0.758 3.345 1.581 1.384 1.206 0.344
Filling of components 1.168 2.442 1.428 1.360 4.166 2.325 2.103 1.719 0.745
Iteration 0 1.174 2.587 1.439 1.368 4.311 2.342 2.118 1.734 0.775
Iteration 1 1.183 2.977 1.464 1.378 4.810 2.394 2.148 1.766 0.840
Iteration 2 1.193 3.490 1.484 1.391 5.747 2.471 2.187 1.822 0.858
...

...
...

...
...

...
...

...
...

...
Convergence 1.270 [it. 8] 8.033 [it. 11] 1.500 [it. 3] 1.525 [it. 12] 18.805 [it. 17] 3.511 [it. 18] 2.655 [it. 17] 2.679 [it. 20] 1.398 [it. 49]

Table 2. Profiling of our method on the the DiLiGenT benchmark [22]. Intermediate execution times from the start, after the completion
of each step are reported [s]. θc = 3.5◦, ∆Emax = 10−3, T = 150, 8−connectivity, and outlier reweighting are used, without merging.

bedroom livingroom coinskeyboard schooldesk seafloor cake

Formation of G0 0.019 0.058 0.058 0.062 0.050 0.020

Computation of {C(0)c } 0.138 0.522 0.375 0.447 0.395 0.147
Formation of Ac, bc, Wc 1.554 12.226 42.058 5.759 15.663 4.486
Filling of components 3.804 50.536 51.855 69.922 29.548 8.240
Iteration 0 3.955 51.232 54.343 70.075 29.919 8.382
Iteration 1 4.290 55.196 60.506 70.448 31.546 8.890
...

...
...

...
...

...
...

Merging m = 0 5.876 92.018 96.427 75.205 51.690 12.382
Merging m = 1 6.198 102.327 102.591 75.783 57.139 12.883
...

...
...

...
...

...
...

Convergence 6.796 105.081 104.630 76.648 58.524 13.374

Table 3. Profiling of our method on the the large-scale normal maps from Fig. 4. Columns 1 to 6 in Fig. 4 are referred to, from left
to right, as: bedroom, livingroom, coinskeyboard, schooldesk, seafloor, cake. Intermediate execution times from the
start, after the completion of each step are reported [s]. θc = 2.0◦, ∆Emax = 10−3, T = 15, 8−connectivity, freqmerging = 5, and outlier
reweighting are used.

Reweighting type U θc bear buddha cat cow harvest pot1 pot2 reading goblet

Soft 10−5

None 0.02 0.13 0.03 0.09 1.35 0.40 0.14 0.19 9.37
2.0◦ 0.02 0.17 0.03 0.09 1.02 0.37 0.14 0.20 9.35
3.5◦ 0.02 0.10 0.04 0.10 1.10 0.39 0.14 0.10 8.08
5.0◦ 0.02 0.15 0.51 0.39 1.61 0.55 0.14 0.17 4.45

Soft 10−4

None 0.02 0.20 0.03 0.09 1.31 0.36 0.13 0.17 9.41
2.0◦ 0.02 0.17 0.03 0.09 1.04 0.36 0.14 0.10 9.37
3.5◦ 0.02 0.11 0.04 0.09 1.07 0.38 0.14 0.09 9.49
5.0◦ 0.02 0.15 0.51 0.39 1.75 0.55 0.13 0.16 9.62

Soft 10−6

None 0.02 0.17 0.03 0.09 0.99 0.36 0.13 0.13 9.41
2.0◦ 0.02 0.13 0.03 0.09 0.88 0.36 0.14 0.10 9.40
3.5◦ 0.02 0.17 0.04 0.09 1.18 0.38 0.13 0.10 7.53
5.0◦ 0.02 0.18 0.51 0.39 1.70 0.55 0.13 0.15 9.62

Hard N/A

None 0.03 0.27 0.05 0.09 1.78 0.41 0.13 0.19 9.33
2.0◦ 0.02 0.42 0.05 0.09 1.13 0.39 0.14 0.22 8.19
3.5◦ 0.02 0.36 0.05 0.10 1.09 0.40 0.14 0.19 3.54
5.0◦ 0.02 0.16 0.51 0.39 1.42 0.38 0.14 0.24 4.42

Table 4. Ablation on the outlier reweighting mechanism on the DiLiGenT benchmark [22]. The mean absolute depth error (MADE)
[mm] of our method is reported. The upper outlier reweighting threshold U is set to 10−3, and soft threshold with different lower thresholds
L as well as hard thresholding based on U are compared. All experiments use convergence criteria ∆Emax = 10−3 and T = 150, 8−
pixel connectivity, without merging.

W out(t)

b→a = 0 if |χ(t−1)
b→a | ≥ U and weight W out(t)

b→a = 1 if
|χ(t−1)

b→a | < U , where we set U = 10−3.

Table 4 reports the results of the ablation. Overall,
the differences across the variants for outlier reweighting
are marginal for most objects. However, for objects with
larger discontinuities (buddha, harvest, reading)

soft reweighting achieves generally better accuracy, with a
small degree of object specificity for the value of L, indi-
cating that it might be effective particularly in controlling
outlier residuals that arise due to discontinuities.
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∆Emax T θc
bear buddha cat cow harvest pot1 pot2 reading goblet*

Err t Err t Err t Err t Err t Err t Err t Err t Err t

10−3 5

None 0.02 4.08 0.51 10.56 0.03 5.17 0.09 2.24 1.77 17.40 0.39 9.49 0.13 4.23 0.17 4.74 9.42 5.54
2.0◦ 0.02 2.49 0.18 7.92 0.03 2.91 0.09 2.37 1.24 11.65 0.38 5.26 0.13 4.05 0.14 4.75 9.37 1.27
3.5◦ 0.02 1.22 0.15 4.89 0.04 1.51 0.10 1.45 1.10 7.55 0.41 2.63 0.13 2.26 0.13 1.92 9.47 0.87
5.0◦ 0.02 0.86 0.18 2.65 0.51 1.11 0.39 0.98 1.78 5.30 0.56 1.96 0.13 1.67 0.18 1.33 9.56 0.75

10−3 15

None 0.02 6.09 0.20 17.69 0.03 9.17 0.09 3.92 1.31 46.33 0.36 22.12 0.13 9.64 0.17 4.31 9.41 5.15
2.0◦ 0.02 2.55 0.17 17.08 0.03 3.11 0.09 2.50 1.05 28.62 0.36 6.27 0.14 5.40 0.10 7.01 9.37 1.58
3.5◦ 0.02 1.28 0.11 7.62 0.04 1.52 0.09 1.54 1.06 16.82 0.38 3.27 0.14 2.61 0.09 2.43 9.46 0.99
5.0◦ 0.02 0.89 0.15 2.75 0.51 1.22 0.39 1.04 1.75 7.87 0.55 2.26 0.13 1.93 0.16 1.49 9.62 0.86

10−3 150

None 0.02 7.39 0.20 19.56 0.03 36.98 0.09 3.35 1.31 44.35 0.36 32.51 0.13 9.83 0.17 3.40 9.41 4.78
2.0◦ 0.02 2.55 0.17 19.07 0.03 3.11 0.09 2.54 1.04 28.33 0.36 6.26 0.14 5.59 0.10 6.54 9.37 2.33
3.5◦ 0.02 1.27 0.11 8.03 0.04 1.50 0.09 1.53 1.07 18.81 0.38 3.51 0.14 2.66 0.09 2.68 9.49 1.40
5.0◦ 0.02 0.88 0.15 2.76 0.51 1.24 0.39 1.04 1.75 7.29 0.55 5.80 0.13 1.92 0.16 1.49 9.62 0.84

10−5 5

None 0.02 3.43 0.51 7.43 0.03 4.85 0.09 2.54 1.77 17.24 0.39 8.65 0.13 2.93 0.17 4.29 9.42 5.52
2.0◦ 0.02 2.46 0.18 7.55 0.03 2.94 0.09 2.31 1.24 12.28 0.38 5.18 0.13 3.97 0.14 4.78 9.37 1.28
3.5◦ 0.02 1.24 0.15 4.93 0.04 1.52 0.10 1.42 1.10 7.98 0.41 2.61 0.13 2.29 0.13 1.95 9.47 0.87
5.0◦ 0.02 0.85 0.18 2.65 0.51 1.12 0.39 0.98 1.78 5.18 0.56 1.97 0.13 1.67 0.18 1.35 9.56 0.81

10−5 15

None 0.01 10.17 0.15 25.28 0.03 8.78 0.09 4.99 1.28 53.51 0.36 25.19 0.13 7.16 0.09 14.50 9.40 12.20
2.0◦ 0.02 2.93 0.17 16.94 0.03 3.49 0.09 2.64 1.05 29.43 0.36 8.36 0.14 5.46 0.09 7.93 9.37 1.59
3.5◦ 0.02 1.38 0.11 8.88 0.04 1.69 0.09 1.56 1.06 15.89 0.38 3.25 0.14 2.62 0.09 2.46 9.46 1.01
5.0◦ 0.02 0.95 0.12 3.90 0.51 1.21 0.39 1.05 1.69 9.50 0.55 2.32 0.13 1.93 0.15 1.62 9.62 0.84

10−5 150

None 0.01 11.20 0.19 253.51 0.03 42.47 0.09 12.51 1.32 387.01 0.36 169.22 0.13 80.35 0.10 66.33 9.41 66.55
2.0◦ 0.02 3.04 0.17 137.36 0.03 4.97 0.09 2.86 1.03 336.65 0.36 78.28 0.14 12.60 0.10 73.13 9.37 6.63
3.5◦ 0.02 1.60 0.11 52.42 0.04 2.88 0.09 1.93 1.18 98.90 0.38 11.63 0.14 4.24 0.09 10.85 9.49 3.32
5.0◦ 0.02 1.10 0.12 14.57 0.51 2.08 0.39 1.36 1.69 121.54 0.55 7.42 0.13 2.64 0.16 5.83 9.62 2.44

Table 5. Ablation on the convergence criteria ∆Emax and T on the DiLiGenT benchmark [22]. The mean absolute depth error
(MADE, abbreviated as Err) [mm] and the total execution time (abbreviated as t) [s] of our method are reported. All experiments use
outlier reweighting W out

b→a (20) with L = 10−5 and U = 10−3, without merging.

D. Ablation on the convergence parameters
Table 5 reports the reconstruction error and run time
achieved by our method for different values of the param-
eters ∆Emax and T that control the termination of its ex-
ecution. We observe that with limited exceptions, mostly
restricted to our pixel-level variant (θc = None), enforcing
a stricter relative-energy convergence criterion (∆Emax =
10−5) produces no significant changes in the accuracy of the
reconstruction, while requiring a longer run time. Notably,
the same conclusion applies to the maximum number of op-
timization steps, for which we find that our method effec-
tively achieves convergence in 5 or at most 15 iterations for
all objects. While earlier termination of the optimization re-
sults in a slight increase in the running time, this speedup is
not particularly significant for the small-scale of the normal
maps from DiLiGenT, especially in the case of component-
based (rather than pixel-level) optimization. For our main
experiments on the DiLiGenT benchmark (cf . main paper),
we therefore chose to use T = 150, to enable convergence
for the baselines without outlier reweighting.

E. Ablation on the threshold for component
formation

Figure 6 shows the continuous components identified by our
heuristic on the DiLiGenT benchmark, for the different val-
ues of the normal similarity threshold θc that we use in our
experiments.

We note that for each decomposition it is possible

to compute the minimum theoretical reconstruction error
that could be achieved by the relative scale optimization,
which coincides with the global mean average depth error
(MADE) that would be attained if the optimal combina-
tion of scales was applied to the individual reconstructions
formed in the component filling stage. In general, each of
such per-component reconstructions introduces an error, for
however small, in its corresponding surface region. This is
due to the approximations inherent in the models of conti-
nuity and discontinuity, as well as to the convergence of the
optimization. To compute the minimum MADE, it is suf-
ficient to compute the sum of the per-component MADEs,
weighted by the number of pixels in each component.

As shown in Fig. 6, choosing a smaller threshold for θc
results in a smaller minimum theoretical MADE, at the cost
of a larger number of components. This is coherent with the
fact that the minimum theoretical MADE decreases as the
number of components approaches the total number of pix-
els, with a minimum value of 0 in the limit of per-pixel com-
ponents, since by definition a perfect reconstruction could
be achieved by appropriately scaling the depth of each pixel.

Importantly, we note that for all objects in the benchmark
the minimum theoretical MADE achievable by our method
is significantly smaller than the accuracy reached by state-
of-the-art methods, by different margins depending on the
exact value of θc. On the one hand, this validates the ef-
fectiveness of our component formation and filling, which
does not compromise the best quality that the reconstruction
can achieve. On the other hand, the remaining gap between

12



θc = 2.0◦ θc = 3.5◦ θc = 5.0◦
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Figure 6. Continuous components identified by our method for different normal similarity thresholds θc and 8− connectivity,
DiLiGenT benchmark [22]. For each object and threshold, different colors indicate different components. Below each component image
are: the minimum mean average depth error (MADE, in mm) that can be theoretically achieved by scaling the continuous components; the
number of components.
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the minimum theoretical MADE and the MADE actually
achieved by our optimization presents an opportunity for
the future emergence of more accurate models of continuity
and discontinuity, which could lead to even more optimal
relative scale optimization.

F. Ablation on the effect of merging in the
DiLiGenT benchmark

Figure 7 shows the progression of the component decom-
position, of the minimum theoretical MADE, and of the
actual MADE computed from the reconstruction, at differ-
ent stages of our optional merging process. The illustrated
example uses a merging frequency of 5 optimization itera-
tions; as previously noted (cf . Sec. D and Tab. 5), on the
small-scale normals from DiLiGenT our method achieves
convergence for most object already after this number of it-
erations. This is reflected in the fact that the reconstruction
error (indicated within brackets in Fig. 7) does not change
significantly after the first merge operation for most ob-
jects. However, small improvements can be observed for
objects with larger discontinuities (buddha, harvest,
reading). This indicates that in the presence of discon-
tinuities optimization requires a larger number of iterations
to converge. For this reason, merging can be a viable op-
tion to reduce the size of the optimization problem (hence
also the execution time of later iterations) while allowing
the convergence process to continue. As already observed
(Sec. D), while the computational effect of this operation
might be negligible for small-scale normal maps, its im-
pact becomes significantly more important for larger-scale
normal maps, for which a reduction in the number of vari-
ables can largely reduce the run time of the optimization
(cf . Fig. 4).

We note, finally, that merging in general increases the
minimum theoretical MADE, since it “fixes" the relative
scale of neighboring components to a value that in general
does not coincide with its optimal one. However, we stress
that the merging operation per se does not increase the re-
construction error with respect to the previous optimization
steps. This is because it does not alter the relative scales
to which the optimization had converged at the preceding
step, but simply relabels pixels in different components so
that their scale is jointly optimized in subsequent iterations.

G. Ablation on pixel connectivity
We ablate the impact of the chosen pixel connectivity on the
DiLiGenT benchmark, comparing 8− connectivity, which
we use in our main experiments, with 4− connectivity. For
a given configuration, we use the connectivity both in the
component detection/filling stage and in the subsequent rel-
ative scale optimization. The results of the ablation are
shown in Tab. 6. Overall, no major differences emerge be-

tween the two connectivities, with comparable accuracies
and runtimes across all objects. A minor exception is to be
found when using normal similarity threshold θc = 5.0◦,
for which for some objects (cat, harvest, reading)
4− connectivity achieves better accuracy by a significant
margin.

H. Limitations
Component formation and model of discontinuity. Since
our heuristic for component formation relies on the similar-
ity between neighboring normals, if the normals are contin-
uous across a surface discontinuity it cannot detect discon-
nected surface regions as separate components, as depicted
in the example of Fig. 8. We note, however, that this ex-
ample represents a corner case more in general of normal
integration methods, as previously noted for instance by [5]
(Fig. 14, Supplementary). In particular, in this case the in-
tegration problem itself is ill-posed, since in this setting it is
not possible to determine whether a discontinuity is present
from the normal map alone.

A similar issue arises in the case of overly-smooth input
normals, with indistinct boundaries, which sometimes oc-
cur in normal maps produced as output by learning-based
approaches for normal estimation, such as DSINE [3]. For
these normals maps, our heuristic for component formation
might sometimes merge multiple surfaces into a single com-
ponent, depending on the similarity threshold θc (Fig. 9).
We note, however, that even for an incorrect component
decomposition (i.e., that merges surface regions separated
by a discontinuity) the corresponding reconstruction can in
theory still correctly capture the discontinuity if the model
of discontinuity is able to describe it. This is because in
the initial phase each surface patch is reconstructed using
the same model of discontinuity deployed for relative scale
optimization. Viceversa, if the model of discontinuity is un-
able to capture the discontinuity, as is the case for full dis-
continuities such as the foreground-background boundaries
in Fig. 9, the general problem of retrieving the scale of sur-
face regions across such discontinuities cannot be addressed
without additional knowledge.

An interesting future direction is to explore alternative,
more sophisticated heuristics for component formation, for
instance through the use of learning-based methods that
could learn priors over the discontinuities from the normal
maps. In the more general case, additional input or knowl-
edge available depending on the setting might be incorpo-
rated in the component formation phase. For instance, if
an input color image was provided, as is the case in photo-
metric stereo or surface normal estimation, edges might be
extracted from the image and composed with the heuristic
based only on surface normals.
Decreased benefit for highly non-smooth normal maps.
The computational advantage resulting from our method
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Figure 7. Continuous components at different stages m of the merging process, DiLiGenT benchmark [22]. For each object and
threshold, different colors indicate different components. Below each component image are: first row: the minimum mean average depth
error (MADE, in mm) that can be theoretically achieved by scaling the continuous components and the MADE (mm) achieved by the
optimization at the end of the merging stage, the latter in brackets and underlined; second row: number of components. For each object,
Mtot denotes the total number of merging operations required to obtain a single component. For all objects, normal similarity threshold
θc = 3.5◦ and 8− connectivity are used, with freqmerging = 5 and ∆Emax = 10−3.
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θc Conn.
bear buddha cat cow harvest pot1 pot2 reading goblet

Err t Err t Err t Err t Err t Err t Err t Err t Err t

None 8 0.02 7.39 0.20 19.56 0.03 36.98 0.09 3.35 1.31 44.35 0.36 32.51 0.13 9.83 0.17 3.40 9.41 4.78
2.0◦ 8 0.02 2.55 0.17 19.07 0.03 3.11 0.09 2.54 1.04 28.33 0.36 6.26 0.14 5.59 0.10 6.54 9.37 2.33
3.5◦ 8 0.02 1.27 0.11 8.03 0.04 1.50 0.09 1.53 1.07 18.81 0.38 3.51 0.14 2.66 0.09 2.68 9.49 1.40
5.0◦ 8 0.02 0.88 0.15 2.76 0.51 1.24 0.39 1.04 1.75 7.29 0.55 5.80 0.13 1.92 0.16 1.49 9.62 0.84

None 4 0.03 15.52 0.13 40.19 0.03 16.58 0.08 4.19 1.26 64.00 0.37 209.27 0.13 7.69 0.08 7.73 9.45 111.51
2.0◦ 4 0.03 2.98 0.12 26.65 0.03 9.15 0.09 2.97 1.09 29.39 0.38 8.29 0.14 27.20 0.09 17.03 9.27 1.89
3.5◦ 4 0.04 1.18 0.14 38.11 0.04 1.65 0.09 2.58 1.09 17.91 0.35 25.06 0.14 2.37 0.08 2.80 9.43 0.96
5.0◦ 4 0.02 0.77 0.12 4.46 0.03 1.23 0.09 1.14 0.80 11.11 0.57 7.72 0.13 4.84 0.10 2.21 9.51 0.73

Table 6. Ablation on the pixel connectivity (abbreviated as Conn.) on the DiLiGenT benchmark [22]. The mean absolute depth error
(MADE, abbreviated as Err) [mm] and the total execution time (abbreviated as t) [s] of our method are reported. All experiments use
outlier reweighting W out

b→a (20) with L = 10−5 and U = 10−3, convergence criteria ∆Emax = 10−3 and T = 150, without merging.

(a) Input normal map (b) Ground-truth surface (c) Components (d) Our reconstruction

Figure 8. Example corner case not handled by our component-formation heuristic. When the input normals are continuous across a
surface discontinuity, our heuristic for component formation cannot detect separate components. Since the model of discontinuity that we
adopt [5] cannot recover discontinuities under the same corner case, the discontinuity will not be incorporated during the component filling
and the two incorrectly merged pieces of surface will jointly adjust their scale in subsequent steps of the optimization. Source of the input
normal map and ground-truth surface visualization: [5] (Fig. 14, Supplementary).

reducing the size of the optimization problem through the
use of components is partially reduced when the input nor-
mal map is highly non-smooth. In particular, if the nor-
mal vectors vary often between neighboring pixels in an
area of the input map, as for instance in the case of finely-
textured regions, many single-pixel components may arise
(cf ., e.g., the woven reed basked in the second column of
Fig. 4). While our method can still be applied in such a set-
ting, its exact computational advantage will depend on the
overall balance between smooth and non-smooth regions.
An interesting future direction is to design heuristics for
component formation that could reduce the occurrence of
such single-pixel components, for instance by detecting that
highly-textured areas belong to the same connected surface
region, through learned priors. Additionally, we note that in
many cases the number of components is greatly increased
by single-pixel components that occur at the boundaries of
larger components (cf ., e.g., m = 0 and m = 1 in Fig. 7).
For such cases, postprocessing of the initial decomposition
could be explored, for instance by merging small compo-
nents into larger ones without causing the larger ones to
collapse into one another.
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(a) Input color image (b) Normals from DSINE (c) Components (d) Our reconstruction

Figure 9. Example limitation due to overly-smooth input normal map. In the case of overly-smooth input normal maps, our heuristic
for component formation cannot detect separate components across the non-sharp boundaries, as is the case in this example of the boundary
between the sticks in the foreground and the background. As a consequence, the foreground object is partly merged into the background.
Source of input color image: [14].
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