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Abstract— Underwater obstacle detection is an increasingly
necessary function of modern marine robotics, due to its
important role in sub-surface collision avoidance in unknown
environments. Mechanical scanning sonars (MSS) are afford-
able and accurate underwater sensors, that provide precisely
controllable 360° coverage. However, MSS suffers from a slow
sampling speed due to its single beam and mechanical actuation.
To address this, this paper develops adaptive scanning strategies
coupled tightly with a custom mapping and planning system
to maximise information gain and collision response time
on an autonomous surface vessel. The mapping system is
demonstrated in field trials, and the scanning strategies are
evaluated in simulation based on metrics of collision avoidance
rate and smallest obstacle clearance. Results show our adaptive
strategy increases the rate of intervention-free autonomous
navigation by 70% in dense obstacle environments compared
to an adaptation of a current state-of-the-art speed-adjusted
strategy. Secondary findings suggest the adaptive strategy is
also more robust across a range of obstacle reflection intensi-
ties and traversal speeds, and gathers more collision-relevant
information from its surroundings than alternatives.

I. INTRODUCTION

Autonomous marine robotic systems are used widely
across diverse applications including surveying, asset inspec-
tion, and defence. This work was conducted in collaboration
with Pipar Automation, who were contracted by the Aus-
tralian Institute of Marine Science (AIMS) to develop the
ReefCat (Fig. 1), an autonomous surface vessel (ASV) for
coral reef surveying on the Great Barrier Reef. This reef
environment is representative of the challenging underwater
environments common in autonomous marine systems, as
it is coarsely mapped, irregularly shaped and constantly
changing over time [1]. To maintain the safety of the ReefCat
in this hazardous environment, underwater obstacle detection
and collision avoidance is crucial.

For sub-surface sensing, sonar is necessarily used instead
of visual or LiDAR sensors due to the high attenuation
of electromagnetic radiation in water, a denser medium
than air. Various sonar configurations are commonly used
in collision avoidance, including multibeam forward-looking
sonars (FLS) [2]-[4] and arrays of single-beam echosounders
[5], [6]. However, the former can be prohibitively expen-
sive, large and power-hungry for smaller or mass-produced
vessels, and both configurations suffer from a significantly
limited field of view. Instead, mechanical scanning sonars
(MSS) are compact and affordable sensors that have been
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Fig. 1: The ReefCat robotic platform.

widely used in autonomous systems [7]—[11] and offer omni-
directional sensing by providing a single, 360° mechanically
steerable acoustic beam. For these reasons, two Ping360
MSS from Blue Robotics were selected for the ReefCat.

One disadvantage of MSS are their slower update rate. For
the Ping360, a full revolution of 400 equally spaced samples
can take over 10 seconds, compared to 10Hz or higher
update rates for multibeam sonars. This limitation provides
a powerful motivation for the development of intelligent
MSS scanning strategies to facilitate maximum information
gain, which is as yet inadequately addressed in the literature.
Despite studies referencing the need for an intelligent high-
level controller for MSS [7], no dynamic strategy has been
implemented to maximise the environmental information
gathered for the time-critical sampling speeds of MSS. The
dual MSS platform of ReefCat, shown in Fig. 2, is also
unexplored in prior work and adds significant opportunity
for complex, collaborative scanning strategies.

We address these gaps by developing an intelligent, adap-
tive scanning strategy based on a comprehensive view of
the ASV obstacle avoidance problem. To achieve this, we
present a probabilistic mapping implementation, inspired by
prior work on sonar Bayesian occupancy maps [3], [5], [11],

Fig. 2: Simulated ReefCat showing the dual MSS.



an ASV path planner and dual-MSS scanning strategies.
Simulation and field test results validate our MSS scanning
and mapping solution and demonstrate a 70% reduction in
the rate of interventions (speed reductions required to avoid
obstacles that were detected too late) when navigating dense
obstacle environments.

II. RELATED WORK

A. Mapping and Planning

Sonar sensors suffer from an imprecise propagation profile
due to the mechanics of acoustic energy transmission. Sonar
reflection returns are also prone to noise and influenced by
several factors, including the turbidity of surrounding water,
passive environmental disturbances, the angle of incidence of
object surfaces and the porosity of the incident material [12].
Previous works overcome these limitations by using proba-
bilistic approaches in mapping and planning that facilitate
iterative updates and therefore greater accuracy over time.

The Bayesian occupancy grid is a common choice for
mapping. Local Cartesian [3], [11] and polar [5] implemen-
tations are generally successful, as well as global Cartesian
[7] mapping where precise localisation is available.

Probabilistic updates to these maps are dependent on
translation from raw sonar returns (unsigned integer arrays
representing the sonar ‘intensities’, or strength of reflection
at each distance bin) to a probability of obstacle. Prior
works typically translate raw returns into a range estimate
using user-configurable thresholds [11], [13], [14]. Other ap-
proaches include setting a threshold to maintain a fixed false
positive rate across all bins [3] or as the midpoint/minima
of the bimodal distribution of reflection intensities [7], [15].
Cheng et al. [16] adds a second thresholding step, segmenting
out water returns and noise alongside additional anomalies
that have a large intensity difference from the sector average.

Villar et al. [17] apply a median filter to remove anomalous
values (i.e. small spikes of high intensity noise). They also
apply a per-scan adaptive local threshold instead of a fixed
global threshold, which is more robust to variations in the
reflections caused by changes in conditions or obstacles.
The method steps iteratively through the reflection samples,
computing the rolling median at each step, and flagging a
detection when the next intensity return is more than double
this rolling median.

Zhou et al. [18] address the angle-of-incidence ambiguity
issue in sonar measurements by formulating a technique to
isolate where in the wide-beam sonar propagation pattern
a data return is most likely to come from using a ‘dynamic
inverse sonar model’. Thrun et al. [19] challenge the validity
of the independent cell update assumption in occupancy
maps, developing a ‘forward sonar model’ which considers
each scan in its entirety to reduce the limitations of overlap
between successive, conflicting wide-beam measurements.
Grefstad et al. [11] combine both of these models to create
a successful Bayesian grid for collision avoidance.

B. Scanning Strategies

A unique feature of the MSS compared to other sonars is
its manoeuvrability: its position can be precisely controlled
through software, and it can thus be directed through a large
range of different scanning patterns [14], [15], [20]. Galarza
et al. [10] select optimal MSS parameters for obstacle
detection, opting for a range of 70m, a field of view of 90°
and an angle resolution of 0.9° for their use case. These
parameters are noticeably fixed, and not responsive to a
changing environment as will be necessary for the Reefcat.
Chen et al. [8] suggest a more dynamic approach using
multiple different range setting parameters and switching
between each as obstacles are found to trade off between
speed of scan and accuracy.

Galarza et al. [10] also comment on the relationship
between speed of scan, field of view and accuracy in obstacle
detection. For their sonar and ASV moving at lm/s, the
90° pattern takes 12 seconds to scan, during which time
the ASV may move up to 12m, and thus be at risk of
a new collision not previously identified at the start of
the scan pattern. A more structured quantification of this
relationship is presented in [7]. They frame the problem
as a trade-off between ASV velocity and scanning speed,
deriving an equation linking the two and discussing the
resulting granularity of data returns (e.g. obstacles can appear
suddenly if scanning slowly). This is a useful consideration
and will be used as inspiration for the scanning strategy
design of this paper.

III. METHODS AND IMPLEMENTATION
A. MSS Mapping Considerations

The Ping360 emits an irregular cone-like propagation
pattern, with a vertical beamwidth of 25° and horizontal
beamwidth of 2°. This transmission profile requires consider-
ation before the design of the mapping system, as the vertical
beamwidth causes measurement ambiguity across the depth
axis of the ASV (measurements could equally come from
above or below the sonar transducer). Therefore, the Ping360
may risk obstacle ‘dropout’; that is, losing sonar-sight of an
obstacle due to it falling beneath the propagation profile of
the Ping360. However, due to the geometry of the ASV, it can
be trivially shown that an obstacle which threatens the lowest
point of the ReefCat (the sensing payload, 1.6m below the
water surface), will only drop out of sight at 3.6m in front
of the Ping360, which is less than a metre in front of the
ReefCat due to the placement of the MSS towards the stern
of the vessel. The indicative geometry of this scenario is
illustrated in Fig. 3.

As any obstacle avoidance system should already have
identified and evaded an obstacle this close, the Ping360
remains acceptable for use in collision avoidance. However,
the depth ambiguity issue prompts use of a solely 2D ‘birds-
eye-view’ occupancy map. Probabilistic updates should also
occur across the 2° horizontal beamwidth in a sector model,
instead of a simplistic ray model, to ensure all possible
obstacle reflections are acknowledged in the map.



Fig. 3: Obstacle dropout problem.

B. Occupancy Grid Mapping: Practical Implementation

The mapping system for the ReefCat is constructed as
a Bayesian occupancy map based on a square 2D global
grid where each cell represents the probability of occupancy
across a 12.5cm by 12.5cm square cell size (this size was
selected to maintain floating point precision). Compared to
AUVs that often have limited access to GNSS positioning
due to the difficulty of reliable signal transmission through
water, ASVs such as ReefCat have unobstructed views of
the sky, and therefore optimal conditions for GNSS reception
during typical operation. This is advantageous as it precludes
the need for more complex localisation solutions such as
underwater SLAM. The Septentrio AsteRx SBi3 Pro+ GNSS
and INS positioning systems are employed on the ReefCat
to provide centimetre-accurate localistation, allowing the
construction of a global occupancy grid, which also greatly
reduces complexity compared to local ASV-frame solutions.

The occupancy grid is segmented into arbitrarily sized
‘tiles’, selected at 10m by 10m for this implementation. This
tiling system enables smaller computational and memory
footprints for large surveying areas in which storing an entire
rectangular map may be wasteful (e.g. a perimeter survey of
a reef, which is a common use case). A simple coordinate-
indexed map holds all tiles as floating point matrices (similar
in form to images, enabling efficient processing), which
are spatially referenced to a UTM origin for geo-located
update, display and navigation operations. Note that tiles
are stored discretely at fixed coordinate intervals, but at any
time the mapping system will hold index ranges to these
grids to create a local ‘map-view’ around the ReefCat’s
current position (selected as 100m by 100m, which is 320
cells by 320 cells), allowing simple updates on a single
occupancy grid view. Fig. 4 demonstrates this tiled map
composition during a field trial of the ReefCat, with the
smaller occupancy tiles being generated as the ASV moves
through its environment, and the map view (indicated in red)
following it for real-time updates. Note that only tiles that
are populated with a reading are stored in the map after they
fall out of the map view for memory efficiency.

C. Probabilistic Updates from Sonar Returns

Raw sonar returns, packaged as an array of distance-
binned intensities, are reported to this map-view (the lo-
cal area around the ReefCat, geo-referenced globally). As
previously described, the 2° horizontal beamwidth of these
sonar returns necessitates a sector update for each sonar

scan return, as opposed to a radial one. To achieve this, a
fast sector traversal algorithm (using index-based iteration
between two linear functions and a circular arc) is employed
to step through the current incident sector of the sonar, based
on the command angle and range of the MSS. For each cell
in the sector, the Euclidean distance from the cell midpoint
to the current GNSS location of the sonar is calculated. If
this distance is less than the sonar exclusion distance (due
to transducer ringing, the first 0.75m of samples are noisy
and unusable), the cell is ignored. Otherwise, the maximum
echo intensity corresponding to the cell midpoint distance
plus or minus half the cell hypotenuse is found in the sonar
returns array. This results in the scan being rasterised into a
collection of cells in a sector shape, with each cell containing
the maximum intensity from the raw return that falls inside
the positional bounds that cell represents.

To convert these per-cell sonar measurements into an occu-
pancy probability, an inverse sonar sensor model was found
by experimental analysis and tuning. Field test observations
showed some obstacles, like concrete bollards, were found
to give consistently strong returns of over 150 out of 255
intensity, so the model was configured to always attribute
a high update probability to such measurements. However,
measurements of obstacles such as a river bank at high
sampling ranges (i.e. 40m), were found to give reflection
intensities as low as 30 out of 255, likely due to sheer
angles of incidence and high absorptivity. Generally, objects
at higher sample distances will result in lower reflection
intensities, due to the large amount of energy that is lost into
surrounding water from the cone-like propagation pattern of
underwater acoustic transmission [12].

To address this range limitation, the sensor model biases
the null probability with an inverse relationship to distance
- that is, it attributes low intensities a lower probability of
water at higher ranges. Additionally, preprocessing employs
z-score outlier identification, inspired by [17], to magnify
sharp rises in the spectrum at higher sample distances.

Raw sonar scans can also be optionally smoothed by
median, Gaussian or discrete finite impulse respond filters to
address noise caused by environmental conditions and water



turbulence (such as the wake of the ASV). The sensor model
is also continuous across the 0-255 intensity range, instead
of based on a fixed threshold. This creates a smoother update
process to the map, especially in transition regions between
low and high intensity where noisy measurements often sit.

D. Obstacle Detection and Planning

To register usable 2D polygon obstacles from the oc-
cupancy grid, a simple binary threshold is applied to the
map based on a user-defined risk tolerance. The threshold
used for this implementation was 0.8. Intuitively, this means
‘register all obstacle cells which are 80% likely or more into
polygons’. After this thresholding, a morphological closing is
applied, to the resulting binary grid. Closing first dilates then
erodes the region, and serves the purpose of filling in any
small gaps/speckles in the masked obstacle grid cells. Finally,
contour detection is performed using the Ramer-Douglas-
Peucker algorithm for polygon simplification [21]. Polygons
are stored as a list of their 2D vertices in counterclockwise
order for registration, and are filtered by their area, calculated
using Gauss’ area formula (the ‘shoelace method’). Any
polygons with an area less than a minimum threshold, given
as the size of two map cells for this implementation, is
excluded from registration to remove small speckles in the
map. Fig. 5 demonstrates this process in a noisy obstacle en-
vironment (a river bank and three concrete bollards), showing
occupancy grid cells higher than 0.6 in orange/red and the
resultant simplified obstacle polygons in green probability,
overlaid on satellite imagery.

All cells in the current map view (100m by 100m range)
are processed every 100ms for polygon registration. The
current map view is a sufficient subset of the entire map,
as only obstacles interfering in immediate navigation are
important for path replanning purposes. Obstacles are then
dilated by a safety-margin (set at 3m) such that planning can
occur safely on just the visibility graph of obstacle vertices.

Combining these obstacle polygons and the current
GNSS position and dynamic state of ReefCat, the Minimal
Construct path planning algorithm [22] is used to generate
a collision-free path to the next waypoint, as specified by
mission control (i.e. a marine scientist). During deployment,
paths are smoothed considering ReefCat dynamics (its
maximal turning circle, etc.) to produce viable action plans
for the motor controllers to execute.
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Fig. 5: Obstacle registration from a noisy occupancy map.

E. Simple Scanning Strategies

The timing behaviour of the Ping360 is a crucial consider-
ation in designing an effective scanning strategy. A compre-
hensive characterisation established the timing relationship:

ts = 0.006M + 0.00142R + 0.0035 €))

where M is the angular delta to be moved, R is the sampled
range, and ¢, is the total time in seconds required to perform
the command.

Considering this timing relationship, the period of a full
revolution scan at 20m range takes 15 seconds. With the
two sonars scanning scanning every gradian, 200 gradians
out of sync, this results in a >7.5 second gap between
either sonar looking in the direction of travel of the ReefCat.
If travelling at 5 knots, its expected maximum speed, this
results in a worst-case obstacle approach between sensing of
over 19m, rendering a naive revolution strategy inappropriate
for collision avoidance.

Limiting the MSS to concentrate scanning in the forward
direction of the ASV, which is where the chance of collision
is most likely, can address this issue [7]. Ideally, this front-
scanning sector should dynamically change based on speed.
Intuitively, when the ASV is stationary or moving slower, it is
allowable to cast in wider sectors to gather more information
on surrounding obstacles, and when it accelerates, it should
scan in narrower sectors to ensure it does not miss the
approach of an obstacle from outside its field of view by
too great a distance.

This concept can be formalised by designing a sector
angular width formula that maintains a constant distance of

obstacle approach: p
M
w=—", 2)

vt

where w is the sector width in gradians, d is the constant
obstacle approach distance, v is the current speed of the boat,
ts is the scan time for each scan of the sonar in seconds and
M 1is the sonar step size in gradians. Decomposing s using
Equation (1), there are thus three configurable parameters
that define the sector width: R, M and d. A simple speed-
adjusted strategy is designed using a fixed range of R = 20m
and a conservative obstacle approach distance of d = 1m.

Sector scanning can be extended by considering the dual
sonar configuration of the ReefCat. If both sonars are con-
figured to a front-facing sector, significant redundant overlap
occurs. Instead, a ‘windscreen wiper’ pattern is adopted,
defined by a small overlapping region and a larger sector
scan to each side. An indicative diagram of the beneficial
difference between a sector and windscreen wiper strategy
is shown in Fig. 6.

To define the sector width for the windscreen wiper

Fig. 6: Sector (left) vs. windscreen wiper (right) comparison.



approach, the sector is partitioned into three regions, as in
Fig. 7, with the “overlap from front” region defined as f,
followed by a width w and another duplicate f on the other
edge of the sector.

Fig. 7: Windscreen wiper sector partitioning diagram.

Fig. 8 demonstrates that only the angle w, not the entire
width of 2 f 4w, is travelled between the two sonars looking
ahead: as one sonar beam is pointing ahead, the other is f
in from the sector edge, and thus this other sonar beam next
points ahead when the first sonar beam is f in from its sector
edge. Therefore, w can be calculated the exact same as in
Equation (2), and f can be set as a user parameter for the
desired overlap, with the caveat that f must be at least 3.
The overlap f was defined to be a maximum of 10 gradians
for this implementation.

Fig. 8: Windscreen wiper example progression.

Fig. 9 plots the angular coverage of this speed-adjusted
windscreen wiper strategy vs. speed-adjusted sector strategy
across the speeds, v, for the ReefCat (1-6 knots), and across
step sizes, M, of 1, 2 and 4, with fixed f = 10 gradians, d =
1m and range R = 15m. Evidently, the windscreen-wiper
pattern provides significantly superior angular coverage.

Finally, as both Ping360s operate optimally at a constant
acoustic frequency (750kHz), a dual sonar strategy should
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Fig. 9: Angular coverage strategy comparison.

maintain maximal angular distance between the directions
of each sound transducer to minimise interference. This
intra-sector beam positioning is computed using angular
interpolation; upon entry to a synchronised strategy, the
relative position of the current scanning beam (left or right)
which is closest to the front of the boat is found and the
other sonar’s beam is set to the same relative offset.

Fig. 10 is used as an illustrative example. Upon resuming
a windscreen wiper strategy, the beams are out of sync, with
the left at 50° relative position, and the right 100°. The
closest angle to forward, the right one, remains, while the
left gets forced to the same relative position as the right to
re-establish synchronisation.

Fig. 10: Angular interpolation example.

Using this interpolation method, strategies adaptively re-
spond to the real-time speed of ReefCat, narrowing at speed
for faster front scan updates and expanding at slower speeds
to collect more information from the environment.

F. Adaptive Scanning Strategy

Our adaptive strategy extends the speed-adjusted wind-
screen wiper by adding additional collision avoidance fea-
tures. Firstly, the sonar sampling range (alongside sector
width) is adjusted with speed. To this end, a new performance
metric is introduced, the minimum response time, t,. This
metric defines how long the ASV should have to respond
to an obstacle, and directly informs range, R, which can
be trivially calculated as R = t,v. This parameter %,
exists alongside the minimum obstacle approach distance,
d, together these two parameters define the ‘cautiousness’ of
the adaptive strategy.

By examining the responsiveness of the control system,
a response time of ¢, = 10 seconds was selected for this
implementation. Fig. 11 demonstrates example illustrations
of how windscreen wiper strategies may look under this new
constraint, shrinking in sector width and growing in range as
speed increases.

Secondly, an important consideration in marine obstacle
avoidance is the irregular ocean environment. To address this,
each scanning sector is centred on the course-over-ground
direction vector (derived from the integrated localisation
solution from the GNSS/INS unit) instead of simply the
front of the ASV. This ensures the strategy is responsive
to cross-current ocean conditions by biasing scanning in the
true direction of travel, not just the ASV bearing.
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Fig. 11: Speed-dependent windscreen wiper sector and range.

One disadvantage of the speed-adjusted windscreen wiper
strategy is the step size tradeoff: larger step sizes allow much
greater angular coverage (Fig. 9), while smaller step sizes
offer a more detailed and granular but width-limited scan.

This paper presents ‘region-of-interest adaptive scanning’
as a solution to this issue. This strategy employs a larger step
size (M = 4) in a speed-adjusted windscreen wiper pattern
during normal operation, and when it detects a ‘region-of-
interest’, it proceeds to decrease step size (to M = 1) to
repeatedly scan the region in greater detail. This ensures
the strategy does not waste time scanning spaces known to
be safe, instead scanning widely in unoccupied regions then
concentrating detailed scanning in the places that need it,
like obstacles. Repeated scanning of obstacles is particularly
useful as often lower intensity returns that can originate from
water noise, but which repeatedly in the same cell indicate
an obstacle, will require multiple Bayesian updates to attain
a high probability in the obstacle map.

Three regions of interest, pictured in Fig. 12, are identified
as useful for the collision avoidance problem. When the
strategy identifies any of the three region types, the wind-
screen wiper pattern is interrupted, and one sonar (the one
with the smallest angular travel time to the scan region) is
diverted to iteratively scan the region while the other covers
the front scan section using a speed-adjusted sector strategy.
This ensures the ASV continues to have adequate direction-
of-movement coverage while scanning regions in detail.

Firstly, obstacles that pose a collision risk are scanned
in detail. The strategy will divert to iteratively scan a polar
region if a scan is registered as ‘useful’. An update to a cell
in the occupancy map is defined as ‘useful’ information if
it provides enough additive or subtractive information (de-
fined by a user-configurable threshold). Additive information
occurs when an update increases the probability of a cell
by more than a threshold (selected as 0.05, to indicate a
sufficiently significant probability update occurred) and is
not yet registered as an obstacle (i.e. is below the obstacle
probability threshold). Subtractive information refers to when
a cell is already above the obstacle threshold, and the proba-
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Fig. 12: Obstacle, turn and path recomputation regions of interest
with forward-covering scanning (left to right).

¥
U e 1

“J
=i

bility decreases in the Bayesian update. Additive information
is useful when an obstacle needs to be updated quickly into
the map, and subtractive information is useful to encourage
iterative scanning to remove regions that were registered as
obstacles and then appear as water (for example, turbulent
water in the wake of the ReefCat) from the map. Algorithm 1
describes this heuristic computation process.

Algorithm 1 Additive and subtractive information updates.

1: for each cell € sector do

2 if prior < P,,s and posterior — prior > 0.05 then
3 Radditive < Nadditve + 1

4 end if

5: if prior > Py,s and P(water) > P(obstacle) then
6: hsubtrac[ive — hsubtractive + 1

7 end if

8: end for

The obstacle-scanning pattern is also intelligently range
limited. Using median outlier detection inspired by [17] an
estimate for the range an obstacle lies within a scan is
generated. The obstacle-scanning strategy changes its range
at each scan update to this estimate, plus Sm to accommodate
changes in the geometry of the obstacle. This saves time by
not sampling unnecessary details behind an obstacle.

The adaptive strategy also focusses on regions-of-interest
based on its path. Even adjusted for ocean conditions with
a course-over-ground centring, the ASV will at best look in
its direction of travel, but not in the direction it will soon
be in if its approaching a turn. Path aware scanning address
this issue by aborting any other current scanning (including
obstacle-scanning, covering and normal windscreen-wiper
states), and forcing one sonar to scan in the direction of the
upcoming turn. It does so by iteratively computing the UTM
point that corresponds to a certain distance along its path (set
at 10m for this implementation). If the scan angle needed to
point the MSS in the direction of this point diverges from
the current course-over-ground by more than a difference
threshold (set to 10 gradians), and is therefore not adequately
covered by normal forward-scanning, the adaptive scanning
strategy will divert the angularly closest sonar to scan that
path point in a speed-adjusted sector pattern. Similar to the
obstacle-scanning pattern, the other sonar will adopt a speed-
adjusted sector to take over the ‘covering’ pattern looking in
the forward direction.

Such an implementation ends up with two beneficial
effects: (i) as the ASV approaches a pre-configured operator
turn, it will start scanning in the direction it is about to
turn; and (ii) if an obstacle appears in the path of the
ASV and the path has to quickly change to avoid collision
with the obstacle, the strategy will also immediately change
its scanning pattern to look in the direction of the newly
computed path. Both of these region-of-interest features are
highly beneficial for collision avoidance, validating projected
changes in the ASV path without needing to wait for the
ASV to be close enough to the path point to naturally scan
it in default forward scanning.



IV. RESULTS AND DISCUSSION
A. Mapping

Fig. 13 demonstrates the success of the mapping system
deployed to the ReefCat when navigating the Rivergate
Marina on the Brisbane river. In general, the system clearly
delineates obstacles and provide a sufficiently accurate rep-
resentation of the environment for collision avoidance plan-
ning. Numerous sources of error can be present in mapping,
for example erroneous returns from the turbulent wake of
the ReefCat or sheer obstacles being interpreted as water
due to the low intensity of their return. Both these issues
were partially addressed by limiting the bounds of the
occupancy map probability to between 0.05 and 0.95 (to
avoid inappropriate high/low probabilities that are hard to
quickly adjust), but future research is needed to effectively
approach these error sources.

B. Scanning Strategies

For validation purposes, a high-fidelity simulation (Fig. 2)
was developed in the Unity 3D game engine. The simulated
ReefCat hull is rigged for accurate hull-fluid dynamics, com-
puted using a physics engine interacting with a realistic ocean
simulation supporting wave spectra and currents. Simulated
digital-twin sensors (that use and output identical message
packets as the real sensors) are also implemented for an
effective end-to-end simulation of vehicle control to holisti-
cally evaluate the collision avoidance and navigation system.
A Ping360 MSS simulator (accurate to the timing model
in Equation (1)) was also developed, leveraging parallel
raytracing across a dilated cone propagation profile with
additive Gaussian noise and scaling reflection intensities by
the incident angle of the ray hit for increased realism.

We compared our proposed adaptive scanning strategy
(AS) against a naive windscreen wiper strategy (NWWS),
fixed at 100° width, and a speed-adjusted windscreen wiper
strategy (SWWS) with a step of M = 1, with all other
performance constants held as defined throughout Section III.
Each method was evaluated in a set of 10 random dense

N

Fig. 13: Mapping field test in Rivergater Marina.

Fig. 14: Example random simulated obstacle course.

obstacle courses where the simulated ReefCat was directed
to navigate a 200m path (Fig. 14).

Fig 15 shows an example of the path planner’s output
during navigation of such a obstacle course (a different one
to 14). The true outlines of the obstacles can be seen in
magenta, the scanned surfaces in red, the dilated boundaries
of these obstacles in yellow and the generated straight line
path in red. Note for simulation testing no path smoothing
is applied.

Fig. 15: Example path planning in simulation.

The main metric computed from each set of tests was
the ‘no-intervention rate’. Detecting obstacles early and
accurately affords the planning system time to recompute the
path and turn early, thereby allowing ReefCat to maintain a
constant speed and complete a given path efficiently without
unwanted decelerations. Therefore, a ‘no-intervention’ metric
was recorded that indicates whether the ASV needed to slow
down or stop to perform a collision avoidance manoeuvre.

Preliminary testing found NWWS performed poorly, with
a no-intervention rate of 0.22. Therefore, more detailed anal-
ysis proceeded only for the other two strategies, including a
comparison across multiple speeds (2, 4 and 6 knots) and
reflection intensities (30, 50 and 80 out of 255). Varying the
reflection intensity parameter varies the mean intensity of a
simulated sonar return, (which is also adjusted by distance
and angle-of-incidence through the MSS simulator) and aims
to evaluate the robustness of the strategy to challenging
scanning conditions.

Fig. 16 compares performance across multiple speeds and
sonar reflection intensities, with each bar representing the
rate over 10 randomly generated obstacle courses. AS outper-
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Fig. 16: No-intervention rate of adaptive and speed-adjusted wind-
screen wiper strategy across speeds and reflection intensities.

forms SWWS, both on average, with a mean no-intervention
rate of 0.7 compared to 0.411 (70% improvement), and
across all speeds and reflection intensity conditions. For
lower speeds (2 and 4 knots) and high intensity (80 in-
tensity), 100% collision avoidance was achieved with AS,
while SWWS achieved 100% avoidance only for 2 knots
and 80 intensity. In general, the SWWS had a significant
quantity of its interventions from either a) not registering
obstacles, particularly at low reflection intensities which
requires multiple scans, fast enough and b) from too-late
detection of obstacles when changing direction rapidly. The
region-of-interest scanning of the AS addressed both these
issues, leading to its outperformance.

Fig. 17 decomposes this no-intervention rate performance
per random obstacle course, indicating the distribution is
fairly well balanced with some outliers. Obstacle courses
3 and 7 appear to have been particularly difficult for both
strategies, with only 0.1 no-intervention rate for the wind-
screen wiper and 0.6 or lower for the adaptive strategy. De-
spite this, again the adaptive strategy outperforms or matches
the windscreen wiper in most cases, with the exception of
obstacle course 8.
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Fig. 17: No-intervention rate by obstacle course.

Table I shows the mean closest distance the ASV came to
an obstacle averaged for the the trials that did not require in-
tervention different speeds and intensities. Again the adaptive
strategy outperforms, with an average of 0.26m additional
clearance across speeds and 0.15m across intensities.

Mean clearances are about 1.3m in the most successful
avoidance, which given the 2m beam of the boat and the 3m

dilation factor set for obstacles is a reasonably successful
result. Additionally, these quantitative results reflect intuitive
trends also observable in Fig. 16: an increase in speed results
in a decrease in collision performance (faster navigation
means less time to scan and register obstacles), and an
increase in reflection intensity results in an increase in
performance (easier-to-scan obstacles can be avoided earlier).

Closest Obstacle Distance (m)
Speed (knots)

2 4 6
AS 1.28 1.45 1.08
SWWS 1.04 1.01 0.88
Obstacle intensity
30 50 80
AS 0.72 1.34 1.43
SWWS 0.75 1.28 0.99

TABLE I: COMPARISON OF CLOSEST OBSTACLE DIS-
TANCE FOR EACH SCANNING STRATEGY UNDER DIFFER-
ENT OPERATING CONDITIONS.

C. Obstacle Map Completion as Information Gain

A histogram of the information gain metrics for both
strategies is presented in Fig. 18. Information gain was
defined as the birds-eye-view ratio of the registered obstacles
area compared to the ground truth obstacle area—the greater
the information gain, the higher proportion of available
obstacle information was registered into the map. Note this
information gain metric was only computed for sets of given
speeds and intensities where both strategies successfully
completed the obstacle course without intervention: trials that
stop early will inherently see less of the map and therefore
are not a fair comparison.

In general, the adaptive strategy distribution is skewed
higher than the speed-adjusted windscreen wiper distribution,
though not by an overly significant margin. The mean is
17.83% for AS, and 15.46% for SWWS. AS had a maximum
information gain of 34.1%, and a minimum of 4.9%, while
SWWS had a maximum information gain of 25.6% and a
minimum of 3.3%.

The greatest difference for a single trial was for Obstacle
Course 6 at 80 intensity and a speed of 6 knots, where
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Fig. 18: No-intervention information gain comparison.



AS and SWWS attained 31.4% and 17.4% information gain
respectively. Fig. 19 indicates a section of this course after
both strategies navigated through it. Red polygons represent
the obstacles registered from simulated scanning, and ma-
genta represent the true outlines of the randomly generated
obstacles (the white simulated 3D shapes). The information
gain heuristic is therefore defined as the sum of the red
polygon area divided by the sum of the magenta polygon
area. Observing the top figure, AS registered a significantly
greater quantity of the true information, represented as the
abundance of red polygons on the edges of most obstacles,
compared to SWWS on the bottom.

Fig. 19: Information gain example strategy comparison. Top: adap-
tive strategy. Bottom: speed-adjusted windscreen wiper strategy.

These results are consistent with the design intention;
the adaptive strategy gathers more information from its
surroundings than alternatives due to its broader angular
coverage, and is also more likely to be able to register more
of an obstacle due to its obstacle-scanning strategy, especially
in low-intensity environments.

D. Failure Cases

Fig. 20 depicts the AS failing (requiring a deceleration
intervention) on Obstacle Course 7. This is representative
of a common issue—similar to SWWS, AS is susceptible to
fail on complex areas of the path such as sharp turns. This
contributed to Obstacle Courses 3 and 7, which had obstacles
closest to path turns, being the lowest performing courses.

Despite the AS specifically targeting path-aware scanning
through scanning preemptively on turns and path recompu-
tation, the quality of the path the strategy based these scans
on was low. The key issue was that the path published to the
scanning strategy was a straight-line path between waypoints

and therefore unrealistic given the (simulated or real) vessel
dynamic. In Fig. 20, this is represented in red, while the
green line represents the trajectory of the ASV. Evidently,
as the ASV approached the bottom left turn of the straight-
line path, it successfully scanned in detail the straight-line
waypoint path (note the densely updated region in the top of
the yellow box), but it failed to scan where it actually ended
up on its non-holonomic turning path (where the green line
ends, indicating intervention was required).

This also explains an anomalous speed relationship dis-
cernible in the results - in some cases, contradictory to the
intuitive trend, the AS performed worse at slower speeds.
For example, AS required intervention to navigate Obstacle
Course 3 at 2 knots, but did nor for the same course at
4 knots. It also on average had a slightly lower clearance
distance for 2 knots (1.285m) then 4 knots (1.36m). This
is because at faster speeds, the forward-directed ‘cover’
scanner turns into scanning the obstacles faster, which is
then sometimes able to register the obstacles that the path
scanner missed by looking at an unrealistic straight-line path.

More accurate non-holonomic, dynamic path-planning,
such as that being rolled out in the ReefCat sea trials, would
greatly assist the scanning strategy in addressing both these
issues and being able to scan the regions in turn that the
ASV is most likely to navigate through.

Additionally, this issue exposes that the strategy does
not adequately handle rwo competing regions-of-interest at
once. That is, when a path recomputation or turn scan
also finds an obstacle, the controller will default to path
scanning behaviour, which is wide and less targeted than
obstacle scanning, resulting in more time wasted. A more
complex ‘tri-state controller’ that can adequately trade off
the responsibilities of path scanning, obstacle scanning and
‘covering’ (scanning in front in the direction-of-movement)
at once would likely improve results.



V. CONCLUSION

This work implemented a mapping and planning system
for the ReefCat ASV, and presented an adaptive scanning
strategy for the onboard MSS to improve autonomy out-
comes. Probabilistic mapping which holistically considered
the sonar-based collision avoidance problem was devel-
oped using continuous, distance-adjusted and sector-aware
Bayesian updates on a tile-based occupancy map. Through
the execution of field experiments on the Brisbane river, we
showed that the resulting occupancy maps were qualitatively
accurate to satellite imagery. We extended existing sonar
scanning strategies to a dual sonar ASV platform through
the speed-adjusted windscreen wiper, and developed a novel
adaptive scanning strategy, coupling planning, mapping and
sensing tightly for improved collision avoidance outcomes.
Our adaptive strategy was shown to significantly outperform
alternatives, achieving a 70% improvement in required in-
terventions, more robust performance across sonar return
intensities and ASV speeds, and greater environmental in-
formation gain than the speed-adjusted windscreen wiper.

The ongoing collection of quantitative data from ReefCat
sea trials, especially on a real reef environment, will enable
validation of the proposed system in future work. Using
this data to develop non-holonomic and probabilistic local
trajectory prediction will improve path-aware scanning, as
discussed in relation to Fig. 20.

Additionally, further consideration of the dynamic reef
and ocean environment, such as adaptively changing system
parameters based on ocean state could provide a more robust
and responsive system. For example, the obstacle dilation
factor, response time and constant obstacle approach distance
could all be increased in the presence of strong waves or
currents that decrease the reliability of the ASV control
system. Waves, which were demonstrated to be a capability
of the ASV simulation but not directly tested in experiments,
could then be incorporated as an additional design criteria for
all scanning strategy comparisons.

Finally, the development of a previously discussed tri-
state controller, which could dynamically prioritise path,
obstacle and front direction scanning is also a key focus
of future work. A more general extension of such a con-
troller is a system framework that is generically optimisable
for arbitrary cost/reward functions specified to it. Given
such functions, which for example may periodically reward
looking in the direction of travel, less periodically reward
looking to the side and reward scanning on obstacles or
noise proportional to the information gain such scanning may
deliver, the framework would use optimisation theory to find
the set of angle trajectories that optimise its information rate
- the amount of useful information it gathers per second.
Further exploration of such a strategy is arguably one of the
most important suggestions for future work, as it generalises
scanning and therefore makes the strategy more dynamic to
different competing interests and complex obstacle environ-
ments.
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