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Abstract— Task and motion planning (TAMP) is a promising
approach for efficient long-horizon manipulation planning,
which is a prerequisite for being able to deploy manipulation
systems in human-centered environments at scale. TAMP sys-
tems often rely on so-called predicates to abstractly describe
the world. Today, predicates and their groundings are often
hand-engineered. Furthermore, robot action parameterizations
required to fulfill desired predicates are typically discovered
by sampling naively or using oracles (again hand-engineered).
We aim to automate predicate discovery and grounding with
a system that learns to classify the state of predicates in a
set of scenes while concurrently learning to generate scene
configurations that fulfill the desired predicates. Our results
show that high classification accuracies and generation success
rates can be achieved with architectures based on multi-layer
perceptrons (MLPs) and graph neural networks (GNNs) that
are trained on bounding box as well as point cloud-based
features in a Generative Adversarial Network (GAN)-inspired
fashion, decisively outperforming both decision tree and uni-
form sampler baselines. The integration of our framework into
a TAMP system demonstrates its positive impact on solving
mobile manipulation tasks. A reference implementation of
our method and data are available at https://github.com/ethz-
asl/predicate learning.

I. INTRODUCTION

A major motivation for developing mobile manipulation
systems is to automate dangerous, tedious, dull, expensive,
or inconvenient tasks that to date have to be carried out by
humans in factories, businesses, homes, construction sites,
or hospitals. However, most manipulation systems have been
confined to structured environments, where pre-programming
behaviors is viable. This in turn limited their use to tasks
involving many repetitions and with a high load factor,
mainly for economic reasons. Only due to advances in
recent years in perception, compliant control, as well as
improved cost efficiency have we opened a perspective on
using mobile manipulation systems (MMS) in less structured
environments.

With MMS moving into unstructured environments, the
expectations shift from the execution of few tasks, many
times each (e.g. robot in a factory line), to the execution of
many tasks, few times each (e.g. agile manufacturing lines in
the small to medium industry or assistive robots in human-
centered environments). This renders pre-programming a
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Fig. 1. Application of the proposed system: a) A MMS places an object
to fulfill the “inside” predicate. b) Schematic overview of the envisioned
framework: the proposed predicate learning method draws from demonstra-
tions (optionally from a user, or directly from the agent’s interactions) to
learn generators and classifiers, which can be used by downstream planning
algorithms for observing the state and parameterizing actions such that user-
defined goal predicates are fulfilled. The components this work focuses on
are shown in purple.

robot for all tasks and situations it might encounter infeasi-
ble. Instead, we envision specifying goals on an abstract level
and having the robot autonomously determine and execute
the steps required to reach these goals [1].

Conventional motion planning for achieving such multi-
step long horizon goals in high-dimensional domains quickly
becomes computationally intractable, especially for systems
with many degrees of freedom operating in domains with
many objects and disturbances. This can be addressed by
resorting to higher level planning systems as developed by
the symbolic planning [2] and task and motion planning
(TAMP) [3], [4] communities. The added layer of abstraction
by higher-level planners further introduces the benefit of an
improved human-robot interface. Instead of specifying low-
level goals for motion planners directly, desired goals are
specified using binary abstract state variables – typically
referred to as predicates – and the planner plans towards
achieving them. The role of predicates is twofold. First, they
constitute the state abstractions used to specify a goal (e.g.
“plate in dish washer”). Second, predicates are used to model
preconditions and effects for robot skills, thus constituting
the state variables used by planners to produce correct and
successful plans.



Eventually, task plans are to be executed in the real world.
For this, predicates need to be linked to the potentially high-
dimensional states they represent. We refer to this link as
grounding and for our purposes, a predicate grounding needs
two components:

• Classification: to decide whether a predicate holds given
the state of the agent and its environment;

• Generation: to set the action parameters (e.g. grasp
configurations, placement poses, navigation target co-
ordinates, etc.) that result in a predicate being satisfied.

Today’s planning systems mostly rely on hand-engineered
model-based predicate groundings, especially for the gener-
ation component [5], which severely limits their flexibility
and ease-of-use. With the goal of using MMS in open-
world settings, meaning that the set of scenarios a robot
might encounter is not closed and known at design time,
new predicates will need to be added as new situations
and tasks arise. In this context, manually designing pred-
icate groundings is tedious and requires an expert, thus
preventing quickly scaling to new scenarios. Furthermore,
manually designed groundings tend to use simple geometric
features of objects of interest (positions, bounding boxes,
etc.), as using raw geometric representations like point clouds
is challenging. This makes manually modelling predicates
whose interpretation relies on intricate geometric details of
the target objects very difficult.

In this work, we attempt to address this limitation by
learning the two components of predicate groundings (classi-
fication and generation) from data, as visualized in Fig. 1. We
envision the required training data either to be provided by
user demonstrations (e.g. through a graphical user interface
(GUI) as demonstrated in the accompanying video) or to be
collected in a self-supervised manner by the robotic agent.
This will allow flexibly adapting MMS to new scenarios,
greatly enhancing the range of tasks they can be applied to
and thus making progress towards the vision of automation
in unstructured environments. The contribution of this work
is threefold:

1) A framework for learning predicate groundings, consist-
ing of a classifier and a generator component to generate
target configurations that fulfill a given predicate,

2) A GNN-based architecture that takes surrounding ob-
jects into account for classification and generation,

3) Integration of the proposed system into a complete
TAMP pipeline and evaluation in simulation, showcas-
ing how the method can be used in a mobile manipula-
tion application.

II. RELATED WORK

With the motivation to facilitate and speed up task-level
planning, several past works proposed methods for learning
state abstractions. A prominent line of work focuses on
learning to classify a pre-defined set of spatial predicates
based on labeled data, for example focusing on relations
between two objects at a time [6]. Leveraging a different
source of supervision [7], symbols can be learned in a robot’s
observation space and grounded to language instructions for

a downstream instruction-following planner. The method of
James et al. [8] results in similar state abstractions. However,
they are extracted in a self-supervised fashion while the
robot is exploring the environment and its action space.
For new environments, a fine-tuning phase is necessary
to make the abstractions applicable. Instead of leveraging
perception information as input, the abstractions can be based
on continuous feature variables (e.g. object positions), which
are partitioned using landmarks (change in a variable leading
to a qualitative difference in a scene) [9], [10].

None of the works cited above leverage a predicate
grounding to parameterize actions (i.e. the generative compo-
nent of a grounding we refer to in Sec. I). To our knowledge,
only few such approaches exist; this is despite advances
in GANs [11] and Variational Auto-Encoders (VAEs) [12]
showing impressive results in other fields. A method pro-
posed by Kim et al. [13] aims to learn a GAN-based gener-
ator for sampling action parameterizations in the context of
TAMP. For training, uniformly sampled parameters are used
in conjunction with task success as supervision signal. The
method ignores other objects in the scene as well as scene
and object geometry. In addition, since it is retrained for
each task, the resulting samplers do not generalize to other
tasks or environments. CLIPORT [14] predicts placement
poses being trained on few demonstrations (50 to 100).
However, it is limited to table top scenes and requires days
for training, preventing ad-hoc learning of new predicates in
interaction with users. Kase et al. [15] combine models to
predict predicate states and robot arm joint positions with a
symbolic planner. The focus on planning yields impressive
reactive execution capabilities. However, training the models
requires a hand-engineered expert policy with full access to
robot and environment state. Scene grammars [16] provide a
compelling way to describe, parse and sample from distribu-
tions over scenes. However, the types of objects involved in
a scene need to be fixed a priori, and object geometry cannot
be taken into account. Closely related to our work, Chitnis
et al. [17] learn neural samplers to parameterize symbolic
actions within a TAMP framework, however, assuming that
predicates are given and ignoring object geometry.

While recent approaches building on large language mod-
els for planning have shown impressive results [18], we
believe that approaches building on symbolic planning are
modular, light-weight, interpretable and easy to extend/adapt
and will thus play an important role in the future of MMSs.

Encouraged by the successes of these related approaches,
our work aims to improve on the current state of the
art for predicate grounding by learning a classifier and a
generator simultaneously, as data-efficiently as possible to
allow for user demonstrations, with an architecture that takes
surrounding objects as well as object geometry into account
to cover a wider range of predicates.

III. LEARNING PREDICATE GROUNDINGS

We propose a learning framework consisting of three
models that jointly address the classification and generation



components of predicate grounding (see Fig. 1). The clas-
sifier takes features of scene objects as input and judges
whether the predicate it is trained for holds or not. The
generator takes the same input with the goal to produce
modified features for the target objects that would make the
predicate true. To train the generator, we take inspiration
from GANs [11]. A discriminator is trained together with
the generator to distinguish between generated scenes and
scenes from the dataset. Its sole role is to provide a training
signal to the generator, and it is not used after training.

A. Targeted Predicates

The primary focus of this work are predicates that describe
arbitrary spatial arrangements of objects. For this, predicates
accept a fixed number of arguments, where argument objects
are the main subjects of the state described by the predicate.
However, the predicate is determined not only by the ar-
gument objects but may also be influenced by any object
present in the scene. For example, placing an object inside
a cluttered region presumes a placement pose that is not in
collision with any other object in this area. This motivates
our decision to take non-argument objects into account for
classification and parameter generation.

Our framework can be applied to learning generic predi-
cates that are only reliant on observable spatial data. How-
ever, in this work, we focus our experiments on the on and
inside predicates as they offer a natural curriculum of simple
to complex scenarios. The simplest on scenario involves
only the supported and supporting objects and applies few
constraints on the arrangement between the two objects since
only the relative positions are critical. The inside predicate
increases complexity by introducing orientation constraints
since a tall object could be inside a drawer if laid flat,
but not if it is stood upright and exceeds the sides of
the drawer. Varying the degree of scene clutter for either
predicate further constrains the valid set of parameterisations.
The same process can be applied to learn more complex
predicates such as stack or pack, which place even greater
constraints on object pose (e.g. to maintain a stable stack)
and may involve more argument objects.

B. Object-centric Scene Features

Since this work focuses on spatial relations between
objects, we opt for an object-centric approach of one feature
vector per object. Two alternative feature-vector represen-
tations were investigated: bounding box (BB)-based ones,
and point cloud (PC)-based ones. Our method is not limited
to these features and could be extended to other object-
centric features. However, we believe that many predicates
can be modeled using the features we describe below. As in
related work (e.g. [13], [17], [9]), both formulations rely on
a perception pipeline for scene segmentation.

1) BB features: Our BB-based features are composed of:
Centroid position of an object-aligned bounding box.
Orientation expressed with respect to the global frame,

encoded as a quaternion.
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Fig. 2. MLP-based and hybrid GNN-based models used to learn predicate
groundings. The classifier and discriminator share the same model architec-
ture but are trained separately. “RNG” stands for random number generator.

Axis-aligned bounding box (AABB) expressed in the
global frame, encoded as two opposite corner points.

Object-aligned bounding box being the smallest possible
bounding box, aligned with an object’s principal axes,
expressed in the respective object’s local frame and also
encoded as two opposite corner points.

While the AABB contains information about an object’s
presence in the scene, the object-aligned BB more closely
represents the object’s size.

2) PC features: These features are obtained from an
encoder that is trained in an auto-encoder scheme. We
investigated several architectures including PointNet++ [19],
1D convolutions [20], and a fully connected architecture,
trained on either our own dataset of 3D objects (see Sec. III-
E) or on ShapeNet data [21]. We also investigated different
strategies for scaling the object point clouds before encoding:
(a) Scale all point clouds with the same factor, such that

the largest extent of the largest object in the training set
fits inside a cube of defined size (i.e. all point clouds
lie within this cube).

(b) Scale all point clouds individually, such that the largest
extent of each point cloud lies on the cube (i.e. all point
clouds have the same size).

The best downstream classification performance was
achieved when training on ShapeNet for an encoding size of
128 with a 1D convolution-based encoder, a fully connected
decoder and scaling option (a) with the target cube spanning
[−0.5,0.5] on each axis.

Since the point cloud encoding only encodes information
about object geometry, and not the object’s pose in the scene,
the final PC feature vector is composed as follows:
Centroid position of an object point cloud.
Orientation expressed with respect to the global frame,

encoded as a quaternion.
Point cloud encoding as obtained from the encoder.

C. Classifier, Discriminator and Generator Architectures

We evaluated two different model architectures for the
classifier, discriminator, and generator: an MLP-based archi-
tecture, which only considers the argument objects, and a
hybrid GNN-based architecture, which can take into account
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all scene objects (see Fig. 2). The classifier and discriminator
share the same architecture but are trained separately.

The MLP-based models consist of fully connected layers
in conjunction with ReLU activations after every layer apart
from the last one. For the classifier (and discriminator),
the final 1D output is obtained through a softmax layer. In
contrast, the generator must output a complete set of feature
vectors for downstream discrimination and classification.
Thus, we condition the generator’s MLP on the current
scene features and task it to propose a centroid position and
orientation for the argument object such that the predicate
would hold. A post-processing step then completes these
into a full feature vector using the input object’s PC or BB
features.

MLPs have the drawback that the input size is fixed,
making it difficult to handle varying numbers of objects in a
scene. Thus, the MLP only takes the features of the argument
objects of the predicate as input. To incorporate scene-level
information, we propose a hybrid GNN model architecture
that captures information from surrounding objects which
may influence the predicate state.

The GNN architecture adds an additional set of fully con-
nected layers that are used to compute a scene embedding.
As input, the scene embedding module takes the argument
objects’ feature vectors, as well as the feature vector of a
surrounding object. The output is an intermediate embedding.
After applying this once for each surrounding object, all
intermediate embeddings go through mean pooling, making
the resulting scene embedding permutation invariant w.r.t. the
order of surrounding objects. Finally, the argument objects’
features and the scene embedding are concatenated and fed
through an MLP that is similar to the MLP-based architecture
described above. The only difference being a larger input
layer to accommodate the scene embedding. Post processing
is added in the same way as for the MLP-based models.

D. Training Procedure

Training procedures for the proposed models are shown
in Fig. 3. Since the classifier’s task (classification in contrast
to generation, see Sec. I) is different from generator and

discriminator, it is trained separately from the other models.
We train the classifier using a standard binary cross-entropy
loss:

LC =−(y · log(C(xxx))+(1− y) · log(1−C(xxx))) , (1)

where xxx is a sample from the dataset Qd , y is the correspond-
ing label and C is the classifier model.

The generator and discriminator training is inspired by
typical GAN training procedures. During training, we only
present positive samples from the dataset to the discriminator.
This is because the adversarial training scheme causes the
generator’s output distribution to approximate the distribution
of dataset samples passed to the discriminator. Therefore,
passing positive samples only to the discriminator trains the
generator to produce new samples for which the respective
predicate holds. In contrast, the generator is seeded with both
positive and negative samples and must learn to correctly
adjust the object features from negative samples, while
allowing positive samples to pass through unedited (or edited
in such a way that the predicate still holds).

Both discriminator and generator are trained using a
Wasserstein loss [22] together with a gradient penalty [23].
With this, the discriminator loss becomes,

LD =

dataset samples︷ ︸︸ ︷
− E

xxx∼Q+
d

[D(xxx)]+

generated samples︷ ︸︸ ︷
E

xxx∼Qd ,zzz∼N
[D(G(xxx,zzz))]+

λ E
x̂xx∼Qx̂xx

(∥∇x̂xxD(x̂xx)∥2 −1)2︸ ︷︷ ︸
gradient penalty

, (2)

where D and G are the discriminator and generator model
respectively, D(xxx) the discriminator’s output for input xxx, Qd
the dataset, Q+

d the subset of the dataset containing only
positive samples.N is a distribution (e.g. normal or uniform),
λ the gradient penalty coefficient, x̂xx = εxxx+(1− ε)x̃xx, where
xxx ∼ Q+

d a dataset sample, x̃xx ∼ G(xxx) a generated sample, ε ∼
U [0,1], U being a uniform distribution. The generator loss
when trained in conjunction with the discriminator becomes,

L(D)
G =− E

xxx∼Qd ,zzz∼N
[D(G(xxx,zzz))]. (3)

Wanting the generator to output samples the classifier labels
as fulfilling the target predicate gives rise to the idea to use
the classifier as an alternative training signal. The classifier
learns to label scenes according to their conformity with
the target predicate. We employ a binary cross-entropy loss
where the label is always “true”, motivating the generator
to output samples the classifier labels as fulfilling the target
predicate:

L(C)
G =− log(C(G(xxx,zzz))). (4)

As we have two models to provide feedback to the
generator, we can formulate three different generator training
schemes:
Discriminator only where LG = L(D)

G , and discriminator and
generator are trained simultaneously.



Classifier only where LG = L(C)
G . After training the classi-

fier, its weights are frozen and it is used as the sole
objective during generator training.

Both where LG = L(D)
G + L(C)

G , i.e. the generator is trained
with feedback from the classifier and the discriminator
at the same time. The classifier’s weights are trained a
priori and are frozen during generator training, while
the discriminator is trained alongside the generator.

E. Training Data

As mentioned in Section III-A, we develop and test our
algorithm using two predicates: on clutter and inside.
The on clutter predicate takes two main arguments, a
supporting object and a supported object, returning true only
if the supported object rests stably on top of the supporting
object, neither penetrating the supporting object nor colliding
with any other object. The inside predicate also takes
two main arguments, a containing object and a contained
object, returning true if the contained object is fully inside
the containing object, neither protruding from any opening,
nor penetrating the containing object or other objects in the
scene.

Our vision is to enable learning new predicates from non-
expert user demonstrations or in a self-supervision fashion
via exploration in a back-end physics simulator [24]. For the
former, we developed the prototype GUI (shown in accom-
panying video) which allows a user to manipulate objects in
a physics simulation to easily provide demonstrations.

For this work however, to reliably obtain sufficient and
consistent data for evaluating our proposed method, we
algorithmically generate data. For on clutter, we employ
the targeted sampler from iGibson 2.0 [25]. As supported
objects, we use the items from the YCB dataset [26]. As
supporting objects, we use items from iGibson and pybul-
let [27]. The generated dataset is balanced, i.e. half of the
samples are positive (predicate holds) and half of the samples
are negative (predicate does not hold). For each sample, a
supporting and a supported object is sampled. In addition,
further distractor objects are spawned at random positions
and orientations. Positive (+) and negative (−) samples
are then obtained with a pre-defined distribution over the
following seven conditions.

1) (+) Supported object alone on supporting object.
2) (+) Supported object on supporting object, together

with one or more distractor objects.
3) (−) Supported object spawned at random pose, then

either left afloat or dropped to ground.
4) (−) Supported object placed onto supporting object,

then randomly shifted up or down in z direction so that
it floats above or is sunken into the supporting object.

5) (−) Supported object placed close to the centroid, inside
of the supporting object.

6) (−) Supported object is not placed onto the supporting
object, but onto a different supporting object.

7) (−) Supported object placed on supporting object such
that it is in collision with another object that rests on
supporting object.

Apart from this, all object scales are randomly varied
between samples. Overall, the dataset consists of 20’000 ex-
amples intended for training, and additional 2’000 examples
that were generated with objects not included in the training
set, intended for testing.

Training data for inside is generated with a custom
implemented targeted sampler. Objects, dataset composition,
size, separate test set, and general data generation procedure
are the same as described above for on clutter. The types
of samples are also similar. The following lists only the
differences:

• For all sample types, replace “on” and “onto” with “in-
side”, “supported” with “contained”, and “supporting”
with “containing”.

• No samples of type 5).
• Additional negative (−) sample type: contained object

is placed inside containing object, but in a way that it
protrudes from the container.

IV. EVALUATION

In the experiments, we aim to answer the following ques-
tions: (Q1) Can we learn predicate groundings consisting
of classifiers and generators that are useful for task-level
planning? (Q2) How data efficient is learning predicate
groundings? (Q3) Does taking surrounding objects into
account improve classifier and/or generator performance?
(Q4) Does integrating the proposed generators into a TAMP
system improve planning performance?

A. Baselines

We compare our proposed method against a range of base-
lines. The first baseline, which we refer to as “sampler, no
class.” (“class.” stands for “classifier”), is based on uniform
sampling. Given the argument objects, poses for the second
argument object (supported, or contained respectively for the
two predicates we test with) are sampled uniformly within
a space around the first argument object. For the following
experiments, we enlarged the BB of the first argument object
by 1.5 times to obtain the sampling space. While this limits
the predicates that this baseline can model, it is a necessary
assumption to restrict the sampling space and thus achieve
an acceptable success rate for predicates that match this
assumption. Note that our proposed method makes no such
assumption. Furthermore, relying on an argument object’s
BB would necessitate extracting BBs from PC features. Thus,
we evaluate samplers on BB features only. This baseline only
covers the generation component of a predicate grounding,
so for deployment, a separate classifier would be required.

Building on this sampler, the baseline “sampler, MLP
class.” makes use of our classifier architecture described in
Sec. III-C. With the basic sampling procedure identical to the
previous baseline, this baseline classifies every sample and
repeats sampling until a sample is classified as positive, or
until a search budget is depleted. Balancing inference time
with generation success rate, the budget for the experiments
below is set to a maximum of 500 samples. The “sampler,
MLP class.” does not take into account surrounding objects



since the MLP classifier only considers the two argument
objects. In contrast, the baseline “sampler, GNN class.”
encodes surrounding objects through the use of the GNN
classifier architecture.

Further, we compared against using a decision tree (DT)
for classification. In addition, to use a trained DT to generate
a sample, we randomly select a leaf node that classifies
positively. From there, the tree is traversed bottom up,
at every node updating upper and lower bounds on the
feature the node differentiates upon. Upon reaching the tree’s
root, this yields bounds on a subset of features. When
using this baseline with the BB features, any limits on
the features are converted to limits on the position of the
second argument object. For the PC features, limits on the
point cloud encoding are ignored. Respecting the limits on
position and orientation features, we sample uniformly. The
resulting generated samples are completed using the same
post-processing technique applied in our proposed models
(see Sec. III-C).

B. Setup and Metrics

To evaluate the proposed framework, we use the training
data that was gathered as described in Sec. III-E for the two
predicates on clutter and inside, both in the form of
BB features and PC features. With the goal to test the pro-
posed method’s effectiveness as predicate grounding, we are
interested in the two required components of classification
and generation.

We characterize classifier performance in terms of accu-
racy. To test generator performance, we rely on manually
implemented oracles for each predicate to compute a manual
classification accuracy (MCA) using BB features of argu-
ment and surrounding objects and a physics simulator for
collision checking. Note that although hand-crafted oracles
could be used to replace our learned classifiers, they are im-
practicable to design for every predicate encountered in real-
world applications, a limitation that our proposed method
aims to address. Thus, the oracles are only used for this
evaluation and are not required for applying our method.

For every instance of our method, the classifier and
generator are trained for 30’000 iterations each. An iteration
constitutes a single batch being passed through a model with
a subsequent back-propagation and weight update. For this
work, we consistently use a batch size of 16. Depending on
the training mode, the discriminator is trained alongside the
generator, while the classifier’s weights are frozen during
generator training.

For methods taking surrounding objects into account
(baselines as well as proposed), we select as surrounding
objects all objects in a given scene that are within 1 m of any
argument object. For other predicates, this threshold would
potentially need to be adjusted depending on the size of
objects being manipulated.

C. Results

The results from the classifier training are presented in
Fig. 4. All methods achieve a high training accuracy on both
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Fig. 4. Results on classifier accuracy. The color of the bars represents the
model we used. Every method is trained for five different random seeds, the
error bars represent the resulting spread. While both baselines (blue, green)
and our proposed method (purple) exhibit a high training performance, the
baselines’ test performance is significantly reduced, hinting at overfitting.

predicates. Between the three methods, the MLP classifier
shows the lowest training accuracy. This is because it does
not take surrounding objects into account and tends to
misclassify samples where the predicate would hold but one
of the argument objects is in collision with a surrounding
object (sample type 7 in Sec. III-E). While the DT baseline
achieves high training accuracy, it drops significantly in test
performance. This indicates overfitting to the training data.
Our proposed methods instead maintain a high performance
on the unseen test set, allowing us to positively answer Q1
regarding classification. For both predicates, the difference
between using BB features or PC features is marginal. How-
ever, using the GNN model, which accounts for surrounding
objects, is key to increasing classification performance Q3.

To answer Q2, we analyse the generator training results
in Fig. 5. In addition to the training runs on the full 20’000
samples of the training set, we trained each method on sub-
sets of data to investigate performance in low data regimes,
which would be encountered when sourcing demonstrations
from users. Without limiting the training dataset, the highest
performance for both predicates is achieved by our MLP-
based method using PC features, achieving average MCAs
of 0.77 for on clutter and 0.64 for inside. The other
variants we proposed achieve similar performances. This is in
contrast to the baselines. For the on clutter predicate, the
best baseline is “sampler, MLP class.” with an MCA of 0.11.
For inside, “sampler, GNN class.” performs best among
the baselines, achieving an MCA of 0.25. For our proposed
methods, training on the BB features seems to require more
data while it also achieves a slightly lower performance
compared to results based on PC features. Similarly, the
baselines are data hungry. For both predicates, both sampler
and DT generators only come close to their final performance
starting from a dataset size of around 5’000 samples.

In contrast, our method applied to PC features achieves
a high performance also for low sample numbers. For
on clutter, our MLP-based method achieves 65% and
99% of its peak performance with 100 and 500 samples,
respectively. For inside, this is even more pronounced.
Using only 10 training samples, it achieves 76% of its peak
performance on the test set. While the GNN model with PC
features needs slightly more samples (72% after 100 samples
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is any overlap at all, and if there are collisions with other objects (cfree).

of inside), it is still ahead of its counterpart trained on BB
features (71% after 500 samples).

While GNN models outperform the MLP models for
classification, the MLP models often show a slightly higher
performance as generators compared to GNN generators.
For classification, detecting collisions between objects is
important, explaining the inferior performance of the MLPs.
For generation, and the predicates chosen here, awareness
of surrounding objects seems to be less crucial as the MLP
model still finds enough collision-free samples by chance,
even without awareness of surrounding objects.

The distribution of generator outputs for on clutter is
shown in Fig. 6, with unsuccessful cases further separated by
failure type. Failed samples from our method are often close
to success, supported objects being either on the supporting
object but in collision with another object, or slightly outside
the horizontal boundaries (“not within”) while still overlap-
ping with the supporting object. In contrast, all baselines
have significant proportions of samples that are far from
success (no vertical/horizontal alignment, no overlap).

In Fig. 7, we report inference times for all methods. This
is important since when embedding groundings into down-
stream planning operations, the planner’s runtime is highly
dependent on fast sampling of potential target configurations.
For classification, using PC features and GNN models in-
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Fig. 7. Inference times for all classification and generation baselines and
proposed methods. Legend, see Fig. 5. The inference times are averaged for
each method over 2’000 forward passes on an i7-9750H CPU. Note that
the sampler baselines cannot classify.

creases inference time as expected, but not prohibitively. For
generation, our proposed methods show moderate inference
times, while DT generators and classifier-based samplers
are one and two orders of magnitude slower, respectively.
Combined with its superior classification and generation per-
formance, this further shows our proposed method’s fitness
to serve as predicate grounding to be used in downstream
planning tasks, supporting a positive answer to Q1.

D. TAMP Integration

We integrated our predicate learning framework into a
simple TAMP implementation to test its performance in a
planning scenario where a simulated mobile manipulator is
tasked with placing four distinct objects onto a cupboard.
The generators are called by the planner to sample placement
positions for the objects. Each configuration is run to solve
the problem 100 times, with a time budget of 30 seconds
per run. Fig. 8 shows that all baselines have a success rate
below 50%. In contrast, while our MLP generator using BB
features solves 58% of the problems, its PC feature pendant,
as well as both GNN generator variants solve 100% of the
runs and produce successful samples more than twice as fast
compared to baselines. This highlights our methods’ positive
impact on TAMP success rates and planning times Q4.

V. DISCUSSION AND OUTLOOK

This paper presents a framework for learning classifiers
and generators for predicate groundings from demonstration
data. Investigating both bounding box- and point cloud-
based features, our results suggest that PC features perform
superior in terms of classification accuracy and generation
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success rate. Especially data efficiency benefits from the
PC features, highlighting the advantage of including more
detailed geometry information.

Further, our hybrid GNN models are capable of taking
surrounding objects into account. While this mainly improves
classification accuracy, generator performance is similar to
the MLP counterparts when analyzed in isolation. However,
once moving to the TAMP integration experiments, we
observe the GNN coming in at both a higher success rate
and a shorter time until success, spotlighting the advantage
of taking surrounding objects into account in mobile manip-
ulation planning scenarios.

With these properties our proposed method improves
sampling goal configurations for TAMP in two key aspects:
first, as shown in the experiments, our method outperforms
uniform samplers (even if enhanced by classifiers) as they are
typically used in existing planning systems. Second and more
importantly, our method can be trained on demonstrations by
non-expert users, removing the need to hand-engineer model-
based classifiers and generators, and thus allowing to scale to
open world application domains such as mobile manipulation
in unstructured environments.
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