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Abstract— Detecting air flows caused by phenomena such
as heat convection is valuable in multiple scenarios, including
leak identification and locating thermal updrafts for extending
UAV flight duration. Unfortunately, the heat signature of these
flows is often too subtle to be seen by a thermal camera.
While convection also leads to fluctuations in air density and
hence causes so-called schlieren – intensity and color variations
in images – existing techniques such as Background-oriented
schlieren (BOS) allow detecting them only against a known
background and from a static camera, making these approaches
unsuitable for moving vehicles. In this work we demonstrate
the feasibility of visualizing air movement by predicting the
corresponding schlieren-induced optical flow from a single
greyscale image captured by a moving camera against an
unfamiliar background. We first record and label a set of optical
flows in an indoor setup using standard BOS techniques. We
then train a convolutional neural network (CNN) by applying
the previously collected optical flow distortions to a dataset
containing a mixture of real and synthetically generated images
to predict the two-dimensional optical flow from a single image.
Finally, we evaluate our approach on the task of extracting the
optical flow caused by schlieren from both a static and moving
camera on previously unseen flow patterns and background
images.

I. INTRODUCTION

Visualizing air flow patterns caused by heating [1], physi-

cal absorption [2], chemical reactions [3], or shock waves [4]

is valuable in multiple fields such as leak detection, the

study of boundary layer detachment, heat transfer, or locating

thermal updrafts for extending small uncrewed aerial vehicle

(sUAV) flight duration. In the latter case, for example,

existing flight controllers allow a fixed-wing sUAV to exploit

thermal updrafts for soaring, the way birds [5]–[8] and

human glider pilots do, if the sUAV happens to stumble upon

such an updraft [9]–[12]. However, actually finding these

updrafts presents a problem. Predicting their locations using

consistent thermal infrared (TIR)-optical mapping techniques

such as MultiPoint [13] based on the ground temperature and

color comes with significant uncertainty. Directly observing

the thermal columns in the sUAV’s vicinity using an onboard
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Fig. 1: The difference in the refractive index between the thermal
and surrounding air causes schlieren in the optical image. Detecting
these patterns enables sUAVs detecting thermals from far away.

sensor could be very helpful. In our work, we take a step

towards making this a reality.

Air flows such as thermals give rise to variations in the

air’s refractive index and lead to subtle bending of light rays

according to Snell’s Law [14] as the rays traverse through

these fluctuations. The resulting brightness and color changes

are called schlieren, from the German word for ‘streaks’ [15].

Usually, schlieren are invisible to the human eye unless they

are caused by large temperature differences, e.g. immediately

above a road surface on a hot sunny day. However, they

can be visualized in a controlled lab setup using multiple

lenses and a point light source as a shadowgraph measuring

the second derivative of the density [16]. BOS methods

visualize the schlieren with a more generic setup, only

requiring one camera but assuming a known, high-texture

background [17], [18]. Optical flow techniques based on

intensity variations, between successive frames or compared

against an undisturbed reference frame, can then be used to

extract the image distortion caused by the schlieren.

In scenarios such as sUAV flight, however, the background

is generally not known and BOS methods are not applicable

directly: although they have been applied aboard aircraft,

they require multiple passes over the recording area to

capture the background [19]. Reference-free BOS techniques

don’t require a reference background and can detect the

schlieren using a stereo setup of high-quality cameras, but

are computationally complex and require high-texture back-

grounds [20]. Since we are interested in simply identifying

areas with schlieren and aren’t trying to find the true flow,

computing the optical flow between two consecutive frames

could serve as a viable approximation. However, movement
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Fig. 2: The indoor setup to record thermally induced flows that com-
prise the ROSCINE dataset. The known high-texture background
provides optimal conditions for computing the optical flows caused
by hot air above the heat source. The background is a greyscale
image with sinusoidal brightness changes in both directions with a
wavelength of 8.7mm, equivalent to 8 px in the captured image.

of the sUAV causes viewpoint changes between consecutive

frames. Perfect alignment of the two frames is impossible in

a three-dimensional environment. As a result, artifacts in the

optical flow overshadow the sub-pixel flow of the schlieren.

In this work we propose a method called DYBS

(DYnamic-Background Schlieren) for detecting the optical

flow of the schlieren from a single optical greyscale image

using a CNN. We first collect a dataset of real observed

schlieren in a controlled indoor environment (ROSCINE),

in a lab setting with a static camera and various high-

texture backgrounds and different heat sources. We extract

the optical flow due to the schlieren with traditional BOS

techniques using the known undistorted background and treat

this optical flow as the ground truth. Then we generate a

dataset of imagery containing schlieren with the respective

ground-truth optical flows. The dataset is composed of real

imagery from the indoor setting and synthetically generated

images. In the latter case we treat the optical flow of the

schlieren as a distortion map that is applied to images

from the Places dataset [21] to simulate the appearance of

schlieren on different backgrounds and textures. We train the

network with a mixture of the real and synthetic images and

finally evaluate it on held-back data and real-world imagery.

II. GROUND-TRUTH FLOW GENERATION

We collected the high-quality ROSCINE dataset in an

indoor setting optimized for generating different labelled

schlieren patterns with multiple high-texture backgrounds.

We used a global shutter optical camera (UI-5261SE Rev.

4 with a 16mm focal length lens) to capture images at

25Hz. We used two different heat sources, a larger and a

smaller electric heat plate at different temperature settings to

generate various shapes of thermal updrafts. The high-texture

backgrounds allow for accurate computation of the sub-pixel

optical flow [22]. The setup is shown in Fig. 2.

We evaluated different background patterns and optical

flow algorithms to optimally capture the schlieren patterns

and reduce the measurement noise. Since even in our con-

trolled setup we don’t have access to ground truth schlieren

we subjectively evaluated the different approaches by their

signal to noise ratio and whether they could generate the

sub-pixel optical flow of the schlieren. The greyscale back-

grounds used were checkerboard patterns of different sizes,

Perlin noise [23], sinusoidal patterns, and a pattern consisting

of multi-scale black and white squares. In our tests, all

selected background patterns were sufficient for comput-

ing the small scale optical flows. To compute the optical

flow of the schlieren we tested the Farnebäck [24], Horn-

Schunck [25], Lucas-Kanade [26], PCAFlow [27], Deep-

Flow [28], and SPyNet [29] algorithms. SPyNet, PCAFlow

and Lucas-Kanade failed to compute the small-scale optical

flow, and the magnitude of the noise was higher than the

flow due to the schlieren. Farnebäck, DeepFlow, and Horn-

Schunck were all able to capture the schlieren. However,

DeepFlow produced an overly smooth image and failed to

pick up some of the small scale details. Farnebäck exhibited

the highest noise levels of these three algorithms. Finally, we

selected the Horn-Schunck algorithm to compute the ground-

truth flow data for ROSCINE.

We maintained a constant distance between the camera

and the background wall but varied the position and size

of the heat source to record varying shapes and magnitudes

of schlieren. Small vibrations or movements of the camera

relative to the background during the recordings introduced

small optical flow biases in each direction in the order of

0.0 px to 0.2 px. Since only a small portion of the recorded

image contained schlieren we could determine the bias by

computing the median flow value in each direction and

subsequently subtract the bias to correct the flow values.

In total we recorded imagery with 11 different background

patterns and for each setting used the large heat source in

three and the small one in two different heat settings. We

also varied the distance between the heat source and the

camera, once placing it close to the camera and once closer

to the background. In total this results in 110 different setups

with observed schlieren of different shapes and magnitudes.

A few examples for the different flow shapes are shown in

Fig. 3 where the hue and saturation indicate the direction and

magnitude of the flow, respectively. We observed that for

the same heat source the optical flow magnitudes increase

when the heat source is closer to the camera than the

background. The flow generated by the large heat plate is

almost immediately turbulent, while the flow above the small

Fig. 3: Examples of different types of ground-truth flows recorded in
the indoor setting. The left flow pattern is generated from the large
heat plate close to the camera, in the middle with the same heat
source far away from the camera. The flow on the right is captured
from the small heat plate close to the camera. The maximum flow
norm in pixels is shown in the top left corner for each image.
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Fig. 4: Pipeline overview to train DYBS with synthetic and real
images. The input data to DYBS are either real samples from the
ROSCINE dataset or synthetically generated samples with a random
background distorted with a ground-truth ROSCINE flow.

heat plate is laminar until approximately the middle of the

captured image. The maximum flow magnitude per image

varies throughout the dataset between 0.07 px to 1.08 px.

Certain setups showed strong artifacts in the optical flows

computed by the Horn-Schunck algorithm due to movement

of the camera, the background or slight illumination changes

to the calibration image. These cases were manually detected

and the data discarded. The ROSCINE dataset consists of

the 81785 ⟨optical flow, background⟩ pairs, split across the

different cases into training and test subsets containing 61879

and 19906 samples, respectively.

III. NEURAL NETWORK TRAINING FOR SINGLE

FRAME SCHLIEREN DETECTION

We developed the pipeline to train DYBS to predict the

optical flow due to schlieren using only one single grayscale

image as input. The full pipeline is displayed in Fig. 4.

Network Architecture. We chose a CNN-based architecture

due to their efficiency and ability to predict based on local

spatial features. The architecture used in this work is based

on the UNet with minor changes [30]. While originally

created for pixel-level segmentation, UNet-style models have

demonstrated strong performance for precise reconstruction

due to the skip connections passing spatial information

between down- and up-sampling layers. We have the same

depth as the original UNet (four pooling and upsampling

layers) and utilize the skip connections but replace the

fully connected layers at the bottleneck with convolutions.

This change results in a fully convolutional network that

can handle inputs of varying sizes above the minimum

of 16 px × 16 px. We extend the nonlinearity after each

convolution with a BatchNorm layer to stabilize the training

by reducing the internal covariance shift [31]. The input to

the CNN is a single greyscale image. The pixel values are

mapped to [0, 1]. The model predicts the two-dimensional

optical flow for each input pixel.

Dataset We trained the neural network on the dataset of

recorded schlieren flows. We used a combination of sam-

ples from the ROSCINE dataset that already contain the

schlieren (associated pairs of the recorded high-texture back-

ground with schlieren and the corresponding flow from our

controlled indoor environment) and synthetically generated

samples where the schlieren distortions (ground-truth flows)

from ROSCINE applied to existing images from the Places

Standard dataset [21]. Using the 1.8 million images from

the Places training dataset with widely varying textures and

scenes as background prevented the network from overfitting

to the high-texture backgrounds used during data collection,

which exhibit much less variety with only 11 different pat-

terns. We utilized the high-resolution images from the Places

Standard dataset above the minimum size of 480 px×480 px.

A sample with a background from the Places dataset

was constructed in the following way. Since the background

images are smaller than the ground-truth flows, we randomly

cropped the flows to the same size as the background at

480 px×480 px. To randomize the flow directions, we flipped

the cropped flow in the x- and y-directions with a probability

of 0.5. The extracted ground-truth optical flows (Sec. II) are

essentially warp maps describing the magnitude and direction

in which the schlieren shifted the pixels of the undistorted

background. As the final step of generating synthetic samples

we apply an extracted ground-truth flow label as a warp to a

novel (undistorted) Places background image. The ROSCINE

samples already contained the schlieren and did not require

preprocessing. Finally we randomized the orientation of the

image-flow pair by flipping the flow and the image randomly

along each axis with a probability of 0.5.

During training, we randomly selected the sample type.

A sample from ROSCINE was chosen with probability pR,

and a sample with a flow from ROSCINE but a background

from the Places Dataset was picked with probability 1− pR.

This allowed us to balance the training between the real

samples with the limited variety background texture but

including the camera sensor noise and the synthetic images

with highly variable backgrounds.

Loss. We used a regular mean squared error (MSE) loss

between the optical flow predicted by the network and the

ground-truth flow to train the network.

Learning Framework Setup. The training pipeline was

implemented with the PyTorch framework [32] using the

Adam optimizer [33] with a batch size of 20 samples to

optimize the model weights. We set pR to 0.5 resulting in

the CNN observing an equal amount of synthetic and real

samples during training.
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Fig. 5: The training and validation MSE loss during the first stage
of the curriculum learning. The training losses were averaged over
10’000 update steps equalling one epoch. The validation loss was
computed every fifth epoch.

DYBS Training Schedule. Training DYBS directly on the

dataset containing all different flow patterns resulted in

strong overfitting of the real samples and no progress on

the synthetically generated ones. By training the model with

a curriculum learning strategy [34] we were able to mitigate

the overfitting and trained DYBS to predict the flow for both

background types.

In the first stage of the curriculum, we trained the model

only on a limited set of flow patterns from only one back-

ground setting with the large heat plate (7231 flows, 11.6%

of all recorded flows) for five million update steps with a

learning rate of 1 × 10−4 (500 epochs) and another five

million steps with a decreased learning rate of 2.5 × 10−5.

The training and validation MSE loss over the 1000 training

epochs of this first learning stage are shown in Fig. 5.

The training loss was averaged over one epoch composed

of 10’000 batches. We computed the validation loss every

fifth epoch. After an initial decline, the loss values stagnated

until roughly epoch 330. Up to this point the model learned

to predict samples from ROSCINE well but failed on the

synthetic samples concocted from ROSCINE’s flows and the

Places Dataset’s backgrounds. The second decline in MSE

loss shows the model learning to predict the latter samples

as well. This phenomenon was consistent across different

training runs, though the starting epoch for learning to predict

both sample types was slightly different in each run.

In the second curriculum stage, we let the model train for

another 5 million update steps with a learning rate of 1×10−4

on the full dataset. This forced the model to generalize to

different flow shapes and real background images.

IV. EXPERIMENTS

We evaluated DYBS in a series of experiments with

increasing difficulty. In the first set of experiments, we

used held-out flow data from our ROSCINE dataset,

recorded in the indoor setup, together with images from the

Places Validation Standard dataset to compare the DYBS

predictions to the optical flow from the BOS algorithm.

In the second experiment, we tested if the network could

generalize to different flow patterns in an indoor setting

with a static camera and a high texture background. We

generated different flow patterns by deflecting the flow with

wind or directly with a plate over the heat source. In the

last set of experiments we used recordings from a moving

camera in an indoor and outdoor setting to test how well the

Input Image Ground-Truth Flow Predicted Flow Error

Fig. 6: Qualitative prediction results of DYBS on previously unob-
served samples using images from the Places dataset as background
(previously unseen images with previously unseen flow distortions
applied). The maximum flow magnitude in pixels for each picture
is indicated in the top left corner. For clarity, the same magnitude
color scale is used for both the predicted and ground-truth flows.

network can generalize to camera motion, lighting changes

and various real backgrounds.

Experiment 1: Test Dataset. We evaluated DYBS on sam-

ples with the different background types separately with

previously unobserved flow patterns and background images.

DYBS predicts the flow for the sample images from the

Places dataset with a mean magnitude prediction error of

0.017 px at a mean flow magnitude of 0.022 px. At first

glance, the prediction error seems relatively high. However,

some representative predictions displayed in Fig. 6 show

that DYBS detects the sub-pixel flow accurately for different

flow shapes and magnitudes as well as highly varying

backgrounds. The ground-truth flows from the ROSCINE

dataset contain small-magnitude artifacts corresponding to

the background patterns, as evident from the top four rows in

Fig. 6. The DYBS predictions do not contain such artifacts

and thus are much smoother than the ground-truth flows,

contributing to a higher error metric despite modeling the

real flows well. In case of no texture, such as the sky in
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Fig. 7: Qualitative prediction results of the DYBS on previously
unseen ROSCINE data (images containing real schlieren from a heat
source). The maximum flow magnitude in pixels for each picture
is indicated in the top left corner. For clarity, the same magnitude
color scale is used for both the predicted and ground-truth flows.

the bottom two rows of Fig. 6, DYBS cannot detect the

distortions but also does not hallucinate. However, even very

little texture, such as a beach or a road in the same cases, is

sufficient for DYBS.

The average magnitude prediction error on the ROSCINE

data is significantly higher compared to the synthetically

constructed ones at 0.034 px. As evident based on the DYBS

predictions in Fig. 7, there are two modes. The top three

cases, where the background is similar to the ones observed

during the training (same pattern but different distance

between the camera and the background), are reasonably

well predicted. However, DYBS struggles with the bottom

three cases, where the background differs more, by either

predicting zero or showing strong artifacts along the borders

of the individual background sheets. Therefore, the success

in detecting the schlieren for backgrounds from the Places

dataset does not transfer to the various backgrounds used in

the ROSCINE data collection.

Experiment 2: Flow Shape Variation. In our static indoor

setup with the high-texture background, as shown in Fig. 2,

Input Image Predicted Flow HS Flow

Fig. 8: Images with schlieren recorded in the indoor setup with
different flow patterns than those observed during training. The
flows are deflected by objects above the heat plate or sideways
wind. For a sequence of frames refer to the accompanying video.
We compare the DYBS predictions to the BOS optical flow.

we recorded a test subset of ROSCINE containing different

flow patterns compared to those in the training set. We

generated these different flow shapes using the same large

heat plate used for the training subset, but with the flow

disturbed by wind or objects deflecting the flow. We compare

the CNN predictions to the BOS Horn-Schunck optical

flow, where we used the average of the first 50 frames as

the known background image, and show the results for

select frames in Fig. 8. It is important to note that this

data contains objects and flow patterns that are completely

novel to the prediction network and do not appear in any of

the training data. Nevertheless, DYBS manages to predict

the new optical flow patterns well, such as the vortices

at the plate tip, with minor artifacts at the border of the

high-texture background and the objects. The flow quality

from DYBS using a single image frame is arguably better

than the flows from the two-frame BOS algorithm, which

exhibits artifacts around the objects multiple times larger

than the optical flow due to the schlieren. Nevertheless, we

can still see that the BOS and DYBS flow patterns have

similar shapes, demonstrating that the network generalizes



well to different flow patterns than those observed during

training. Finally, the proposed method shows the highly

desirable property of primarily returning the optical flow

due to schlieren, rather than all elements of the scene

motion that are extracted by the standard BOS optical flow.

Experiment 3: Moving Camera. We recorded images con-

taining schlieren with a moving camera in an indoor setting

with a high-texture background as well as outdoors with

a natural background. The moving camera rules out using

the traditional BOS algorithm to provide a reference flow,

as it relies on a known undistorted background image, and

introduces additional challenges such as motion blur and

varying viewpoints. The DYBS predictions together with

the input image for select frames are shown in Fig. 9.

In the indoor setting the network was able to predict the

optical flows from different viewpoints on the high-texture

background. However, we also highlight some failure cases

(rows 4 and 5). Row 5 shows an example from an outdoor

setting where the heat source is several meters from the

camera. Here the distances between the background, heat

source and camera are very different to those used during

training and therefore DYBS struggles to produce accurate

predictions. These findings are consistent with our previous

results and demonstrates a need for further investigation to

improve generalization performance.

V. DISCUSSION AND LIMITATIONS

The ability to capture schlieren from a single image frame

is a particularly valuable property, as it permits moving cam-

eras in a way that was not previously possible. Remaining

single-frame effects from camera motion, such as motion

blur and changes in intensity due to aperture or exposure

time variations, remain to be fully explored, but the results

from this paper already show strong promise in this direction.

Further, detecting schlieren with a moving camera from

different viewpoints potentially allows 3D triangulation of

the location of these flows to autonomously locate thermal

updrafts or gas/heat leaks with a mobile robot.

Currently the results with the varying backgrounds on

the Places Standard dataset do not transfer to unseen back-

grounds captured with a camera. We reason that the low

number of backgrounds (11) compared to the synthetic ones

(1.8 million) in combination with different noise properties

causes this performance difference. Generating a dataset of

schlieren images through geometric-optics ray-tracing [35],

[36] could help to generate a wider variety of flow pattern.

Together with enhancing these images with photogrammetric

noise, such as Gaussian noise, salt-and-pepper noise, motion

blur, brightness, or contrast changes, a trained network might

be able to better generalize to natural backgrounds captured

with different cameras.

In our work we used single greyscale images as the input

and extracted the ground-truth flows from each of them

separately. Refraction indices differ slightly with varying

wavelengths [37]. A standard optical camera captures the

visible light in the range of 400 nm to 700 nm wavelength,

Input Image Predicted Flow

Fig. 9: Images with schlieren recorded with indoor and outdoor
backgrounds and a moving camera and the corresponding DYBS
predictions. In the outdoor scene the heat sources are highlighted
by red circles.

thus for each channel the schlieren shapes should be unique.

The neural network might be able to use this additional

information to predict the optical flow more precisely if we

extend the input to a multi-channel optical image.

VI. CONCLUSIONS

In this work we developed DYBS, a CNN-based ap-

proach, that is capable of predicting the sub-pixel image

distortions due to schlieren from a single greyscale image.

We recorded schlieren flow patterns in a controlled static

indoor environment with a traditional BOS method and then

trained the network with a mixture of real and synthetic

samples by applying the extracted flows to new images.

The resulting network learned to predict the sub-pixel flow

patterns well with the random backgrounds from the Places

Standard dataset and previously unseen flow patterns. While

the current model does not generalize well to setups where

the environments differ too much from the training images in

terms of background texture and distances to the background

and heat source, this should be addressable by collecting

more diverse training data – the main avenue for future work.
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