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Abstract— The need for industrially relevant tools to safely
handle delicate and deformable goods has driven a recent explo-
sion in soft robotic gripper designs. However, there is currently
no meaningful way to compare different designs. No commonly
available, standardised evaluation protocol exists to assess the
performance of soft grippers. This work introduces the Soft
Grasping Benchmarking and Evaluation (SoGraB) method to
evaluate grasp quality. It quantifies object deformation, and
hence grasp quality, by measuring the Density-Aware Chamfer
Distance (DCD) between point clouds of soft objects recorded
before and after grasping. Through extensive experimentation,
we demonstrate the method’s ability to evaluate the quality
of soft grasps, rank different gripper designs, select soft
grippers for complex grasping tasks, and benchmark them
for comparison against future designs. We believe SoGraB can
be a standard for grasp evaluation and invite future users to
contribute by benchmarking their own soft designs against our
baselines or adding objects to the dataset.

I. INTRODUCTION

Over the past decade, soft gripping has emerged as the

standard technique for handling fragile and geometrically

diverse objects [1], [2]; as well as objects which are poorly

localised or grasped dynamically [3], [4]. For soft objects

particularly, the intelligence embodied in soft gripper designs

can produce inherently safe and reliable grasping. During

grasping, their soft materials and passive compliance con-

form to the shape of the target object, increasing contact

area and reducing grasp force, the force exerted on the object

by the gripper [5]. As result, they are widely used in fields

including agricultural robotics [6], food handling [7] and

industrial pick and place [8].

Despite the proliferation of universal [9], [10] and bespoke

[11]–[14] soft grippers, there is still no agreement about

what quantifies a good gripper, or how to objectively assess

them. The field has not yet developed standardised metrics

or evaluation methods [15] including for assessing gripper

design or grasp quality. To enhance the performance and

intelligence of soft designs, a standardized framework is

needed which ranks grippers by evaluating their grasp quality

on soft objects, and can be used to drive improvements

in new designs. This is essential not only to demonstrate

progress against soft robotic equivalents, but broadly across

all robot designs [16].

Existing evaluation methods prioritise either grasp success

rate, how often the object is successfully grasped and held

[17]; or retention force, the force required to pull the object
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Fig. 1. The SoGraB method: (Left) A soft, Shore 40A object grasped by
a soft Fin-Ray gripper. (Right) The extracted point clouds showing initial
state (black) and deformed state during grasping (red). By comparing the two
states as well as the grasp success, we produce a grasp quality benchmark.

free of the gripper [18]. Both measures characterise the grasp

quality by the gripper’s ability to grasp and hold objects.

However, they do not consider the magnitude of forces

applied to the object; its internal stresses or deformation;

or the potential for damage. These features are critical re-

quirements when handling objects which are both deformable

and easily damaged. To meaningfully evaluate grasping with

deformable objects, a broader grasp benchmarking method

is needed which captures both grasp success and grasp

safety. For practicality, it should be able to be experimentally

evaluated with commonly available equipment.

In engineering, a safe design is one which, during use,

experiences stresses less than a safe proportion of its stress

at failure (i.e within the factor of safety) [19]. As this can

only be evaluated in simulation, grasp force is commonly

used as a proxy in soft gripping. Whilst often convenient

to measure, this approach requires either force sensors on

the gripper [7], or sensorised objects [20], [21], preventing

benchmarking of arbitrary gripper-object pairs.

To address the urgent need to evaluate and compare

different soft gripper designs, this work proposes a novel

evaluation protocol, the Soft Grasping Benchmarking and

Evaluation (SoGraB) method. SoGraB quantifies the grasp-

ing performance of soft grippers based on both success rate

and object deformation. Deformation is used as a non-contact

stress proxy for soft objects and measured using 3D imaging

by comparing point clouds (Figure 1). SoGraB is a valuable

tool for characterizing grasp quality on any soft or breakable

objects in which deformation undesirable (e.g fruit, but not

fabric).

The main contributions of this paper are:

1) A generalised visual methodology for soft grasp bench-



marking, applicable to any object and most soft grip-

pers

2) An experimental investigation of grasp quality for 4

Fin-ray soft fingers printed with varying geometry and

stiffness

3) A baseline grasp dataset featuring objects of varying

grasp difficulty and diverse geometries and material

properties. The dataset comprises 900 grasps and their

associated point clouds

II. RELATED WORK

A. Grasp Evaluation

The growing uptake of robotic grasping and manipulation

has generated a drive for uniform standards to assess robotic

hands and end-effectors, including by the US National Insti-

tute of Standards and Technology and IEEE [22], [23], who

proposed a set of 11 quality metrics and associated testing

procedures. Produced from the perspective of rigid grasping,

they focus on the mechanical characteristics of the gripper

rather than its effect on an object. Both the mechanical design

and grasp policy are typically critical to determining grasp

quality. However, soft robotics blurs the distinction between

the two. Soft design emphasises morphological computation,

where the control policy is embodied in the gripper’s me-

chanical design, as a substitute for learned controllers.

The basic capabilities of robotic pick and place systems are

typically given by three criteria: grasp rate (picks per hour),

grasp success rate (percentage of attempted picks completed)

and range (a qualitative measure of the variety of objects

which can be grasped) [24]. While rate primarily measures

the capabilities of the robot arm and grasp policy, reliability

and range apply both gripper design and grasp policy and

can be adapted to assess gripper designs at the object level.

Further to these, grasp quality is of substantial interest, espe-

cially when grasping heterogeneous objects in unstructured

environments. Grasp quality, however, is a nebulous concept

and has a multitude of meanings including: disturbance

rejection, grasp isotropy, area of grasped polygon, convex

hull volume, hand configurations, and many more [25],

[26]. Even when quantitative benchmarks exist, they rely on

assumptions such as the object being stationary relative to

gripper during grasping [27].

Performance-based metrics are commonly used in real-

world evaluations to provide tractable benchmarks which

generalise across different hardware configurations (grippers

and experimental platforms). At its simplest, it is just the

grasp success rate, but quality measures such as gripper angle

sensitivity [28], stability (implied by holding time before

an object falls) [29], disturbance rejection (acceleration to

dislodge an object) [26], are also used. Whilst these give

a more holistic view of grasp quality than just success

rate, performance-based methods rely on having standardised

objects in place of standardised testing platforms to make ob-

jective comparisons. As none consider the effect of grasping

on the object itself or have soft object databases, no current

methods are suited to evaluating soft grippers.

III. SOGRAB METHODOLOGY

A. Grasp Quality Assessment

SoGraB evaluates soft grasping quality based on three fea-

tures: grasp success, holding time, and object deformation.

Together these features create a novel object-centric, scalar

benchmark for soft grasping quality.

Object deformation is quantified by capturing 3D point

clouds of the object before and during grasping, the pre-

grasp and grasped point cloud, respectively. It then compares

the two using Density-Aware Chamfer Distance (DCD) [30],

a global measure of point cloud similarity. Unlike other

common global metrics like Chamfer Distance and Earth

Mover’s Distance, DCD is insensitive to variations in density

distribution and outlying points. These features ensure con-

sistent and reliable evaluations when occlusions are present,

making DCD suitable for comparing incomplete point clouds

for deformation analysis. DCD is also preferable to local

quality measures like maximum deformation, which consider

only a small number of points, as these are highly sensitive

to point-cloud quality and alignment and can give unreliable

results.

The complete scoring metric is given in Equation (1), it has

three scoring ranges for unsuccessful, partially successful,

and successful grasps. An unsuccessful grasp is defined as

an attempt that either failed to grasp the object, or dropped

the object before the grasped point cloud could be captured.

A successful grasp is an attempt that held the object for a

complete pick and place cycle (tcycle). Between these two are

partially successful grasps, where the object is successfully

picked up, but is dropped before being placed down again.

In this case we use the amount of time in which the object is

held before dropping (tdropped) as a measure of grasp quality,

as a very loose grasp will slip quickly, whilst a longer holding

duration indicates a more stable grasp.

score =











0 Unsuccessful grasp
(1−dDCD)tdropped

2tcycle
Partially successful grasp

1− dDCD

2 Successful grasp

(1)

The DCD algorithm is given by:
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1

2
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1
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where, ŷ = miny∈S2
||x−y||2 and x̂ = minx∈S1

||y−x||2. It

takes the average bounded Euclidean distance between each

point in one point cloud (S1) and its nearest neighbour in the

other point cloud (S2). It bounds the distances in the range

[0, 1] by using the first order approximation of the Taylor

Expansion (ez ≈ 1−||x−y||2). A scalar, α, is used to adjust

the sensitivity of the algorithm. To ensure the algorithm is

insensitive to variations in density distribution, the number of

times a point is referenced as a nearest neighbour is tracked



(a) (b)

Fig. 2. Demonstration of ICP point cloud alignment (Shore 40A EGAD
B1 object). (a) Initial position of point clouds, transformed into the same
coordinates in the end-effector frame. (b) After ICP alignment.

(nŷ and nx̂), with subsequent references having a decreasing

effect on the final distance. The distances are calculated

with each cloud having a turn as the “reference” cloud,

with the average distance being returned, dDCD ∈ [0, 1].
This distance was halved to differentiate between partially

successful grasps, and successful grasps. Partially successful

grasps were further scored on the proportion of drop time

compared to complete cycle time. As a result, unsuccessful

grasps are given a score of 0, partially successful grasps are

scored in the range [0, 0.5] and successful grasps are scored

in the range [0.5, 1].

B. Point Cloud Alignment

To accurately quantify deformation and correct for any

in-hand slippage or rotation (as in Figure 1), the two point

clouds needed to be aligned in post-processing. As the two

point clouds have different sets of features (i.e. different parts

of the object are visible before and after grasping) and the

object changes shape during grasping, the transformation

cannot be exactly calculated. We use the iterative closest

point (ICP) algorithm to minimise the distance between the

two point clouds. Given an approximate initial alignment

taken from the robot’s kinematics, this reliably approximates

the true transformation for moderate deformations (Figure 2).

For symmetrical objects undergoing large deformations,

the centre of mass and principal axes of the two point clouds

were aligned. Given dense point clouds and symmetric

objects, this provided a reliable transformation and was used

in place of ICP.

IV. EXPERIMENTAL GRASP EVALUATION

IMPLEMENTATION

A custom experimental platform was established for the

initial gripper evaluation and dataset generation (Figure 3).

The setup contained a 7-DOF Franka Emika Panda manipu-

lator and 2 Zivid One Plus Small depth cameras arranged at

opposite sides of the object. The Zivid cameras use structured

light to reconstruct the 3D image. To evaluate the grasp

quality, the grasped objects need to be segmented out of the

3D scene and isolated from the grippers and background.

We configure the scene to have high contrast to simplify

segmentation: the test objects were printed in white and

placed on a black background, with the test grippers also

printed in black. These selections were largely dictated by

the available resources at our facility, and can in principle

be replaced by any similar robot arm, 3D camera and 3D

printer.

Fig. 3. (a) Fin-Ray soft fingers with 4, 6 and 8 ribs. (b) Experimental
grasp evaluation platform. Note: Grippers are rotated 90

◦ in yaw prior to
grasping

The test grippers were configured as an antipodal 2-

finger grasp, with the arm rotated 90◦ about the vertical

prior to grasping (as in Figure 1) such that the fingers

are vertical and the object is not occluded by the fingers.

During testing, the gripper slowly closed around the object

(0.1m s−1) until it applied 0.5N of force on the test object,

with the force measured and controlled internally by the

Franka Manipulator.

The complete procedure for evaluating a sample is:

1) Place an evaluation object in initial position and cap-

ture a point cloud of the ungrasped object.

2) Position the gripper around the object and proceed to

grasp the object (fingers vertical, with gripper plane

perpendicular to cameras).

3) Raise object and capture grasped point clouds.

4) Raise object to manipulator’s home pose (Figure 3

pose).

5) Return object to the origin and release.

A. Experimentally Evaluated Grippers

Fin-Ray soft fingers were selected for the initial evaluation

as they are a widely used industry standard design, geometri-

cally reconfigurable to produce different grasping stiffnesses,

and simple to evaluate on standard robot arms.

To investigate the effect of finger stiffness relative to the

object, three Fin-Ray soft finger designs were evaluated,

with 4, 6 and 8 internal ribs, respectively (Figure 3(a)). All

fingers were 90mm long, 35mm wide (at the base), 20mm
thick, and have 2mm wide features. All were 3D printed in

NinjaTek Shore 90A Eel TPU, a hardness roughly equivalent

to a skateboard wheel. A fourth Fin-Ray finger was printed

out of rigid PLA and served as a rigid comparison.

B. Evaluation Object Selection

To form an initial dataset, a total of 15 objects were

evaluated, comprising 12 from the EGAD evaluation dataset

[31], and 3 custom generated soft objects (Figure 4).

The 12 EGAD objects represent a wide diversity of

geometries, including different sizes; feature types and

thicknesses. The EGAD objects were all scaled to have

a maximum width of 55mm. The three custom objects



Fig. 4. Evaluation objects used in this study: B1-F5 are selected objects
from the EGAD dataset. O1-O3 are custom evaluation objects designed to
be symmetric and highly deformable.

were generated as random splines, which were mirrored to

make a symmetric object and then extruded, giving a set of

amorphous soft shapes with distinct features.

The objects were printed in three hardness levels: Shore

40A (softest), 60A and 85A (hardest), giving a range from

much softer than the gripper’s TPU material up to approxi-

mately the same hardness as the gripper.

V. EXPERIMENTAL RESULTS

In this section we seek to answer the key questions:

When is soft gripping important? What is a good gripper

for soft objects? How well do soft grippers generalise across

objects? To address these questions a total of 900 grasps

were evaluated, comprising 15 object geometries, 3 object

materials, 4 grippers, and 5 repeats of each.

The mean grasp score and standard deviation of each

(geometry, material, gripper) pairing is presented in Figure 5,

indicating the grasp quality and repeatability, respectively.

Every test in the 900 grasps was successful, with the objects

able to be stably grasped and lifted, hence grasp scores are

all between 0.5 and 1. The lowest score recorded was 0.517

(Object O3 Shore 40A with Rigid Grippers) and the highest

was 0.940 (Object D1 Shore 85A with Rigid Grippers).

The deformation experienced by these objects and an in-

termediate one are shown in Figure 6. The evaluation objects,

broadly, fall into three categories: (i) Those where the object

is relatively stiff and little difference was observed between

soft and rigid grippers, e.g. D1. (ii) Those which are very

soft (even relative to the 4-rib Fin-Ray) and hence experience

large deformations across all fingers (O2, O3). (iii) Those

where the effective stiffness of the object was comparable to

the grippers tested and exhibited clearly separable scores for

each gripper within an object (e.g. B1 Shore 40A) or showing

a clear trend across objects for the grippers collectively (e.g.

B3). We discuss these in further detail below and provide

quantitative results in Figure 7.

Fig. 5. Heatmaps of the complete grasp evaluation dataset, showing the
mean and standard deviations of each set of grasps.

A. Relatively Stiff Objects

The effective stiffness of any structure is a function of

its geometry, materials and the loading conditions (where

and how forces are applied). Soft gripping is most valuable

where the gripper’s effective stiffness is similar (to an order

of magnitude) to the object. The gripper being slightly softer

than the object is beneficial as the gripper will absorb most

of the strain energy produced during the grasp, preventing

damage to the object, but if it is too soft it will be unable

to support the object’s weight. In contrast, if the gripper is

much stiffer than the object, it performs as if it is rigid and

the benefit of soft gripping is lost. The latter effect is seen

in the objects D1 and B5, which both have a solid core

of material, making them relatively stiff at all three shore

hardnesses. The result is uniformly high grasping scores,

without a meaningful performance difference between the

soft and rigid grippers.

B. Relatively Soft

The three custom objects (O1-3) were computationally

generated for both softness and symmetry. As such we expect

low mean grasp scores and with little variation between

them. Experimentally these relatively soft objects experience

such large deformations during grasping that the choice of

gripper is immaterial, especially O2 and O3. Interestingly,



the ‘corrugated’ surface of O1 increased its effective stiffness

and prevented the entire structure from flattening when

grasped (as with O2 and O3). As a result, a larger range

of scores occur across fingers and objects, and the stiffness

of the rigid gripper is unambiguously worse than the 3 Fin-

Rays.

C. Just Right

Between these two extremes of objects which are too

soft or too firm for soft grasping to be valuable, there is

a set of objects which are ideally suited to distinguishing

the performance of the evaluated grippers. This can be

evaluated both within objects and across objects. Within

objects, we expect higher grasp scores from softer grippers;

across objects we expect all grippers to score better on harder

objects than softer ones. Whilst no object perfectly displayed

both characteristics, several showed one or the other. For

example, going by mean grasp scores, B1 Shore 40A, C2

Shore 40A, and O3 Shore 40A, all rank the grippers from

softest to hardest. However, for the same objects printed at

Shore 85A hardness, the scoring curves converge such that

they are unable to meaningfully separate the grippers. This

suggests soft grasping is beneficial in the softer objects, but at

the harder ones it is of low benefit within the stiffness range

of the grippers evaluated. More compliant (lower stiffness)

grippers are required for these objects, these could be Fin-

Rays with fewer ribs or softer material, or a different design

altogether.

For objects B1, D3, O1 and O3, the four sets of fingers

collectively exhibit better performance on the higher Shore

value (harder) prints compared to the lower ones, indicating

the object’s stiffness materially contributes to grasp score.

Whilst the softer grippers typically outperformed the harder

ones in these objects, it was not universal. In some objects,

small changes in the object position relative to the gripper

caused substantially different grasp behaviour, which can

manifest as a large standard deviation in grasp scores for

a particular object-gripper pair or an unexpected gripper

ranking, both of which are present in D3. This is more

generally the case in objects with thin features (e.g. C2, D5,

F5), which gave highly varied grasp qualities and had large

standard deviations as a result. Such objects would benefit

from a larger experimental sample set.

VI. DISCUSSION AND CONCLUSION

This work proposes SoGraB as a new benchmarking

protocol for soft grasp evaluation, which captures object

deformation as a proxy for stress. As it does not rely on

any specific gripper or object instrumentation, it readily

generalises to any gripper-object pairing (excluding those

where the object is completely occluded). Using SoGraB we

produce a baseline dataset comprising 900 grasps across 45

objects and 4 grippers. Through it we show there is a defined

range of stiffnesses in which soft grippers thrive, outside of

this range there is no quantifiable difference between soft

and rigid grippers. As this range is specific to each object

and gripper, we demonstrate that SoGraB is an effective

Fig. 6. Point clouds of selected objects (all Shore 40A), comparing the
4-rib and Rigid Fin-Ray grasps on a relatively stiff (D1), intermediate (B1)
and relatively soft (O3) object. The pre-grasp point cloud is black and the
point cloud during grasping is red, with mean grasp scores for each object
indicated.

method to evaluate soft grasping performance, and rank and

benchmark soft gripper designs. The protocol is designed to

be implemented in any robotics lab with commonly available

hardware (robot arm, 3D printer and 3D camara). Whilst

we demonstrate the value of the method in this work out

dataset is small and contains limitations. Notably, owing to

their low mass, all objects were successfully grasped; only

one class of soft grippers were evaluated; and we used a

fixed grasp strategy and did not investigate the effect of grasp

policy. Future users can contribute to the dataset by running

the SoGraB protocol by: expanded the range of objects

to evaluate new shapes, weight and hardness; benchmark

new soft grippers against the existing object dataset; or

investigating different grasp forces and control policies. In

selecting objects, we recommend symmetric objects without

thin external features, as these give repeatable data. For

grippers, any design can be evaluated so long as the object

remains at least partially visible. Through the ongoing use

of SoGraB we aim to improve the quality of soft gripper

designs, and identify the most valuable use cases for soft

gripping. We believe SoGraB is a valuable benchmark to

compare against existing and future designs, and hope it will

help improve the quality of future soft gripper designs.
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