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Comparison between Behavior Trees and Finite
State Machines
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Abstract—Behavior Trees (BTs) were first conceived in the
computer games industry as a tool to model agent behavior,
but they received interest also in the robotics community as
an alternative policy design to Finite State Machines (FSMs).
The advantages of BTs over FSMs had been highlighted in
many works, but there is no thorough practical comparison
of the two designs. Such a comparison is particularly relevant
in the robotic industry, where FSMs have been the state-of-
the-art policy representation for robot control for many years.
In this work we shed light on this matter by comparing how
BTs and FSMs behave when controlling a robot in a mobile
manipulation task. The comparison is made in terms of reactivity,
modularity, readability, and design. We propose metrics for each
of these properties, being aware that while some are tangible
and objective, others are more subjective and implementation
dependent. The practical comparison is performed in a simula-
tion environment with validation on a real robot. We find that
although the robot’s behavior during task solving is independent
on the policy representation, maintaining a BT rather than an
FSM becomes easier as the task increases in complexity.

Note to Practitioners—Behavior Trees (BTs) have gained sig-
nificant traction in robotics, with over one hundred research
papers published annually in the past five years. BTs have
demonstrated their advantages in various applications, such
as mobile manipulation, underwater and aerial robotics, and
humanoids. Choosing the right policy representation is crucial
for successful task completion. While Finite State Machines
(FSMs) have been popular for their simplicity, they can become
cumbersome as tasks grow more complex. We show this by
implementing BTs and FSMs in a mobile manipulation task,
tested in simulation and on a real robot. As task difficulty
increases, FSMs become harder to maintain due to the rising
number of transitions. Our findings provide practical guidance
for engineers, helping them choose the best policy representation
for their specific robotic applications.

Index Terms—Behavior Trees, Finite State Machines, Robot
Control, Mobile Manipulation, Collaborative Robotics

I. INTRODUCTION

In modern industrial applications robots share their environ-
ment with humans, so they need to handle the unpredictability
that may arise from unexpected outcomes of actions or differ-
ent types of failures and errors. To this end, robots need to be
controlled by reactive policies since fixed sequences of actions
may lead to faulty behaviors. These modern manufacturing
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environments require flexible policies that can adapt rapidly to
new tasks, thus featuring constraints in terms of modularity, to
allow for reusability. Furthermore, policies need to be human
readable, to allow for monitoring and debugging but also
to make robot intentions understandable to close-by human
operators.

Behavior Trees (BTs) are a task switching policy repre-
sentation with the properties of reactivity, readability, and
modularity and they are becoming state-of-the-art for robot
control, especially in the research environment [1]. In industry
however, Finite State Machines (FSMs) are still the preferred
policy representation, due to their intuitive and simple design
and a more mature exploitation in the field.

We believe that industry still needs to be provided with
concrete proofs about the differences on the policy behavior in
robotic tasks. The goal of this paper is to compare BTs with
FSMs in terms of reactivity, modularity, readability, design
choices, and more practically in a set of mobile manipulation
tasks. By readability of a decision structure we mean how
easily a human operator can understand and debug the agent’s
behavior by examining its layout, which in turn simplifies
tracking the robot’s execution. For the comparison to be fair,
we use the same low level implementation for the robot skills,
changing only the encapsulating container to a behavior for a
BT or a state for an FSM.

The main contribution of this paper is to provide a set of
concrete examples that shows what these properties mean in
robotic applications. We only consider a mobile manipulation
task as example to facilitate the comprehension of our argu-
mentation. However, the findings of this paper can be extended
to other tasks and agents. For example, authors in [2] find BTs
modularity better suited for the design of industrial control
software. In [3], authors prefer a BT policy to modularize and
scale their architecture to control an autonomous agent navi-
gating in a crop field. Interestingly, authors in [4], propose a
hybrid design where operators can switch between FSM modes
that are implemented as a BT controlling a complex robotic
system in an autonomous mining application. Finally, in [5]
the inherent task hierarchy of BTs makes them the ideal choice
for converting high level instruction into actionable skills in
a humanoid robot. The results of this paper are applicable
to these cases where autonomous agents are controlled by a
reactive policy. If the policy of the agent is only sequential,
then BTs do not offer any advantages over FSMs, as we
discuss in Section IV-D.

We support the comparison with common metrics for
algorithm complexity and graph distances that suggest the
advantages of using BTs as an alternative to FSMs. The reader
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Fallback

Cube2 in delivery? Sequence

Fallback Fallback    Place cube2!

Cube2 in Hand? Sequence

Fallback   Pick cube2!

Robot-At cube2? Move-To cube2!

Robot-At delivery? Move-To delivery!

Fig. 1: Behavior Tree automatically generated by a planner
using the backchaining method.

is referred to [6] for a more in-depth analysis on metrics for
evaluating BTs. This paper extends our previous work [7] by:

1) comparing BTs and FSMs on the reactivity and read-
ability properties other than the modularity;

2) extending the comparison on the modularity aspect by
providing more examples;

3) extending the comparison to Hierarchical FSMs;
4) extending the experimental section by evaluating the

metrics on concrete examples and by implementing the
two policies on a real robotic system.

The remainder of this paper is organized as follows. Sec-
tion II provides background on the two policy representations
and on related work that compares them. Section III describes
how policies can be automatically generated and presents the
design choices that are considered for both BTs and FSMs.
The metrics as well as the policy properties considered for
the comparison are detailed in Section IV, while the practical
realization is presented in Section V. Finally, Section VI
summarizes the results of the comparisons.

II. BACKGROUND AND RELATED WORK

This section briefly defines BTs and FSMs and presents the
theoretical foundations and early results on the comparison
between the two representations.

A. Behavior Trees

Behavior Trees are a representation for task switching
controllers that originated in the gaming industry but then
rapidly gained success in robotics applications [8]–[11].

A BT is a directed tree that is recursively ticked with a
depth-first pre-order traversal. Internal nodes are called control
nodes, (polygons in Fig. 1), where the most common types are
Sequence: executing children in a sequence, returning once all
succeed or one fails, Fallback (or Selector): executing children
in a sequence but returning when one succeeds or all fail,
and Parallel: executing children in parallel, returning when
a pre-determined subset of children is successful. Leaves are
called execution nodes or behaviors (ovals in Fig. 1) and are

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed

FAILURE

Fig. 2: State Machine executing a sequence of actions to solve
a mobile pick and place task.

either (i) Action nodes that execute a behavior when ticked and
return one of the status signals {Running, Success, Failure},
or (ii) Condition nodes that encode status checks and sensory
feedback and immediately return Success or Failure.

BTs have explicit support for task hierarchy, action sequenc-
ing, and reactivity [1]. BTs are inherently modular since every
node takes the tick signal as input and returns a status signal.
Thus, every subtree can be moved around and reused without
compromising the logical correctness of the policy. Moreover,
modularity ensures that every building block is independent
and thus can be tested separately. Reactivity is ensured by
the Running return state, which allows the whole tree to be
logically evaluated at every tick and running actions to be
preempted if some behavior with higher priority needs to be
executed. BTs are functionally close to Decision Trees with
the main difference in the Running state that allows BTs to
execute actions for longer than one tick.

B. Finite State Machines

Finite State Machines (FSMs) derive from state automata
and feature a set of states and transitions between them (ovals
and arrows in Fig. 2, respectively). Every state encodes a
controller for robot behavior which produces effects in the
environment upon execution. The effects trigger an event that
transfers the execution from one state to the next. Since FSMs
also include Sequential Function Charts (SFCs), a graphical
programming language for Programmable Logic Controllers
(PLCs), they are widely used in industry [12] mainly due to
their intuitive design and implementation simplicity.

As noted in [8], the execution of an FSM is similar to the
GoTo statement in early programming languages, where the
flow of execution leaps from one section of the program to
another and proceeds from that point. In programming, and
by extension also in robotics, GoTo statements are considered
to be harmful, as reported by Dijkstra in [13]. On the other
end, the execution of a BT can be compared to a function call,
where the execution flow returns to where the function was
initially called.
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The main shortcoming in FSM design is the trade-off
between reactivity and modularity. To be reactive, an FSM
must feature numerous transitions that need to be handled
individually when states are added or removed, reducing its
modularity and scalability. This modularity issue is somewhat
alleviated by logically grouping states into hierarchies. Even
if more reusable, it is still hard to add or remove states
in Hierarchical Finite State Machines (HFSMs) and often
hierarchies are handcrafted, actually shifting the modularity
problem to inner layers. Reactive HFSMs often result in fully
connected graphs [8].

Modularity in FSMs can also be achieved by parallel
composition [14]. With this operator it is possible to design
FSMs for different subtasks independently and then use the
parallel composition to automatically generate an FSM for
the complete task. With parallel composition, in the gener-
ated FSM the number of states grows combinatorially with
the states in the sub-FSMs that compose it. Therefore, this
operator grants modularity at the cost of higher complexity and
loss of readability. Due to this complexity, parallel composed
FSMs are often represented symbolically and not graphically.

C. Related Work

BTs have been compared to FSMs in earlier studies, but
these comparisons have been either purely theoretical [8],
[15], [16], or speculative [17]. In [8], the authors outline
the pros and cons of both approaches, and in [15], they
theoretically demonstrate how BTs can modularize FSMs.
They also propose a design for an HFSM that functions like
a BT. In [16], the authors compare BTs with other related
architectures (Decision Trees, Teleo-reactive Programs and in
particular FSMs) in terms of reactivity, readability and expres-
siveness. They demonstrate that FSMs are more expressive
than BTs since they can build behaviors based on actions that
have access to internal variables and to past decisions, while
BTs are more reactive because they restart the execution from
the root at each new input and more readable as they do not
encode past decisions in the representation.

In [18], the same authors formalize modularity for reactive
control architectures, highlighting that BTs possess structural
interfaces that enable every component to interact with others:
a subtree is a BT, and an action behavior is a degenerate form
of a BT. In contrast, FSMs lack such structural interfaces and
are not considered modular in their analysis unless a structure
is imposed (e.g., in HFSMs). Modularity is measured by the
Cyclomatic Complexity, defined as

CC = a+ s− n+ 1, (1)

where a, s, n represent the number of arcs, sinks (terminal
nodes) and nodes in a decision structure, respectively. This
measure is applied to BTs that have been transformed to
graphs with single entry and exit nodes. This implies that BTs
have optimal modularity as their Cyclomatic Complexity is
1. In addition to this analysis, we measure modularity in terms
of the efforts required to modify a structure by adding or
removing elements in it. We propose to quantify using the
computational complexity of such operations and the graph

edit distance between a baseline structure and its modified
versions.

Klöckner [17] suggests using a BT as a control policy for
UAV missions, speculating on the benefits of this design over
FSMs. Previous work [19] also compares these two policy
representations from a practical standpoint in the context
of autonomous driving. The comparison uses as metrics the
Cyclomatic Complexity (CC) and the Maintainability Index
(MI). The MI of a software piece considers CC, lines of
code, comment percentage, and Halstead volume (a measure
of the distinct and total numbers of operands and operators).
However, the CC was poorly defined compared to [18], and
we argue that MI is more influenced by the library used to
implement the policies, leading us to disregard it. We propose
instead to count the number of elements in the structure. We
are aware that this approach is not a metric per se, but we
use it to indicate how the structural complexity evolves with
respect to the task complexity.

Another study offering insights into the behavior of an
agent controlled by both policies is [20], within the context of
computer games, which inherently have a deterministic nature.
The researchers evaluate the policies by solving a level in
the Mario AI benchmark, comparing them on the number of
nodes and a reward function ρ(x). This comparison sheds light
on the scalability of the two policies, as both are generated
by a learning algorithm to tackle the benchmark. The main
objective of the study was to propose a new method for
generating BTs, making the comparison with FSMs somewhat
unfair, since the generation methods for the two policies differ.
However, from both [19] and [20] we can conclude that the
complexity scales linearly for BT and quadratically or
worse for FSM.

Authors in [21] instead, propose a combined design where
some nodes of the BT are modeled as FSMs. The authors
claim that with such design the FSMs allow the policy to easily
define states with memory which would instead be modeled
in BTs by conditions with complex semantics. A similar com-
bined design, where instead states in an FSM are represented
as BT, is proposed in [4]. Having an FSM at the highest
level of the representation, allowed human users to control the
switching between modes, while the modularity of BTs makes
it preferable for the actual robot behavior implementation. A
similar hybrid model is implemented in [22] where BTs are
combined with HFSMs.

Finally, authors in [23] combine BTs with Stack-of-Tasks
(SoT) control, a paradigm that allows the robot to fulfill a
list of goals formulated as equality or inequality constraints
in error space. Such goals have a priority order and can be
fulfilled simultaneously. SoT is usually combined with FSM
to prevent the robot from getting stuck in local minima.
However, authors in [23] claim that combining SoT with BTs
instead solves limitations of the FSMs in terms of reactivity,
modularity and re-usability.

III. POLICY DESIGN

To allow for a fair comparison as well as a fast imple-
mentation, we selected policy implementations that are based
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Fallback

Cube2 in delivery? Sequence

Fallback Fallback   Place cube2!

Robot-At delivery? Move-To delivery! Cube2 in Hand? Sequence

Fallback    Pick cube2!

Robot-At cube2? Move-To cube2!

Fig. 3: Backchained BT realizing a chattering controller.

on python and are ROS-compatible. For BT design we use
py_trees1, while for FSM we use SMACH [24]2.

There exist several methods for automatically generating
Behavior Trees, such as Genetic Programming [25], Learning
from Demonstration [26], [27], autonomous planners [28],
or hybrid combinations [29]–[31]. Some of these generation
methods build a BT using a backward-chained approach [27],
[28], [31], which is proven to have convergence guaran-
tees [32]. For this method, actions are defined together with
their pre- and post-conditions. Starting from the goal, pre-
conditions are iteratively expanded with actions that achieve
them, i.e. those actions that have that particular condition as
one of their post-conditions. Then, those actions’ unmet pre-
conditions are expanded in the same way. Another property of
backchained BTs, is that the control node types are in an alter-
nating order, i.e. the parent of a Fallback node is a Sequence
node and vice-versa, resulting in a design recommended as
good practice in [8]. By providing a planner with such a set of
actions and a goal state, it is possible to automatically generate
backchained BTs (Fig. 1).

In BT design, the order of the actions’ pre-conditions is
important. In the case of the BT of Fig. 1, for example, if
the pre-condition ‘Robot-At delivery?’ of the ‘Place cube2!’
action is expanded before the pre-condition ‘Cube2 in Hand?’,
we would obtain the BT of Fig. 3. A robot controlled with
such a BT will feature a chattering behavior because the
robot will first navigate to the place position (the condition
‘Robot-At delivery?’ will then return Success), then it will
attempt picking the cube by navigating to the picking pose
with the action ‘Move-To cube2!’. As soon as the robot moves,
the condition ‘Robot-At delivery?’ will immediately return
Failure, and by consequence re-execute the action ‘Move-To
delivery!’. This chattering behavior will continue indefinitely
unless there is a limit on the number of ticks allowed. To
avoid this problem, the order of the pre-conditions is compared
against the order in which actions are executed in the plan, so
the pre-condition ‘Cube2 in Hand?’ for the picking action is
expanded before the pre-condition ‘Robot-At delivery?’ for the
moving action.

1https://github.com/splintered-reality/py_trees
2https://github.com/ros/executive_smach

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Fig. 4: Reactive FSM solving a mobile manipulation task
with transitions Running (yellow), Success (green), and Failure
(red).

Sequence

Fallback Pick cube2!

Robot-At cube2? Move-To cube2!

Fig. 5: Example BT subtree with equivalent HFSM in Fig. 6.

Another degree of freedom in backchained BT design
is the order of actions for a given post-condition. In this
case, a single post-condition would be achieved by different
actions, resulting in different subtrees where those actions are
expanded. A good design policy would be to sort the subtrees
according to e.g., execution time, success probability, or some
a priori defined cost. In this direction, authors in [33] assign
a cost to every action and at runtime the robot executes the
subtree with the lowest cost.

With those inputs the design of a BT is somewhat con-
strained, while there are multiple design choices for an FSM.
A first option is to directly mimic the sequence of actions,
as depicted in Fig. 2. This design has the shortcoming that it
is not reactive: a robot controlled by such a policy will not
react to events that disrupt the task at any given time. Such
robot will not be able to recover the execution at any point
of the task but only by re-executing from the beginning. To
overcome this limitation, it is necessary to turn the FSM into
a fully connected graph, taking into account all failure cases,
or more simply, to connect every state to a SELECTOR (or
failure) state where the state of the robot and the environment
is inspected before the next state is reached (Fig. 4). Such
an FSM features a Running transition that cycles back to the
same state, allowing the FSM to preempt an action execution
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TABLE I: Overview on the performances of the policies according to the metrics. In a BT n is the number of nodes, n⋆ is
the number of nodes to modify in an edit operation, and M the number of action nodes. In an FSM n is the number of states
and transitions, n⋆ is the number of states to modify in an edit operation, while M is the number of states alone. In particular
we use the following notation Tfc = Mfc(M − 1) where Mfc is the number of fully connected states in an FSM.

Metrics
Modularity Reactivity Readability

Policy Computational Complexity Graph Edit Distance Effort Graphical Elements Active Elements

Backchained BTs O(1) 2n⋆ 0 ≃ 7M − 1 ≃ 3.5M

Fault-Tolerant FSMs O(n) f(n⋆, n) 3(M + 1) + Tfc ≃ 5M + 4 + Tfc ≃ 5M + 4 + Tfc

HFSMs O(1) kn⋆ 0 ≃ 36M − 3 ≃ 29M − 3

SUCCESS

INIT

FAILURERUNNING

IN

Sequence

SUCCESS FAILURERUNNING

IN

Pick cube2!

Pick cube2!

SUCCESS RUNNING FAILURE

Fallback

IN

IN

Robot-At cube2?

Robot-At cube2?

SUCCESS FAILURE

IN

Move-To cube2!

Move-To cube2!

SUCCESS RUNNING FAILURE

SUCCESS RUNNING FAILURE

Fig. 6: HFSM that mimics the subtree in Fig. 5.

provided the execution is asynchronous and the environment
is monitored periodically. Then, every execution state has
a Failure transition to the SELECTOR state, so that the
execution can restart in the appropriate state, depending on the
task progression. In case the FSM is generated by a planner,
the transition from the SELECTOR state to another state is
triggered by that state’s pre-condition. The other transitions
depend on the execution sequence.

Another design alternative is proposed in [15] where an
FSM is formulated as a Hierarchical Finite State Machine
(HFSM) that behaves exactly as a BT. Every robot behavior is
an FSM with the states Running, Success, Failure as outcomes;
two or more behaviors are encapsulated in another FSM
and transitions are made according to whether the parent
FSM mimics a Sequence or a Fallback node. An example
is provided in Fig. 6, where the HFSM mimics the subtree in
Fig. 5. In the Fallback container, if the condition is successful,
the execution is transferred directly to the Success outcome of
the container, or to the next action in case of failure. In the
higher level Sequence container, if the Fallback container is
successful, then the execution is transferred to the next action,
or to a Failure outcome otherwise.

IV. METRICS-BASED COMPARISON

In this section we compare Behavior Trees and Finite State
Machines in terms of modularity, reactivity, readability and we
conclude it with comments on alternative designs. We will de-
scribe each property separately and provide dedicated metrics
where applicable, the results are summarized in Table I.

A. Modularity

The possibility of adding, removing, and editing
nodes/states, allows the users to reuse pieces of software and
to modify bad design choices. It can happen, for example,
that during the testing of a policy the user realizes that some
behaviors were missing or that some were malfunctioning,
and thus need to be removed or replaced. In this section,
we will compare the addition, removal, and modification
of behaviors in the two decision structures with a focus on
the computational complexity of such operations and on
the graph edit distance (a measure of diversity between two
graphs) between a baseline structure and the modified one.
To do so, we will use the baseline structures of Figs. 1 and 4
and we modify them according to the following scenarios:
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Fallback

Cube2 in delivery? Sequence

Fallback Fallback    Fallback     Place cube2!

Cube2 in Hand? Sequence

Fallback   Pick cube2!

Robot-At cube2? Move-To cube2!

Arm tucked? Tuck arm! Robot-At delivery? Move-To delivery!

(a) Adding the subtree to tuck the arm in the BT: the robot will tuck
the arm after grasping.

Fallback

Cube2 in delivery? Sequence

Fallback Fallback    Place cube2!

Cube2 in Hand? Sequence

Fallback   Pick cube2!

Robot-At cube2? Move-To cube2! Safe-Move-To cube2!

Robot-At delivery? Move-To delivery!

(b) Adding an alternative way to move to the target cube: if the
first Move-To behavior fails, a safer motion is attempted.

Sequence

Fallback Fallback    

Cube2 in delivery? Sequence

Fallback Fallback    Place cube2!

Cube2 in Hand? Sequence  

Fallback   Pick cube2!

Robot-At cube2? Move-To cube2!

Robot-At delivery? Move-To delivery!

Robot-At inspection? Dock Robot!

(c) Adding a final behavior for the task in a BT.

Sequence

Fallback Fallback

Battery Charged? Recharge! Cube2 in delivery? Sequence

Fallback   Fallback     Place cube2!

Cube2 in Hand? Sequence  

Fallback    Pick cube2!

Robot-At cube2? Move-To cube2!

Robot-At delivery? Move-To delivery!

(d) A BT that charges the robot if it is low on battery.

Sequence

Fallback Fallback Fallback

Battery Charged? Recharge! Cube2 in delivery? Sequence

Fallback Fallback Fallback Place cube2!

Cube2 in Hand? Sequence

Fallback Pick cube2!

Robot-At cube2? Move-To cube2! Safe-Move-To cube2!

Arm tucked? Tuck arm! Robot-At delivery? Move-To delivery!

Robot-At inspection? Dock Robot!

(e) BT resulting from all previous node addition cases.

Fig. 7: Different cases of node addition in a BT. The added nodes are highlighted in red.
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SELECTOR

Cube2 in Hand

Cube2 in Hand

Arm Tucked

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Tuck arm

Arm tucked

RUNNING FAILURE

Cube2 in Hand

(a) Adding an intermediate behavior for the task in an
FSM: the robot tucks the arm after grasping.

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Safe-Move-To cube2
RUNNING

FAILURE

Cube2 reached
FAILURE

(b) Adding an alternative way to move to the target cube: if the first
Move-To behavior fails, a safer motion is attempted.

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Dock Robot

Docked

RUNNING

FAILUREDocked

(c) Adding a final behavior for the task in an FSM:
the robot docks before finishing the task.

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Recharge

Battery Low

Recharged

RUNNING

(d) Adding a connected behavior for the task in an FSM: the robot
charges the batteries if low.

SELECTOR

Fallback
Move-To cube2

Pick cube2

Move-To delivery

Place cube2

INIT

Recharge

Battery Low

Recharged

SUCCESS

Dock Robot

Tuck arm

Safe-Move-To cube2

Cube2 reached

Cube2 in Hand

Arm tucked

Delivery pose reached

Cube2 placed

Docked

Cube2 reached

Docked

Cube2 placed

Cube2 reached

Cube2 in Hand

Cube2 in Hand
Arm tucked

Delivery pose reached
Cube2 in Hand

(e) FSM resulting from all previous node addition cases.

Fig. 8: Different cases of state addition in a fault-tolerant FSM. The added elements are displayed in magenta.
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1) we add to the baseline a behavior that tucks the robot
arm after grasping, to have an arm configuration more
suited for navigation;

2) we add an alternative way of reaching the first item to
pick, by letting the robot generating a safer trajectory
that allows it to move closer to obstacles but with
a reduced velocity. This behavior is used when the
standard Move-To behavior fails;

3) once the mobile manipulation task is finished, we want
the robot to reach a docking station;

4) we make the robot recharge the batteries if they run low
at any point during task execution.

The structures that we obtain by modifying the baseline are
grouped in Fig. 7 in the case of BTs and Fig. 8 for FSMs.

The first comparison is made in terms of the computational
complexity of edit operations in both structures.

1) Computational Complexity:
a) Adding or removing a node in a BT: Adding a node

to a BT with n nodes involves inserting it into the list of
children of the parent control node at the desired position.
In a BT, each child node is independent of other children3.
The insertion operation requires accessing the desired parent
node and inserting the new node, with a complexity of O(1).
Removing a node has the same complexity. Due to modularity,
handling a subtree has the same complexity, where the root of
the subtree to add/remove is considered as the input node.

There are special cases in which we might desire to prepend
or append a subtree to modify the behavior of the robot. For
example, if we want the robot to recharge the batteries as
soon as they run low, we would need to prepend this subtree
in a Sequence root node, to the subtree solving the task (so
the recharging subtree has higher priority). The BT obtained
this way is depicted in Fig. 7d, where the added elements
are highlighted in red. In this particular case, a Sequence root
node is created, then the subtrees to recharge the robot and
solve the mobile manipulation tasks are added as children to
the root. Similarly, we can append another subtree to the root,
as in Fig. 7c, docking the robot after the manipulation task.

b) Adding or removing a state in a FSM: For the
proposed FSM design, we identify three possible ways to add
a state:

1) sequential state: insert a new state between two existing
states (the preceding and the following state). To add the
new state as a step in the execution sequence, remove
the transition from the preceding state to the following
state, create a transition from preceding to the new state,
and then from the new state to following. An FSM
modified this way is shown in Fig. 8a. If the new state
is terminal, create a transition to the outcome instead.
An FSM modified this way is shown in Fig. 8c.

2) alternative state: add a new state as an alternative
strategy to an existing one. In this case, the FAILURE
transition of the preceding state goes to the new state
instead of the SELECTOR. The transition from preced-
ing to following is copied to connect the new state to the

3This does not apply if Blackboard variables are used, but this approach
compromises modularity and is not recommended [8], [34].

Algorithm 1: Adding a connected state in an FSM.
input: sm, new_state, condition, selector_condition

1 for state in sm:
2 state.register_outcome (new_state)
3 if state == SELECTOR:
4 state.add_trans (selector_condition)
5 else:
6 state.add_trans (condition)

7 new_trans← “RUNNING” : new_state
new_trans← “FAILURE” : SELECTOR
sm.add_state (new_state, new_trans)

following. Finally, add a FAILURE transition from the
new state to SELECTOR. An FSM modified this way is
shown in Fig. 8b.

3) connected state: add a new state for the task that con-
nects to all other states (Algorithm 1). Add a transition
from every other state to the new one, and handle
the interaction with the SELECTOR state. An FSM
modified this way is shown in Fig. 8d.

In an FSM with n states, adding or removing a new state
involves checking the consistency between state outcomes and
transitions, which has a complexity of O(n) because there
could be up to n transitions to manage.

To remove a state, all transitions to and from that state must
be deleted. Additionally, the target state needs to be removed
from the outcomes of any other state, if applicable. This
operation requires iterating through all transitions and states,
resulting in a total complexity of O(2n). Moreover, since the
switching logic in an FSM is implemented inside the state and
not explicitly realized by the representation, edit operations
require the modification of the program script of the states.
For example, if we want to remove a fully connected state,
we need to remove or change the transition implementation in
all states that reference it.

A key difference with BTs—stemming directly from BT
modularity—is that editing an FSM requires access to all states
and transitions, making the process of adding or removing
an element dependent on all other elements in the structure.
Moreover, we have seen that the three insertion scenarios
have to be treated slightly differently. These problems are
mitigated by using an HFSM. In this case, adding a state has
the same complexity as in the BT case. Once the insertion
point is identified, the same add_state method as for the
FSM is called (Algorithm 1). However, here the consistency
is checked locally (i.e., at a specific depth in the hierarchy)
so the operation has a complexity O(k), with k the number
of children of the parent node at the insertion point. For
example, if we were to insert a subtree to tuck the arm
after grasping, as for the BT in Fig. 7a, the add_state
method would check for consistency only among the direct
children of the parent Sequence (i.e., the two Fallback nodes
and the place action). Transitions would also be handled
locally and in a modular way, because we enforced a structure
(i.e., three return statuses for every node). However, we trade
off modularity for readability, as it can be appreciated by
comparing Fig. 5 and 6.
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Computational complexity is independent of who imple-
ments the algorithms. When editing a BT, modifying a subtree
involves removing the edge that connects the parent node to
the root node of the subtree and creating a new edge from a
different parent node to the subtree. These are a removal and
an addition operations, with complexityO(1) each. In contrast,
editing an FSM requires removing and reconnecting all the
transitions associated with a state. Both these operations have
complexity O(n) in the worst case of a fully connected graph
(as shown in Algorithm 1, one has to loop over all the states
in the FSM). Assuming an algorithm or editor facilitates these
operations, the workload for a user differs between BTs and
FSMs. For a BT, the editing process remains straightforward,
as the user performs the same basic operation of reassigning
the subtree’s connections (1 operation for addition and 1
for removal). In the case of an FSM, while an editor could
automate the removal of transitions from the state being edited,
the user would still need to manually define and reestablish
all the necessary transitions (thus adding n − 1 transition
from a state to all the others, in the worst case of a fully
connected graph). This adds a greater workload compared to
the relatively simpler operations required for modifying a BT.
Remarkably, a connection with modularity and computational
complexity is also provided in [18], where authors propose an
algorithm to identify all modules in a decision structure.

The computational complexity comparison between BTs
and FSMs can also be analyzed in terms of task switching
speed, processing speed, and code volume. In the worst-
case scenario, both approaches require a linear number of
if/else condition checks relative to the number of nodes.
For instance, this occurs if all conditions fail in a backchained
BT or if a SELECTOR state in an FSM triggers a transition
to the last node, necessitating checks for all prior transitions.
However, these condition checks are not computationally
expensive and do not significantly affect task switching or
processing speed. Consequently, the asymptotic complexity of
both BTs and FSMs scales linearly with the number of nodes.

Task switching speed also depends on the tick frequency
in BTs and the thread frequency in FSMs, both of which are
user-configurable. Nevertheless, the associated computational
overhead is minimal.

Finally, the amount of code required to implement a given
set of robot skills as either a BT behavior or an FSM state
depends on the API in use. In FSMs, additional effort is
needed to manage state transitions, as each edge in the FSM
graph represents a transition that must be explicitly coded.
This means that the number of transitions directly influences
the code size.

The second comparison is made in terms of the Graph Edit
Distance (GED) between a baseline structure and a modified
one.

2) Graph Edit Distance: GED is a method for measuring
the diversity between graphs and is defined as the minimum
number of edit operations (adding, removing, or substituting
nodes and edges) needed to transform one graph g1 into
another graph g2 to make them isomorphic [35]. Using the
standard tuple definition of graphs, G = (V,E) with V,E

TABLE II: Graph Edit Distance of the modified BTs in Fig. 7
to the baseline of Fig. 1 and the FSMs of Fig. 8 to the baseline
of Fig. 4.

Graph Edit Distance
Modification BT FSM HFSM

Tuck Arm subtree 6 5 12

Safe-Move-To behavior 2 4 4

Dock subtree 8 5 17

Recharge Battery subtree 8 8 17

the sets of vertices and edges respectively, the GED between
g1 = (V1, E1) and g2 = (V2, E2), is defined as:

GED(g1, g2) = min
e1,...,ek∈γ(g1,g2)

k∑
i=1

c(ei), (2)

where c is the cost of the edit operation ei and γ(g1, g2)
denotes the set of edit paths to transform a graph into the
other. For this analysis, we use this measure as implemented
in the NetworkX python library [36].

a) Graph Edit Distance in BTs: Considering BTs as a
graph, adding or removing one node n⋆ contributes with the
editing of two elements in the graph, a vertex corresponding
to the node and an edge from the node to the parent. For the
examples we brought, we have the following:

• the BT in Fig. 1 has 14 nodes and 13 edges;
• the BT in Fig. 7a has 17 nodes and 16 edges;
• the BT in Fig. 7b has 15 nodes and 14 edges;
• the BTs in Fig. 7c and 7d have 18 nodes and 17 edges;

Since we add 3 nodes for Fig. 7a, 1 for Fig. 7b, and 4 for
Fig. 7c and 7d, we obtain a graph edit distance of 6, 2, and
8, as reported in Table II.

b) Graph Edit Distance in FSMs: In the case of an FSM,
every new state n⋆ contributes with one vertex and at least 5
edges (4 for the alternative state case). If however we aim
to edit a fully connected state, then the GED depends on the
number of the states in the FSM. In such a case, the GED
is 4 + n (the state n⋆, the RUNNING transition, transitions to
and from SELECTOR, and a transition from every other state
to n⋆).

Similarly to what done with BTs, we use the measure to
compare FSMs of Fig. 8 with the baseline of Fig. 4. Such
FSMs are directed graphs with the following elements:

• the FSM in Fig. 4 has 6 nodes and 18 edges;
• the FSMs in Fig. 8a and 8c have 7 nodes and 22 edges;
• the FSMs in Fig. 8b has 7 nodes and 21 edges;
• the FSM in Fig. 8d has 7 nodes and 25 edges.

Where the outcome SUCCESS is also considered as a node.
We observe that adding a state in some intermediate point in
the execution sequence (Fig. 8a) has no substantial differences
as compared to adding it as a final state (Fig. 8c) The values
for the graph edit distances are reported in Table II.

c) Graph Edit Distance in HFSMs: We make a similar
but briefer analysis on HFSMs. With the example portrayed
in Fig. 6, we obtained the graph representation by converting
every node as it follows:
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• an action node is a subgraph with 1 vertex and 3 edges.
The vertex being the node itself and the edges being the
3 transitions, one from each return status to the next child
or the parent return statuses;

• a condition node is similar to an action node, with one
edge less because conditions do not return RUNNING;

• a control node contributes with 1 vertex and 4 edges. The
additional edge is the transition from the node to the first
child.

• we add 3 more states to account for the outcome of the
execution, one for each return status.

We can thus compute the GED between two HFSMs as a
function of the difference between their structural components:

GED(hfsm1, hfsm2) = 3∆c+ 4∆a+ 5∆i, (3)

where c are condition nodes, a are action nodes, and i are
internal or control flow nodes.

With such design, we disregard the IN elements and the
internal return statuses. Taking as example the HFSM that we
would obtain from the BT in Fig. 1, we would have:

• 4 Fallback nodes, contributing 1 vertex and 4 edges each,
for a total of 4 vertices and 16 edges;

• 2 Sequence nodes, contributing 2 vertices and 4 edges
each, for a total of 2 vertices and 8 edges;

• 4 Action nodes, contributing 1 vertex and 3 edges each,
for a total of 4 vertices and 12 edges.;

• 4 Condition nodes, contributing 1 vertex and 2 edges
each, for a total of 4 vertices and 8 edges;

This makes a total of 17 vertices and 44 edges. To resume:
• the HFSM representing the BT in Fig. 1 has 17 vertices

and 44 edges;
• the HFSM representing the BT in Fig. 7a has 20 vertices

and 53 edges;
• the HFSM representing the BT in Fig. 7b has 18 vertices

and 47 edges;
• the HFSM representing the BTs in Fig. 7c and 7d have

21 vertices and 57 edges;
The minimum GED for the considered examples is 4 when
we add the behavior to move more safely, to a maximum of
17 when we add the subtrees for docking or recharging the
batteries, as reported in detail in Table II.

To conclude, in Fig.7e and 8e we show the BT and FSM
resulting from adding all the nodes described in the previous
examples, respectively. It can be seen that the number of edits
required to perform in an FSM increases with the number of
states added and it soon becomes cumbersome to maintain,
while this maintenance cost is mitigated in the case of a BT.

Another example that highlights the benefits of modularity
in a BT, is when we need to add behaviors with high priority
and later decide the priority order among them. In particular,
we consider as a baseline the BT in Fig. 7d and the FSM
in Fig. 8d. We now want the robot to shut down in case
of emergency. We obtain the policies in Fig. 9 where in
the BT the subtree realizing the mobile manipulation task
of Fig. 1 is collapsed into anode called ‘Moma Task!’ for a
better visualization and to stress that editing a BT does not

modify other behaviors in the tree. As another example, we
could design a high priority fallback subtree with a condition
node that checks if the robot is connected to the network and
an action node that attempts reconnecting to the network if
the connection is lost. Since a BT executes with tick signals
that propagate from left to right, the subtree with the highest
priority is placed in the leftmost part of the tree. To change
the priority order it is enough to re-arrange the subtrees in the
list of the children of the root node. In the case of the FSM,
the priority depends on how the transitions are designed. If we
want to change the priority order in the FSM of Fig. 9b, we
would need to edit every implementation of the states to trigger
the transition to ‘Recharge!’ before the one to ‘Shut Down!’,
then to make a transition from ‘Shut Down!’ to ‘Recharge!’.
From a code design perspective, having copies of the same
instruction block in multiple places is a source of error.

B. Reactivity

A reactive control policy should achieve two behaviors:
1) if during the task execution, part of the task is done or

undone by an external agent or disturbance, the robot
should react to it, either by jumping over the already
executed steps, or by redoing those steps that have been
undone;

2) if during task execution, an action with a higher priority
needs to be executed (i.e. recharge the robot if it’s low
on battery), the robot should interrupt the action that is
currently executing to run the one with higher priority
instead.

Taking as example the BT in Fig. 7d, where a subtree for
handling battery recharge has been added (additional elements
highlighted in red), it achieves both behaviors:

1) if the place pose is in the neighborhood of the grasping
pose, then the robot wouldn’t need to execute the second
navigation action as its condition would already be
satisfied, thus jumping directly to the execution of the
place action. The BT is ticked also if the root returns
Success, so if the robot completes the task but then an
agent moves the cube from its target pose, then the robot
would attempt grasping and then placing again.

2) subtrees with high priority actions are found in the top
left part of the tree. Since a BT is recursively ticked from
left to right and nodes return Running, any action that
the robot is executing can be preempted as soon as the
condition monitoring the battery status returns Failure,
thus transferring the execution to the ‘Recharge!’ action.

In an FSM, the only way to achieve the same level of
reactivity, is to have a transition from any state to every other,
or to adopt a solution like the one proposed in Section III. This
is manageable for small problems, but it quickly grows out of
hand if the task is complex. Moreover, with such a choice,
modularity is sacrificed. To quantify the price for reactivity,
we can count the number of operations required to transform
the sequential FSM of Fig. 2 into the reactive version of Fig. 4.
The former has 5 nodes and 4 edges, while the latter 6 nodes
and 18 edges. The price for the transformation is a total of
15 operations (obtained by using the Graph Edit Distance
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Sequence

Fallback Fallback MoMa Task!

Safe Conditions? Shut Down! Battery Charged? Recharge!

(a) Adding the a high priority subtree to a BT does not affect the other behaviors in the policy.

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Recharge

Battery Low

Recharged

Shut Down

Emergency

(b) Adding connected states to the FSM complexifies the structures and the maintenability of the code.

Fig. 9: Editing high priority behaviors in a policy representation: modularity allows to interchange the priority of subtrees in
a BT without requiring to modify other behaviors in the policy.

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed

FAILURE

Recharge Recharged

Battery Low

Battery Low

Fig. 10: Non reactive FSM with Ms = 4 and Mfc = 1.

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Recharge

Battery Low

Recharged

RUNNING

Fig. 11: Reactive version of the FSM in Fig. 10. This is the
same FSM of Fig. 8d, were we highlight different elements.
The red and blue elements correspond to the operations related
to Ms and Mfc in Equation 4, respectively.
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measure). We can define this measure as Effort and make
it a function of the number of states. To transform an FSM
with Ms sequential states and Mfc fully connected states in
a reactive FSM, with our proposed design, the effort is:

E(Ms,Mfc) = 3(Ms +1)+Mfc[(Ms +Mfc− 1)+ 3]. (4)

Let’s consider the sequential FSM example of Fig. 10 with
Ms = 4 and Mfc = 1. Here, the fully connected state is
the ‘Recharge’ state. The effort to transform this FSM into
the fault-tolerant version of Fig. 11 requires the following
operations:

1) add the SELECTOR state plus a ‘RUNNING’ self-
transition and a transition to the SUCCESS outcome—3
operations;

2) for each Ms: add a RUNNING self-transition, a FAIL-
URE transition from the state to SELECTOR and an-
other one from SELECTOR back to the state to resume
the execution—3 operations;

3) for each Mfc: remove transitions from this state to any
other state—(Ms +Mfc − 1) operations—then add the
interaction to SELECTOR as in the previous point—3
operations.

Defining M = Ms +Mfc, Equation 4 can be rewritten as:

E(M,Mfc) = 3(M + 1) +Mfc(M − 1). (5)

To conclude, BTs are naturally reactive, so E = 0, indepen-
dently on the number of nodes. The same holds for HFSM,
that are reactive by construction as we enforced a structure.

C. Readability

Readability is an inherently subjective measure, as it de-
pends on user preferences and how easily a human operator
can comprehend and debug the agent’s behavior simply by
examining the decision structure. This definition highlights the
importance of facilitating the tracking of the robot’s execution.
While subjective assessments could provide valuable insights,
they would require large-scale user studies. Such studies, how-
ever, would be influenced by factors like the users’ expertise,
the specific task the agent is solving, and other contextual
variables, making the results difficult to generalize. Therefore,
to compare BTs and FSMs in terms of readability, we aim to
use an objective measure that quantifies how the size of the
policy grows with increasing task complexity by computing
the number of graphical elements in policy as a function of
the robot skills (action behaviors in a BT and states in an
FSM). A backchained BT (like the one in Fig. 1) would usually
have as many action behaviors as conditions (unless an action
has two or more post-conditions or the same post-condition is
achieved by more than one action, as in the case of Fig. 7b).
Then, since every post-condition is coupled with an action
achieving that, we would have a Fallback node to make each
coupling. Finally, the number of Sequence nodes is variable,
as it depends on the number of actions that require expansion
(i.e., those actions that have pre-conditions). We can assume
as a rule of thumb, that the number of Sequence nodes is one
half of the number of action behaviors as in the backchained
design a sequence node would at least have two action nodes

among their children [28]. Thus, if we express the BT design
complexity for M action nodes, we would have a total of
N = 3.5M nodes. Those will count for Active Elements
in Table I (i.e., those elements that can be manipulated). If
we had to consider all graphical elements, we should include
every edge connecting each parent node to its children, for
a total of T = N − 1 connections. This makes it a total of
S = N + T = 7M − 1 elements.

Using the same analysis for an FSM, for every state we
would have a transition connecting it to the next one, with the
last transitioning to a final Success state, or the outcome of
the task. To achieve full reactivity, we would need a Running
self-transition for each state. An additional SELECTOR state
is also needed to allow the robot to reactively restart the
execution where it stopped in case of errors, with a transition
to this state from every other state. With such a design, the
FSM described by M action states, would have a total of
N = M + 1 nodes (we add the SELECTOR state). Then we
have the following transitions:

• N Running transitions, one per state;
• N − 1 = M Failure transitions, one per action state;
• N−1 = M transitions from the SELECTOR state to any

other action state to resume execution;
• M transitions from every action state to the next;
• 1 more transitions connecting the SELECTOR state to

the outcome.
• M − 1 more transitions for every fully connected state

Mfc, thus amounting for Tfc = Mfc(M − 1)

This makes a total of T + Tfc transitions where T = N +
3M + 1 = 4M + 2 and a total of S = T + N + 1 + Tfc =
5M + 4 + Tfc elements, where we also added the outcome
state. An alternative design representing a reactive FSM as a
fully connected graph, would have instead N − 1 transitions
for every state, making it a total of S = M(M − 1) elements.

Since a HFSM is built from a BT, we will have one condi-
tion and one fallback node for every action and approximately
half of it for sequence nodes. This means M actions, M
conditions, M fallback nodes and 0.5M sequence nodes. To
compute the Active Elements in a HFSM, we can use the same
analysis we described to build the graph, in Section IV-A,
where actions contribute for 10 elements, conditions for 7,
control nodes for 8. For the Graphical Elements we need
to add 2 elements to each node to take into account the IN
state plus a transition. Finally, for both cases we remove 3
transitions from the root return statuses. We thus obtain the
numbers reported in Table I.

Even if performing an user study is outside the scope of this
paper, we can still describe how an operator would behave if
they had to supervise an agent controlled both by an FSM
and a BT. Since for every state of an FSM, the possible next
robot actions are univocally determined by the transitions from
that state to the others, the operator has a clear understanding
of what is going to happen. This is due to the fact that the
execution in an FSM is causal (i.e., the execution of a state
depends on the past events). With a BT instead, because of
reactivity and the fact that at every iteration the execution
resumes from the root, any action can be preempted and the
execution flow can jump to any other part in the tree. To
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m Sequence

Move-To cube2! Pick cube2! Move-To delivery! Place cube2!

Fig. 12: A BT rooted with a Memory Sequence node, achieving
open loop control.

Fallback

Cube2 in delivery? Sequence

Fallback Pick cube2! Move-To delivery! Place cube2!

Cube2 in Hand? Move-To cube2!

Fig. 13: A BT that could be generated by Genetic Program-
ming, according to the results in [25].

adapt to this behavior of the decision structure, an operator
would certainly require more training. There are however
functionalities that allow highlighting the currently executing
behavior, together with its return status, to greatly support
human supervision. As an example, with the modified version
of py_trees provided by authors in [7]4, at runtime the
currently running behavior is highlighted in yellow, successful
ones in green, and failed ones in red. In this way, tracking the
robot execution is easier.

Finally, even if the preference of a tree structure over a
graph structure is subjective, the reader must remember that
in the examples provided here, the robot has to achieve a very
simple mobile manipulation task, so the graph representation
might lose clarity with increasing task complexity since the
number of intersections among the transitions will increase.
With reference to Section V for an example, we highlight
the fact that in a tree structure it is possible to collapse
subtrees into single nodes (as in Fig. 16a) to remove detail
complexity. This is not a feasible option in FSMs due to
the many transitions (as seen in Fig. 16b), unless states are
organised in hierarchies but with the limitations that HFSMs
introduce (as explained in Section II).

D. Comments on alternative designs

FSMs have been around for much longer than BTs, becom-
ing a standard in the design of control policies for robotics.
Their success is mainly due to their design simplicity, which
allows for intuitive understanding of the robot behavior. An
FSM like the one in Fig. 2 solves a mobile manipulation
task sequentially, without granting fault tolerance or reactivity
towards unforeseen events. Upon failure, the whole sequence
has to be executed again. This design realizes a feed-forward
control, as any feedback from the sensors is used as long as it
triggers a transition, any unforeseen disturbance will not result
in any transition, thus leading to a failure of the controller.

4The code repository found under https://github.com/ethz-asl/bt_fsm_
comparison.

If it is argued that simplicity and readability of the design
are the most important aspects of a control policy, then the
same feed-forward control can be achieved by a BT as well.
By introducing the Memory node (with symbol mSequence or
Sequence⋆, instead of a Sequence node) that remembers the
state of the last executed child (thus not executing again a
child that had previously succeeded), we would design a BT
like the one in Fig. 12. If feed-forward control is desired, there
is no benefit in using BTs over FSMs [8].

Throughout this paper we have used a backchained BT
design because of the associated convergence guarantees [32],
but other designs may guarantee a more compact BT. One
example is a BT generated by the Genetic Programming (GP)
method proposed in [25] and used later in [30], [31]. The
learning method takes as input a task goal and a set of robot
actions and conditions, then it evolves BTs to solve a mobile
manipulation task similar to the one proposed as example for
the analysis. If we were to use the same set of actions and
conditions of this paper in the GP method, we would obtain
a BT like the one in Fig. 13. We can observe that the GP
learns to protect the action node driving the robot to the cube
with a condition node (here, the condition checks that the
cube is grasped), to avoid the chattering problem that we have
previously discussed. This solution has the same properties
of reactivity and modularity as the backchained one (as it is
an inherent property of all BTs), but it is more compact and
simpler as compared to its direct reactive FSM counterpart of
Fig. 4 (9 nodes and 8 edges versus 6 nodes and 18 edges).

With that being said, it can be argued that a steeper learning
curve is associated with using BTs. Thus, if the aim is to
generate a control policy for a short task where the robot
operates in a controlled environment, FSMs are likely to be
easier to conceive and realize. If however the aim is to generate
a robust control policy that might be subsequently modified
or re-used, then BTs have a clear advantage. The design
complexity can be mitigated by automatic generation methods
that are already available in literature.

V. EXPERIMENTS AND RESULTS

In this Section, we conduct a comprehensive comparison
between BTs and FSMs in the context of controlling a
robot for a simulated mobile manipulation (MoMa) task by
evaluating the metrics of Table I in concrete examples, with
results summarized in Table III .

We target tasks that are typical and representative of the
MoMa domain. Our primary focus is on the Cleaning Up task,
a variant of the RoboCup@Home benchmark [37], wherein
the robot is tasked with collecting unknown objects scattered
throughout a known environment. The complexity of the task
requires the robot to navigate, recognize objects, manipulate
them, and place them in a predefined area.

We perform three sets of experiments, where the first and
the second are taken from [7]. In the first set of experiments
(Experiments V-B to V-D), we simplify the task to fetching
a single known object, enabling a clear evaluation of both
BTs and FSMs. The evaluation methodology involves pairs
of experiments, progressively increasing in complexity as new
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Fig. 14: Simulation environment with the mobile manipulator
implemented in the Gazebo simulator.

behaviors are incorporated into the policy. In this way, we
wish to simulate a scenario where an engineer has to develop
the policy representation for the task, starting from the MoMa
baseline represented by the BT of Fig. 1 and the FSM of
Fig. 4, and progressively modifying them. To augment the
task’s complexity, two specific scenarios are introduced:

1) Battery Recharge Scenario: The robot is required to
recharge its batteries if they deplete at any point during
task execution.

2) Docking Scenario: Upon completing the task, the robot
must dock at a specified location.

The results of these experiments are supported by the accom-
panying video published with [7]5.

In the second set of experiments (Experiment V-E) we focus
on scalability: the effort required to modify the structures
if they are already complex. Finally, in Experiment V-F we
expand experiments in [7] by transferring the simulated task
on a real scenario.

The simulation environment (shown in Fig. 14) features
a robot comprising a Franka Emika Panda arm mounted on
an omnidirectional Clearpath Ridgeback base. Equipped with
an Intel RealSense RGBD camera, the arm’s end-effector
is instrumental in executing the manipulation tasks. In the
simulation, the robot docks at the ‘inspection table’ and places
the object at the ‘delivery station’.

A. Skill Description

As the paper’s primary focus is on comparing the high-level
behavior of control policies, certain assumptions are made
to streamline the execution of low-level skills. In terms of
navigation, the robot is constrained to a specific set of target
poses, with each pose corresponding to a station or table within
the environment of Fig. 14. The navigation functionality is

5https://www.youtube.com/watch?v=Z0GAkClVx-I

realized through the utilization of the ROS Navigation Stack.
AprilTags are employed to locate items within the environ-
ment. The trajectory planning for manipulation is implemented
using ROS MoveIt!. To compute the grasping points, a shape-
based grasp synthesis method named the Volumetric Grasping
Network (VGN) [38] is employed.

Within the ROS framework, skills are instantiated as action
servers. A client interface enables the interaction between the
policy (BT or FSM) and the low level implementation of
the skills in terms of initialization, goal transmission, status
monitoring during execution, and goal cancellation.

We define the action skills and stauts checks as it follows:
a) Move-To!: this action allows the robot to navigate to

a target pose given explicitly or reconstructed from the object
marker.

b) Robot-At?: this condition checks that the robot
reached the desired pose with the desired [x, y, yaw] tolerance.

c) Pick!: this action moves the robot arm to a target
pre-grasp pose on top of the target object. Then, VGN is used
to compute the grasping pose that is sent to the robot arm.
Once the grasp is successful, the arm is tucked in a compact
configuration for navigation.

d) In Hand?: this condition checks if the robot is
holding an object.

e) Place!: this action moves the robot arm to a target
pose and drops the object. Then the robot moves the arm to a
configuration that allows it to monitor the scene and evaluate
the end pose of the object with the wrist camera.

f) Object-At?: this condition checks that the object is at
the desired pose with the desired [x, y, z] tolerance.

g) Recharge!: this action makes the robot navigate to
the recharge station and then it instantaneously fills up the
battery level.

h) Battery Lv?: this condition determines when the robot
shall recharge its batteries.

i) Dock!: this action makes the robot dock at the ‘in-
spection table’. The achievement of the action is monitored
by ‘Robot-At?’.

For the Scalability experiment, we also include the follow-
ing:

j) Search!: this action makes the robot follow 5 view-
points (one per table in Fig. 14), where the robot stops and
inspects the table with the camera to look for markers.

k) Found?: this condition determines which markers to
search for and by consequence to stop the search behavior
once they are all found.

B. Experiment 1: Baseline

In this experimental scenario, the robot is tasked with
retrieving a cube located on ‘fetch table 1’ as illustrated in
Fig. 14, and transporting it to the designated ‘delivery station’.
The robot initiates the task from the room’s center, and the
cube’s predetermined position is known in advance. This spe-
cific task is also attempted using the sequential FSM depicted
in Fig. 2. The BT and the fault-tolerant FSM employed for
solving the task are presented in Fig. 1 and Fig. 4, respectively.

The sequential FSM successfully accomplishes the task only
under the condition that all actions execute correctly and
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TABLE III: Performances of the policies designed for the experiments according to the metrics defined in Table I. In the
‘Development’ experiment, we gradually complexify the baseline structure simulating an engineer that progressively adds
features to the base design (numbers in parenthesis quantify the steps such additions require). We first add a recharging
behavior and then a docking one. In the ‘Scalability’ experiment, we add a recharging behavior to a more complex baseline
structure.

Metrics (BT/FSM)
Experiment Cyclomatic Complexity (CC) Graph Edit Distance (GED) Graphical Elements (+/-) Active Elements (+/-)

Development
Baseline 1 / 14 - / - 27 / 24 14 / 24

Recharge 1 / 20 8 / 8 35 (+8) / 32 (+8) 18 (+4) / 32 (+8)

Docking 1 / 24 6 / 8 41 (+6) / 38 (+6) 21 (+3) / 38 (+6)

Scalability Baseline 1 / 68 - / - 153 / 114 77 / 114

Recharge 1 / 92 6 / 26 159 (+6) / 140 (+26) 80 (+3) / 140 (+26)

within defined tolerances. Failures during execution necessitate
a task reset. In contrast, the BT and the fault-tolerant FSM
reattempt failed actions. Additionally, due to the recursive
ticking from the root in the BT, it continues to execute even
upon successful completion. This characteristic enables the
robot to respond to unexpected changes, such as a human
operator relocating the cube to another table after task comple-
tion, allowing the robot to adapt and retrieve the cube again,
provided it knows its updated location.

In terms of computational complexity when adding behav-
iors to the base task, the BT in Fig. 1 consists of a graph with
14 nodes and 13 edges, while the FSM in Fig. 4 has 6 nodes
and 18 edges, with a cyclomatic complexity of 14.

C. Experiment 2: Recharge Scenario

In this experiment, a recharging behavior is introduced to
the existing manipulation task, necessitating the engineer to
modify the policy as depicted in Fig. 7d and Fig. 8d. In the
case of the BT, the engineer needs to insert the recharge sub-
tree into a new Sequence root node, prioritizing the recharging
subtree over the subtree handling the manipulation task. This
involves eight elementary operations: creating the four nodes
(root node and nodes in the left subtree) in Fig. 7d, adding
two leaves to the Fallback node, and finally incorporating the
recharge subtree and the pre-existing BT for the MoMa task
into the new root.

It’s important to note that the assumption is made that the
recharge behavior instantaneously replenishes the batteries.
This assumption could be justified by scenarios where an op-
erator swiftly switches the robot’s batteries when it halts at the
recharge station. If the batteries are gradually recharged while
the robot remains in the recharge station, the recharge subtree
could be designed differently to preempt charging if a more
critical task arises. An example of the BT implementation of
this logic is proposed in [39]. The BT in Fig. 7d comprises
18 nodes and 17 edges, resulting in an ED of 8 with respect
to the baseline.

For the fault-tolerant FSM, eight operations are also re-
quired: creating the recharge state and the Running transition,
adding a transition from the recharge state to the SELEC-
TOR state, and from every state to the recharge state. Two
considerations emerge. Firstly, the number of new transitions

depends on the number of existing nodes, unlike the BT where
the operation count is independent of tree size. Secondly, the
internal logic of the states must be adjusted to implement the
case triggering a transition to the new state. This underscores
a distinct advantage of BTs, where the switching logic is
explicitly implemented in the representation. The FSM in
Fig. 8d encompasses 7 nodes and 25 edges, resulting in an
ED of 8 with respect to the baseline and has a cyclomatic
complexity of 20.

From a behavioral standpoint, the task execution remains
unchanged, and the robot successfully proceeds to recharge
the batteries if their level falls below 20%.

D. Experiment 3: Docking Scenario

In this instance, we introduce a docking behavior, as il-
lustrated in Fig. 15. Since the Sequence root node already
exists, editing the BT entails: (1) creating the Fallback node,
the condition, and the action, (2) adding the two leaves to the
control node, and (3) appending the subtree to the root. Once
again, the remainder of the tree remains unaffected by this
addition.

For the FSM, apart from creating the new state, the Running
transition, and the transitions to and from the SELECTOR
state, it is necessary to eliminate the transition from the ‘Place’
state to the Success outcome and create a transition from the
‘Dock’ state to the outcome.

In this experiment, similarly to the preceding cases, there
is no significant divergence in the executed robot behavior
between the two policies. The BT consists of 21 nodes and 20
edges, resulting in an ED = 6 compared to the previous case
of Experiment V-C. On the other hand, the FSM comprises 8
states and 30 transitions, yielding an ED = 6 and CC = 24.

E. Experiment 4: Scalability

In the previous experiments, we deliberately focused on
a scenario involving the retrieval of a single item. While
this simplified task allowed for a detailed examination of
implementation and programming efforts, it may not fully
capture the advantages of modularity that BTs offer over
FSMs. As we’ve noted, the insertion operations in FSMs are
dependent on the existing number of states and transitions
within the FSM.

This article has been accepted for publication in IEEE Transactions on Automation Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASE.2025.3610090

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CSIRO Information Technology Services. Downloaded on September 18,2025 at 01:45:42 UTC from IEEE Xplore.  Restrictions apply. 



16

Sequence

Fallback Fallback Fallback

Battery Charged? Recharge! Cube2 in delivery? Sequence

Fallback Fallback Place cube2!

Cube2 in Hand? Sequence

Fallback Pick cube2!

Robot-At cube2? Move-To cube2!

Robot-At delivery? Move-To delivery!

Robot-At inspection? Dock Robot!

SELECTOR

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Recharge

Battery Low

Recharged

RUNNING

Dock Robot

Docked

Docked

Fig. 15: BT and FSM for the Experiment 3 obtained by adding a docking behavior to the representation of Experiment 2.

Sequence

Fallback Fallback MoMa task 1! MoMa task 2! MoMa task 3! MoMa task 4! MoMa task 5! Fallback

Battery Charged? Recharge! Cubes found? Search cubes! Robot-At inspection? Dock!

(a) BT fetching five cubes, comprising the recharge and docking behaviors.

SUCCESS

INIT

Move-To cube1

Pick cube1

Move-To delivery

Place cube1

Recharge

Search Cubes

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SELECTOR

Move-To cube3

Pick cube3

Move-To delivery

Place cube3

Move-To cube4

Pick cube4

Move-To delivery

Place cube4

Move-To cube5

Pick cube5

Move-To delivery

Place cube5

Dock Robot

(b) FSM fetching five cubes, comprising the recharge and docking behaviors. Transitions are omitted to improve readability.

Fig. 16: Experiment 4: Scalability. In FSMs, adding connected states has complexity dependant on the number of states in
the representation, resulting in hard to read structures. In BTs, this complexity is constant.
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Expanding the task complexity to a scenario where the robot
is required to search for and fetch five cubes before docking,
we observe a BT with 77 nodes and 76 edges, and an FSM
with 24 nodes and 90 transitions, considering the presented set
of skills. At this point, incorporating a recharge behavior into
the existing policy representations becomes more cumbersome
for an FSM. This is because adding the transition to the
recharge state from all other states is necessary. Consequently,
the BT would have an ED = 6 (similar to Experiment V-D,
where the root is already present), while the FSM would have
an ED = 26. This is due to the final BT (shown in Fig. 16a)
featuring 80 nodes and 79 edges, and the final FSM (shown
in Fig. 16b) comprising 25 nodes and 115 transitions.

F. Experiment 5: Real Case Scenario

Recharge Station

Fetch Station

Delivery Station

Inspection Table

Fig. 17: A schematic representation of the execution of
Experiment 5 in the laboratory environment of the WARA
Robotics. The solid black lines and areas represent walls and
non accessible spaces and are therefore considered as obstacles
by the robot. The arrows represent the trajectory followed by
the robot during the task.

In this experiment we implement the same policies of Fig.15
from Experiment 3 on a real robotic system. The goal of this
experiment is to show the following:

1) since the policies are a plan at the task level, their
representation as a BT or an FSM are platform-agnostic.
Only the low level implementation of the skills are
platform-dependent.

2) as shown in the previous experiments, provided that
the implementation of the skills is the same, the robot
behaves similarly if controlled by a BT or an FSM.

Algorithm 2: Pseudo-code of the MoveTo behavior in
the BT.

1 def initialise(skill, goal, reference):
2 skill.move(goal, reference)

3 def update(skill, goal):
4 if not skill.navigation_done():
5 return RUNNING
6 elif skill.navigation_succeeded(goal):
7 return SUCCESS
8 else:
9 return FAILURE

Algorithm 3: Pseudo-code of the MoveTo state in the
FSM.

1 def execute(skill, goal, reference, recharge_state):
# if low batteries trigger transition

to recharge state

2 if not skill.battery_low():
3 return recharge_state

# send the goal only the first time

4 if not goal_sent:
5 skill.move(goal, reference)
6 if not skill.navigation_done():
7 return RUNNING

# if goal reached trigger transition

to next state

8 elif skill.navigation_succeeded(goal):
9 return SUCCESS

10 else:
11 return FAILURE

To this extent, we run the experiment in the WASP Research
Arena for Robotics (WARA Robotics6, Fig. 17) where we use
an ABB Mobile YuMi Research Platform (shown in Fig. 18).
The robot skills are implemented in the ROS2 framework. The
Nav2 library is used for navigation, ArUco marker detection
is used for the perception, and for manipulation proprietary
ROS2 drivers are used to send pose targets to the robot
controller that computes and executes a feasible trajectory and
handles the opening and closing of the grippers.

To better understand the details of the implementation, we
report the pseudo code of a behavior in the BT and a state
in the FSM responsible to move the robot base to an input
goal in Algorithms 2 and 3 respectively. Note that, according
to the py_trees API for BTs, the initialise function
is called only when the behavior is ticked the first time,
then the update function is called for following ticks. In
case of the FSM instead, the execute function is called
cyclically until the execution transitions to another state. It
can be appreciated how we designed a single API for all the
skills to then wrap them in a behavior or state class for BT and
FSM respectively. By looking at the proposed implementation,
a behavior in a BT does not require any information about
other behaviors. It is the BT structure through its control nodes

6https://wasp-sweden.org/industrial-cooperation/research-arenas/
wara-robotics/
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(a) The robot is picking the
cube at the fetch table.

(b) The robot is recharging the batteries at
the recharge station.

(c) The robot is placing the
cube at the delivery station.

(d) The robot is docking at the
inspection table.

Fig. 18: Experiment 5: Real Case Scenario. For this experiment the ABB Mobile YuMi Research Platform is used. The
Experiment is carried out in the environment of Fig.17.

that switches the execution to a child or another, for instance
to the recharge behavior in case the batteries are low. In the
case of the FSM instead, it is necessary to include a status
check inside the state execution to trigger a transition to the
recharge state. Moreover, this type of check has to be done
for every other state in the FSM thus making it harder to
maintain if its complexity increases. To add a state to the FSM,
it is required to provide a the transitions mapping between the
return statuses and other states in the FSM. In the case of
Algorithm 3, SUCCESS triggers a transition to the next state,
while FAILURE triggers a transition to the SELECTOR state.

As for Experiment 3, the robot has to fetch an item to then
deliver it and finally dock. In Fig. 17 we show all these steps.
The robot navigates to the ‘fetch station’ to pick up the target
object. Then, it attempts to navigate to the ‘delivery station’
to place it but during the execution the batteries run low.
The robot then interrupts current execution to prioritize the
recharging. Once the batteries are loaded again, it resumes the
task to first deliver the target object and finally dock at the
‘inspection table’. Note that the depleting of the batteries is
simulated and recharging them is instantaneous. This choice
does not impact the argumentation for this experiment. As in
the case of the other experiments, the behavior of the robot
does not change if it is controlled by a BT or an FSM. Some
excerpts of the task execution are reported in Fig.18, while the
full task is shown in the accompanying video, together with
the task switching mechanism of BTs and FSMs.

VI. CONCLUSION

In this paper we compared Behavior Trees (BTs) and Finite
State Machines (FSMs) in terms of the properties of modu-
larity, reactivity, and readability with a set of examples drawn
from robotic applications. We chose common metrics to quan-
tify the differences between the two policy representations,
derived upper bounds for the comparison, and highlighted the
advantages of using BTs as an alternative to FSMs.

The primary aim of this paper is to compare FSMs and
BTs. However, the comparison methodology could also be
applied to other graph-based policy representations, such as
sequential task plans, Petri Nets, or decision trees [15], [40].

It is important to note that certain metrics, like Graph Edit
Distance (GED), are not applicable to non-graph-based rep-
resentations, while the metrics related to the computational
complexity of edit operations can be generalized to other types
of representations.

Modularity is achieved when all single components of a
software share the same common structure (e.g., the same type
and number of inputs and outputs). Modularity is an important
feature because it allows to reuse pieces of software with
minor modifications. In a BT, a modular policy representation,
single nodes as well as subtrees receive a tick signal as input
and return a status signal. FSMs are not modular because
every state switching is realized with transitions that are state-
specific. Therefore, in a BT, any subtree can be independently
modified, tested and formally verified with verification archi-
tectures like Linear Temporal Logic (LTL). On the other end,
editing a state in a FSM requires to take care of all the related
transitions.

Reactivity is the ability to take the right action as a
consequence of unexpected events or failed actions that might
arise at run time. Reactivity allows a robot to be fault-tolerant.
FSMs are not fault-tolerant by design, but can achieve fault-
tolerant behaviors if for instance all the states are connected
to each other. We proposed an alternative design for a fault-
tolerant FSM and derived the effort required to modify the
standard FSM to the alternative design as a function of the
states. Then, we used this design to compare to BTs. With the
proposed design FSMs behave like BTs, but BTs are inherently
reactive.

In a policy representation, readability is an important feature
both at run time and offline. It allows human operators to
understand what the robot is doing while solving a task or to
analyse the policy to identify fallacies. FSM are more intuitive
because of their sequential execution flow. However, as the
task complexity increases and the structure grows in size,
the high number of transitions jeopardize the tracking of the
execution flow. BTs on the other hand, have a higher learning
curve because it is necessary to understand the functioning of
the control nodes to follow the behavior switching. However,
the tree structure allows users to recognise the task hierarchy.
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For the experimental part, we conducted the comparison
using a set of variations of the Cleaning Up task as defined
in the RoboCup@Home benchmark, performed by a mobile
manipulator. To make the comparison fair, the low level
implementation of the skills is shared by both policies. The
experiments show that with our proposed design of the FSM,
the robot behaves similarly to when controlled by a BT.
Since the behavior is similar, the differences between the two
representations are purely in the design choice. We showed
that the programming effort for such tasks is lower if BTs are
preferred to FSMs, especially for large tasks that feature many
behaviors and different levels of priority.

As a last remark, from a practical perspective, the choice
between FSMs and BTs often depends on the skill level of
the person implementing the task-level policy. For individuals
with less experience or expertise, FSMs are generally more
intuitive and easier to understand and implement compared to
BTs, which require a deeper understanding of their structure
and execution model. This makes FSMs particularly appealing
for novices who need to develop or deploy simple policies
quickly.

However, when policies need to be maintained or expanded
over time, BTs become the preferable choice. As highlighted
in [4], one effective approach is to combine the strengths of
both models by using an overarching FSM as a higher-level
interface for the user, where each state is implemented as a
BT. This hybrid approach leverages the simplicity of FSMs
for user interaction while benefiting from the flexibility and
scalability of BTs at the implementation level.
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