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Probabilistic Network Topology Prediction for Active
Planning: An Adaptive Algorithm and Application

Liang Zhang

Abstract—This article tackles the problem of active planning
to achieve cooperative localization for multirobot systems under
measurement uncertainty in GNSS-limited scenarios. Specifically,
we address the issue of accurately predicting the probability of a
future connection between two robots equipped with range-based
measurement devices. Due to the limited range of the equipped
sensors, edges in the network connection topology will be created
or destroyed as the robots move with respect to one another. Accu-
rately predicting the future existence of an edge, given imperfect
state estimation and noisy actuation, is therefore a challenging
task. An adaptive power series expansion (or APSE) algorithm
is developed based on current estimates and control candidates.
Such an algorithm applies the power series expansion formula of
the quadratic positive form in a normal distribution. Finite-term
approximation is made to realize the computational tractability.
Further analyses are presented to show that the truncation error in
the finite-term approximation can be theoretically reduced to a de-
sired threshold by adaptively choosing the summation degree of the
power series. Several sufficient conditions are rigorously derived as
the selection principles. Finally, extensive simulation results and
comparisons, with respect to both single and multirobot cases,
validate that a formally computed and therefore more accurate
probability of future topology can help improve the performance
of active planning under uncertainty.

Index Terms—Active planning under uncertainty, belief space,
cooperative localization, disk communication model, GNSS-limited
environment, probabilistic network topology.
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1. INTRODUCTION

CTIVE planning under uncertainty plays an important

role for robots to autonomously navigate and operate in
noisy environments by optimally choosing either systematic
configurations or control inputs to minimize (or maximize) an
aggregated objective function comprising various requirements
from both task and safety needs. It has recently attracted more
and more attention in a variety of applications in SLAM [1],
sensor deployments [2], surveillance [3], search and rescue [4],
etc.

It is a well-known problem in active planning under uncer-
tainty that the planner cannot perfectly predict future measure-
ments at planning time due to the existence of uncertainties from
both motion and measurement processes. As a result, the planner
cannot exactly evaluate the objective function given a control
candidate. Typically, the measurement-related unknowns during
planning include

1) The unknown distribution of raw measurement data from
perceptive devices if a connection exists, and

2) A nondeterministic network of future measurements.

While the first is easily understood, the second one arises
from the limited capacities of sensors, e.g., the range limitation
of a radio device or field of view (FOV) of a camera as shown
in Fig. 1. Since the future robot states are actually randomly
distributed in uncertain scenarios, a measurement event in the
future, i.e., the establishment of a measurement connection be-
tween two future nodes, is a random variable under the presence
of limited sensing capacities. Therefore, the network topology of
future measurements, which consists of all measurement events
during the planning horizon, is nondeterministic at the planning
time.

The problem of unknown future measurements during plan-
ning has been highlighted and partly relieved in some recent
works [5]-[9]. However, the state-of-the-art works predict these
future unknown variables only by some intuitive or experience-
based methods. For example, the maximum likelihood (ML)
assumption used in [5], wherein the future raw measurement
data are simply determined by the prior estimates and there-
fore the distribution of future connection is calculated by the
Bernoulli model. Besides, Indelman et al. [6] theoretically de-
rived the expectation of the objective function over the unknown
raw measurement data based on the one-step Gauss—Newton
(GN) iteration process. However, the network of future mea-
surement connections is still inherited and computed from the
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Fig. 1. Overall problem description of nondeterministic future network. A connection indicates a communication and (or) measurement event between the two

associated nodes. Given robots’ current states and a set of control candidates, the predicted evolution of future system behavior cannot fully determine future

network within the planning horizon in a noisy environment.

ML assumptions. Pathak et al. [7] reasoned about the future
data association problem in perceptually aliased environments,
which is to identify the observed node if a future connection is
established. However, once the data association is clear, then the
raw measurement value is sampled from the propagated belief
and the probability of this future connection is directly derived
from a predefined and known Gaussian model. In addition,
sampling-based methods and Gaussian models have also been
applied in [8] and [9] to approximate these future variables.

The key observation in this work is that the performance of
active planning can be improved if we can accurately predict the
distributions of these future variables at planning time based on
reasonable assumptions. To test such observation, we leave out
the calculation of future raw data and concentrate on accurately
predicting the distribution of future network connectivity. We
mainly focus on a class of range-based communication and
observation devices with maximum range threshold. An adaptive
power series expansion (APSE) algorithm is developed in this
article to predict the probability of each future measurement
connection. Both theoretical analysis and numerical results are
provided to guarantee the accuracy of APSE. It is then compared
with several existing experience-based methods in two active
planning scenarios, where robots are deployed to complete
high-level tasks while localizing themselves. Numerical results
show that an active planning framework using the APSE algo-
rithm achieves more than 50% reduction over the localization
uncertainty compared to using the Bernoulli model. The main
contributions of this note are twofold:

1) APSE: to more accurately compute the exact probability of
future connection between two nodes equipped with range-based
communication and measurement devices given only current
estimates and control candidates. Both theoretical guarantees
and statistical validations are presented.

2) Extensive simulation results, showing that a more accurate
event likelihood can indeed help improve the active planning
performance.

We note that the first contribution is an extension of our
previous work presented in [10]. Both papers apply the power
series expansion formula of the quadratic positive form in a

normal distribution from Provost and Mathai’s lemma [11] to
predict the probability of a measurement connection, wherein an
infinite summation of series is required. In the previous work, we
first take the finite-term approximation to realize computational
tractability and then three more modifications are developed to
tackle the truncation error introduced by omitting higher order
terms. As further contributions, this article presents a rigorous
theoretical analysis for the truncation error, by which we show
that this error can be bounded by an arbitrary threshold if some
sufficient conditions hold. These conditions are then summa-
rized into the adaptive principles for the selection of the max-
imum power degree in the finite-term approximation. Besides,
a new expansion method, termed as translational approximate
covariance expansion (TRACE) is proposed for the singular
cases where the covariance of the relative distance distribution
is too small to stabilize the finite-term approximation.

II. RELATED WORK

In this section, works most related to our approaches are
discussed. The state of the art of three topics is presented with re-
spect to the developments of belief space planning, connectivity
control, and cooperative localization.

Belief Space Planning: Active planning performs sequential
online decision making, which takes into account all the avail-
able information gathered up to the point each new decision is
made.

Such problems can be efficiently solved as a Markov deci-
sion process (MDP) [12] or by dynamic programming (DP)
methods [13]. However, early research mostly only considered
systems with deterministic or finite state transition processes,
which are feasible to solve in both computational complexity
and optimality aspects.

In contrast, the active planning problem under uncertainty is
often formulated under the POMDP framework due to the in-
corporation of uncertainties arising from both imperfect motion
and noisy measurement. Belief space planning (BSP) methods
are exactly an instantiation of a POMDP problem. Instead of
planning in a configuration space where knowledge of the mean
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of the estimated state distribution is sufficient for good perfor-
mance, BSP optimizes the underlying problem in a continuous
belief space by additionally taking the uncertainty of the state
distribution (or belief, such as the covariance) into consideration.

Recent developments of BSP mainly focus on approximation
methods in order to realize the balance of tractability and run-
time complexity. These methods can be generally categorized
into discrete and continuous groups according to the type of
state space it considers. Discrete-domain planning, including
point-based value iteration solvers [14], [15] and sampling-
based methods [16]-[18], perform discretization over the belief
space and hence generate a finite set of control candidates
from which the optimal strategy is determined according to
the maximum probability along each path (or equivalently the
minimum uncertainty at the goal). Approaches in continuous
spaces, optimized by a linear-quadratic Gaussian framework in
belief space [5] or gradient descent [6], derive a locally optimal
solution from a given initial plan that is generated from the
discretized methods. More recently, some further improvements
have contributed to reducing the computational complexity in
large-scale deployments by leveraging the similarity between
candidate actions for some specific forms of cost [19] and the
recovery of future posterior covariance [20].

Connectivity Control: The problem of modeling and predict-
ing network connectivity has been widely investigated in the
area of wireless communication and ad hoc networks [21]. The
preservation of connectivity is of great importance for packet
routing, resource allocation, and bandwidth management, which
have driven interest in the problem of connectivity control within
the community. The connectivity of a system is often modeled as
a proximity graph and thus the underlying problem is discussed
with the help of graph theory. The Fiedler value of a graph
or the second smallest eigenvalue of the Laplacian matrix of a
graph is a concave function of the Laplacian matrix and implies
network connectivity when it is positive definite [22]. There-
fore, optimization-based connectivity controllers are designed
through maximizing or minimizing the Fiedler value in either
centralized [23] or distributed applications [24], [25].

Another prevailing methodology is the gradient-based poten-
tial field methods, which exploit the graph Laplacian matrix to
construct a convex potential function and treat the loss of connec-
tivity as obstacles in free space [26], [27]. As the aforementioned
theories only consider proximity-based communication models
composed of disk-based or uniformly fading-signal-strength
communication links, more complex or realistic configurations
have been further investigated to evaluate the effectiveness of
multipath fading, intermittent or recurrent communication con-
straints, various communication models and so on [28], [29].

Besides, recent developments of connectivity research have
extended far beyond its basic concept as just a medium of
information transmission. The significance of connectivity is no
longer only about the routing of information in a network, instead
the underlying applications of relative observation as properties
of communication links, such as the strength of signal (SOS) or
time-of-flight (TOF), have been widely introduced for solving
navigation and localization problems.

The differences between the traditional connectivity problem
and the measurement event considered in this article can be
distinguished in two aspects. First, despite the great success in
connectivity control, most existing approaches rely on perfect
knowledge of the sensor state, which is unavailable for real
deployments in uncertain environments, such as GNSS-limited
areas. Here, the future measurement event between two adjacent
nodes is stochastic due to the presence of various uncertainties.
Second and most important, the problem of predicting the ex-
istence of a future measurement event, which we consider in
this article, only takes the change in system connectivity as
an intermediate tool for achieving final objectives, while the
traditional connectivity control problem only targets a desired
network topology through their designed methods.

Cooperative Localization: Reliable relative observations en-
able the promising paradigm of using cooperative localization
(CL) to navigate a multirobot system (MRS) through challeng-
ing environments.

In contrast to landmark-based localization methods, e.g., the
typical framework of simultaneous localization and mapping
(SLAM), CL depends little on the environment representations
and hence is of potential advantage to be applied in more critical
situations, for example, GNSS-limited areas such as in deep
ocean or outer space.

Early on, the performance of CL has been studied as the prob-
lem of sensor deployment through both theoretical analysis [30],
[31] and experimental validation [32], [33]. Using the central-
ized EKF as the engine of fusing measurements collected from
the network, it has already been shown that, when the absolute
position measurement is available, i.e., at least one robot can
get a GNSS signal or measurements from an anchor, then the
CL system is observable and the upper bound of steady-state
location uncertainty is constant. The solution quality becomes
independent of the initial uncertainty and is only dependent on
the topology of the relative position measurement graph, and the
accuracy of the proprioceptive and exteroceptive sensors of the
robots. Recent research on CL arising from the field of wire-
less communication takes the exact radio model of the obser-
vation process into consideration, simultaneously considering
the impacts from multipath propagation, transmitting power,
clock delay, etc. [34], [35]. Collecting both sensor positions
and the parameters of the communication channels into the
joint estimated state and based on the Fisher information matrix
(FIM), the authors proposed the equivalent FIM (EFIM) by
extracting the subset of the FIM corresponding to the position
states via the Schur complement operation [36]. As a result, the
inverse of the trace of the EFIM, which is named the square
position error bound (SPEB), can indicate the lower bound of
the estimated sensor position error under the current network
configuration.

Active planning of both configurations and motion strategies
for CL in MRS is more critical and necessary than for
the localization of a single robot. The main reason is that
relative measurements contribute the only location information
source to correct localization uncertainty in MRS. In contrast,
there may be several possible options for single robot
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applications. For example, in active SLAM, different loop
closures can be selected and formed by reobserving different
landmarks to reduce the uncertainty [1]. Research on network
optimization includes optimal formation in [2], motion strategies
in [37], and sensing frequency in [38]. The SPEB indicator-based
active operations of the network are investigated in [39] with
respect to the problems of node prioritization, sequential node
activation, node deployment, and power allocation, etc. When
uncertainties from both motion and measurement processes
are considered, the optimal motion strategies for MRS have
been studied in the contexts of target tracking, information
gathering [3], active SLAM [ 1], and autonomous navigation [40]
or coverage [41]. As a good combination, the BSP framework
has been applied to the generation of control inputs of MRS
while CL is activated for positioning robots in [42] and [43].

III. PRELIMINARIES AND PROBLEM FORMULATION
A. General Notations

In this article, the notation N T is used for the set of all positive
integers. Given an integer Z > 0, we denote the set of all the
positive integers no greater than Z as N} := {1,2,..., Z}. The
notation R”™ represents the vector space with dimensionality n
while R™*™ is the matrix space whose element size is n X m.
The operator | - | returns the absolute value of a scalar. The
double-colon : used between two superscripts or subscripts
represents a subset of consecutive elements, for example, A €
R™ :={a1,az,...,a,}, then we have As.5 = {aq, a3, a4, as}.

B. Configurations and Graph Theory

Consider a MRS composed of N identical robots operating
in a GNSS-limited environment. We further suppose that the
movement and measurement processes all suffer from stochastic
noise. Let p¥ and W ; denote the ith robot state at time step &
and the jth assistant node state, respectively. All robots can only
get their initial states and then need to cooperatively localize
themselves using observations collected by the sensors and
messages exchanged within the MRS. The assistant node state
considered here may describe the positions of either landmarks
(which remain static and unknown) or anchors (whose global
positions are exactly known), which are observed by robots.
While landmarks are generally used in the SLAM literature,
anchors are often introduced in cases where specialized robots
can occasionally get access to their exact position or when
base stations are deployed in the environment broadcasting
their global positions to nearby robots. Since landmarks can
be categorized and formulated as special robots who do not
suffer from motion noise and whose control inputs are always
zeros, without loss of generality, we assume all assistant nodes
are represented by anchors in this article for simplicity, whose
number is denoted by M . In the following, we intermittently use
“nodes” to represent robots or anchors.

Graph Theory: Assume all robots and anchors are associ-
ated with the nodes of a time-varying network topology graph
&G" = {¥,&"} where ¥and & are the set of graph vertices and
edges at time step k, respectively. The i-th node in the graph is
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denoted by v;,i € Ny, v asaresult := {v;|i € Njj;, y}.In
addition, the set of vertices #'can be further divided into the sub-
set of robots 7, and anchors 74, where 7z U 74 = 7. An edge
between nodes v; and v; at time step & is denoted by sf ;=1
if they can mutually observe and communicate with each other,
and sf ; = 0 if not. Therefore, the subgraph among robots is
undirected, i.e., sfﬂ- = 5?@ Vi, j € Vr. However, the edge only
exists from robots to anchor, and not the other way around. The
edge set is then defined as " := {v; x v; € ¥ X sy, =1}
The neighboring set IN f includes all the nodes v; such that
sp; =1, 1e., N¥ .= {vj|sf; = 1} and its size is denoted by
n¥. In the following, an edge sfj and the edge set &" would be
also referred to as the connection and the network topology,
respectively. Furthermore, the node v; is simply denoted by
its index ¢ and i € ¥ can implicitly denote all nodes in the
environment, including both robots and anchors. Given the
aforementioned scenario, if the planning horizon is L, then
the number of future possible network topologies N, can be

calculated by Nop, = 2N N, = w

C. Problem Formulations and Notations

Given the notations in Table I, we consider the conventional
state transition model with additive Gaussian noise
k41 ko, k
pi = fi [pFui wil M
where w; ~ A (0, R) with known information matrices R. We
further denote the corresponding probabilistic term of (1) as
k41 k ok
The observation model under investigation is slightly different
from the prevailing research in the presence of limited sensing
capacity. We instead explicitly denote the output of the observa-
tion model by a 2-tuple z}; :=< Z sy; >. As earlier defined
in the Graph Theory patrt, 3% is a binomial random variable
representing the existence of a connection between node 7 and j
at time step k. ij is the raw measurement data from a sensing

device and is only valid when sfj =1,i.e.,
205 = hij [PF, X5, 0] 2)

where v; ; ~ A(0,Q) with known information matrices Q.
The dimensionality of measurement £ ; is determined by the
type of sensor. For example, Z; ; is a scalar if only the relative
distance is observed by, for example, the radio sensor through
measuring the TOF or SOS. Z;; € R? if both distance and
bearing are measured in radar.

Taking as an example the measurement of relative distance,
which can be realized by, e.g., UWB, ultrasonic sensors, etc. If
the real distance between any two nodes i € Vg, j € Vis

d; j(k) = ||p¥ — X5, €)

then given the maximum sensing radius p, the connection vari-
able has
1, dij(k) <p
k y Ugg >~
sty = @)
] {0, d”U{?) >p
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TABLE I
COLLECTION OF NOTATIONS AND THEIR DEFINITIONS.

Notation and definition Descriptions

Xk::{p’f,-mpf\,}
Xklikz =xk . xkey
5= 12k Ivo; e NEy = (2], W)
éak—NkUNkU UNK,
Zk,Zkl:kz, Uk'Ukl:kZI(g’kl:kZ
W:={Wy,-- , Wy
xwik = (x*, wy
Xj‘e[xwlk
{ZOk UOk 1 W}
= (70K Ukk+l I

{gk“ k+L\yitere NY,,)
iter (0)i}

e]fr() k._
E]fO k+l|k

Set of all robot states at kth time step
Set of all robot states between time kj and kp
Set of measurements for robot i at time k

The communication and observation network of system at time k
The same definitions as XX and Xk1:k2

Set of states for all anchors in environment

Set of states for all nodes in environment at time k

Single node state that can indicate either robots or anchors

History data that have already been collected by time k

History data with extra control candidates for the /th planning step.
Set of all possible future connectivities during planning horizon L

and the raw measurement data has

Ekw' =d;; (k) +vij, vij ~N(0,Q). (5)

We remark that the disk model is fairly standard in ad hoc
networks, where all sensors are identical and of the same
transmission power. Therefore, this model is commonly applied
to represent range-based measurement and communication de-
vices. Thus the probabilistic term for the observation model
P ( i pl , X’“) can be decomposed as

—k k k _k k k k
:p(zi,ﬂpi ; vasia:l)p (si=11p}, X7).
(6)

We can write the posterior probability distribution function
(pdf) over the joint state as

P (XO:’“|J€O:’€> . )

Furthermore, given the prior distribution of robot states
p (pY),Vi € Vg, we can recursively expand the joint belief over
system states by

b (Xo;k) —p (Xo:k‘%&k)
k
=T @)II |p@ipi i) T] (100 X5)
i€Vr t=1 JENT

®)

If Gaussian noise is assumed, the belief can simply be denoted

o 0:k . . . .
by a vector X " and a covariance (information) matrix E’;’—(O:k
representing the estimated means and uncertainties, respectively,

ie,b (XO:k) = JV(X 2k k) . In the estimation problem,

the final purpose is to derive the optimal values of X 0% and
2%0; « using the available measurements, i.e., Z 0 that has been
collected from all sensors up to time k. Therefore, the connection
variable in the estimation problem is deterministic and can be
directly extracted from the collected data Z%* by
{ sty=1p(st, —1):1, if 2, € Z°F
iy =0:p (

<
= 1) = 0, otherwise Visk O

and the decomposition in (6) can be simplified as

t t t -t t t ot 0:k
p (2 ,lp%, X5) = p (% ;|p5, X5) V7, € Z°%.
However, such simplification cannot be applied to the planning
process since it lacks future measurement data. To highlight its
impact on active planning, let us consider an expectation-based
objective function Jj, as

Jk (Uk:k—‘rLfl) — B

>

=1

XO:k+l) Uk:k-‘,—lfl)
(10)

where the expectation operator E is taken with respect to the
future observations of all robots, i.e., Z k+1:k+L The reason for
using the expectation here is that the future measurements are
stochastic in the presence of uncertainties from both motion and
observation noise. ¢! (-) denotes an immediate cost function at the
Ith look-ahead step in terms of the joint belief b (X **1#+!) and
of the given control candidates. Traditionally, a motion policy
from time k to k + L is taken according to

*Uk::k—‘,-L—l _ {*Uk * Uk’-l—l o * Uk',—‘rL—l}
= argmin J; (UM, (11)
Uk:k+L—1

Now, let us rewrite the expectation in (10) explicitly by
recalling the composition of Z**1*FF = [Z¥THHE grivntr
and applying the total probability over the future network and
raw measurement data

Jk (Uk‘:k-‘rlzfl)

_ » Z»kJrl:kJrL £k+1:k+L|%Oik+L‘k
FHURL | gepinr ’

) ) kA 1kt . o
Zcz p(Xo.kﬂ%oo.kH\k’ 7 ’(gk+1.k+l)7 !
1=1

b(XO:k+l)
+1:k4+L 0:k+L|k
= Z ((g{fter |’;£ ! )
s rem
term A
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L
—k+1:k+L 0:k+L|k +1:k4+L [
p <£Z ‘JZ? 7éi;er ) :g:: ¢ (')
Skt 1:k+L ~—~
VA =1

" term C

(12)

term B

The objective is composed of three terms. Term A is defined
as network probability, which indicates how likely it is to form
such a network during the planning horizon given the history
data and the control candidates. Term B represents the likelihood
of collecting a possible measurement from sensors when the
network is specified. Remark that term B can be computed by the
expansion in the estimation problem in (8) given the existence of
future network. Then, the probability of raw measurement along
each connection can be calculated by the measurement model
as defined in (5). Term C is the immediate cost corresponding
to the posterior probability of joint states from O to k + [ given
a set of raw measurements and the network topology. It should
at least concerns with the predicted uncertainty of future robot
states.

It is clear that the network probability plays the role of
weighting how much influence each future network branch can
contribute to the objective function. Therefore, it is vital for the
evaluation of the planning objective to accurately predict the
network probability, instead of just using rough approximations
as in existing works.

D. Spatial and Temporal Independence Assumption

Regarding the network probability (Term A), we can proceed
by marginalizing over all possible robot states and applying the
chain rule, yielding

P (éaft-gi:k-‘r[/'L%O:k-‘rL\k) :/
Xk+1:k+L

p(gl_ct+1:k+L|Xk+1:k+L Jgo;k+L|k)p(Xk+1:k+L|j€o:k+mk> .
(13)

The following takes the assumption that the measurement con-
nections in future networks &%+ are both temporally and
spatially independent

p(&) =11 II »(sty) (14)
i€Vr jeNF
L
P (é«)k:k+L) — Hp (éakth) ) (15)

t=l

Note that this is a common assumption in the field of planning
under uncertainty [6], [9]. Such assumption originates from
estimation problems, where the Markov assumption is widely
applied such that the future does not depend on the past given
the present. It defines the merit of completeness to the states
of robots, which entails that knowledge of past states, measure-
ments, or controls carry no additional information that would
help us to predict the future more accurately. As the states are
complete under this assumption, then the measurement at the
current time is conditionally independent of the past and future
robot states, i.e., [ X W]" is sufficient to predict the potentially
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noisy measurement Z*. In other words, the Markov assumption
guarantees that measurements are temporally independent [44].
Furthermore, the measurements are also spatially independent
if the basic functioning principle of the observation devices on
each robot do not interfere with each other. The extension of
such an assumption from estimation to planning has not been
fully discussed in existing works. As this problem is beyond
the scope of this article, we just take this assumption and
leave the problem of investigating the exact relationship of the
measurement connections during the planning session as an open
problem for future research.

Based on the aforementioned assumption, the network prob-
ability is also independent from the history of data given the
distribution of future states, which yields

P (gk+1:k+L|Jé;o:k+L\k)

iter

- Ak%—l:kﬁ—L p(g

= I [ piletx) (s X ).
Pt X}

stj c&k+1:k+L
(16)

k+1;k-+L|Xk+1;k+L>p(Xk+1:k+L|JL00:1¢+L\1€)

iter

As aresult, the network probability can be partitioned according
to every possible individual connection. The integral over future
states actually indicates that the probability computation of a
connection is conditioned on the full distribution of its adjacent
nodes. Since the integral can be over any distribution of the joint
states X " 1L similarly to [7], we use the propagated belief

b (X’Hl:k'”‘lk) in the following sections as

b (Xk+1:k+L\k) _ b (Xo:k+L|k)
ﬁXk+1:k+L

b (XO:k-i-L\k) —p (Xo:k) p (Xk+1:k+L\Xk, Uk+1:k+L) .
(18)

A7)

Therefore, the remaining problem is as follows.

Connection probability problem (CPP): For a system
equipped with range-based measurement devices and assuming
Gaussian noise, accurately compute the probability of each
future connection sf']*t,Vi,j € ¥,Vt € Ni,ie,p (sfjf = 1),
given the control candidate Uk:kJrL’l, current estimates
b (X OZk) and prior knowledge about the sensing principles in

(3)-0).

IV. APSE: PROBABILITY OF A CONNECTION

In this section, an adaptive power series expansion (APSE)
algorithm is developed for the CPP. First, a basic lemma about
the factorial of a positive integer n € NV is presented.

Lemma 1: Given a positive integer n, its factorial has (%)" <
n! < e(%)", where e is the natural constant.

Further, Provost and Mathai’s lemma forms the basis of our
main algorithm. We state the lemma below and refer interested
readers to [11, Sec. 4.2, pp. 91-99] for the complete proof.
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Lemma 2: Given the p-dimensional multivariate normal
distribution X ~ A, (p, %), ¥ >0 and its quadratic form

VY =Q(X)=XTAX , A=A">0,letb=PTS 2y and
A=[A1,..,4,]T be the eigenvalues of TIADE, e,
PTS:AS:P = diag(1), PT P = I. Then the corresponding
cumulative distribution function (CDF) of Y, that is, p{Y” < y},
will be denoted by F),(A; b; y) and it can be expanded as follows:

g L4w
y2
F,(A;byy) = —)ep=—i——r, O<y<oo
hibin) = 30 () ety 0
(19)
where the coefficients c,, is defined by
1 & d |
o =exp | 3 Zb? H<2)‘j)_§
j=1 j=1
1 w—1
w = T dwfr T 2 1 20
c " ; c w (20)
and d,, is given by
12
dy = 5 Z (T—wb?) (24;)™", w>1. (21)
j=1

More in-depth theoretical analysis of computing the CDF of
quadratic form in normal variables by series representations can
be found in [45] and [46].

A. Modeling and Finite-Term Approximation

At planning time step k, for two arbitrary nodes in the sce-
nario, we can extract their state distribution from the propagated

belief b ( X *+1#+LIk) et us denote their true positions at time
step k + [ under the control candidate as p,, p,. Then, if the es-
timator used for propagated belief b (X kt1:k+Lik ) is complete,

the distributions of p;, p, can be reasonably treated by two nor-
mal distributions Py ~ A (1, 21) and Py ~ No(ps, Bo),
which can be extracted from the propagated belief b gX k“) .

As aresult, we know that the subtraction of P; and Py isalsoa
normal distribution. If the two distributions of future robot posi-
tions are independent of each other, then subtraction has AP =
P, — Py ~ Na(py — pg, 21 + Xo). Otherwise, let us denote
their covariance 3, o, then the variance of subtraction is slightly
different: AP = P — Py ~ Na(py — po, 1 + 3o
— 221’2). B B B

By denoting AP = [AP,,AP,]", the square of the true
distance dis = ||p; — pyll2 can be equally represented by
a quadratic random variable Y = Q(AP) = AP} + AP} =
APTAAP, where A = 1.

Considering the future connection variable s; » under arange-
based communication and observation device, whose maximum
range is p, the relationship between random variables Y and s o
is

p(sio=1)=p(Y <p?). (22)

As a result, it is straightforward to use Theorem 2 with di-
mensionality p = 2and inputyy = p? to predict the probability of
connection between two nodes, given the estimates of the means
and covariance matrices of both nodes. However, Theorem 2
needs to compute an infinite summation of power series terms,
which is intractable for practical applications. One instinctive
approach is to sum only a finite but sufficient number of terms.
This means replacing (19) with

Wrn w+l
Fy(Abyy) = Z(—l)“’cwm, O<y<oo (23)
w=0

where w,,, is a proper maximum degree that our algorithm must
determine. However, this method will introduce errors to the
calculation of F}, compared with the original infinite sum version
in Theorem 2. Thus, the main difficulty that remains is how to
maintain the balance between the tractability and probability
accuracy of our algorithm. This tradeoff is determined by the
choice of degree w,,, which will be the main focus of the
following sections.

B. Stability Analysis

In this section, some theoretical analyses are discussed in
terms of the truncation error to provide some insights on how to
determine this key parameter w,, . After selecting an appropriate
Wy, the error of the CDF introduced by the omission of higher
order terms is

> y11)+1
AFy(A:b:y) = )Py —t— 0 .
2(’ 7y) w:Zw( >CF(’U)+2) <y <
(24)

Since w + 2 is always a positive integer, the Gamma function
used here is the factorial of w + 1, i.e.,

N
AFQ(x,b,y)—wZwa (1) iy (25)

As we can see from the right-hand side of (25), this error
term is also an infinite summation of series. Nevertheless, we
are going to show that the error can be arbitrarily reduced so long
as the degree w,,, is appropriately selected. For the simplicity of
derivation, first, the coefficient d,, from Theorem 2 is shown to
be bounded in the following corollary.

Corollary 1: Given the 2-D multivariate normal distribu-
tion X ~ Na(p,X), let A = [A1, 23] be the eigenvalues of
covariance ¥ and b= PTS 2y = [by, by])T, where P is the
eigenvector matrix of 3. Then, if we have

21, > 1
1 1
w = F§+2Aj—1

the limit of series d,, computed according to (21) is finite, i.e.,

Vi e {1,2} (26)

lim d,, =0 (27)
w300
and we have a positive number d* > 0 such that
|dw| < d* Yw e NT,
Proof: The proof is given in Appendix A. |
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Hereafter, we create two new series ¢,, and d,,, respectively,
where d,, is defined as

dy = [d*, d¥, ..., d"Y. (28)

Let ¢y = cp, the remaining terms of ¢,, are again recursively
computed by (20), i.e.,

- 1L d _1
Co = Cop = exp —52()3 H(Q)\,]) 2
7j=1

1

Ew:*Z w-rCr, w21 (29)
r=0

S

The idea behind this new series ¢,, is to serve as an envelope
of ¢,,. We note that the definition equation in (29) is implicit
and vague to understand. Hence, an exact formula is developed
in the following corollary to provide a recursive version of its
computation and the relationship between c,, and ¢,,.

Corollary 2: The new series ¢,, defined in (29) and (28), can
be recursively computed by

Cuwt1 = dwu%éw (30)

and it is an envelope of ¢, in (20), i.e.,
lcw| < |6w| Yw € NT. 3D
Proof: The proof is given in Appendix B. ]

Moving on, let us denote a positive integer D € Nt such
that d* < D < d“ + 1, then we further introduce a new series
defined as

Dif D=1
1 _ Cuw .
N N 32
Cw (w+1) V'LUE ( )
2)if D > 2
D __ Cw wS(D— )
ew{rﬁ’_l@fw’wzw—l) (33)

A fact about 2 is summarized in the following Corollary.
Corollary 3: Given a finite and positive integer D, the limit
of |e2] is also finite, i.e.,

U%LH;C leP| = Const. (34)
and its maximum is constrained by |eZ| < ép_;.

Proof: The proof is given in Appendix C. |

Finally, we can conclude our main results of the truncation
error in (25) in the following Theorem.

Theorem 1: Given the 2-D multivariate normal distribution
X ~ No(p,X),let A = [A1,22]7 be the eigenvalues of covari-
ance Xandb = PTX2 1 = [by, by]7, where P is the orthogonal
matrix composed of the eigenvectors of 3. Let us compute the
series d,, according to (21) and denote a positive integer D

satisfying d,, < D < d,, + 1. Suppose

2., >1 Vje{l1,2} (35)

IEEE TRANSACTIONS ON ROBOTICS

then the truncation error AF5(A; b, y) in (25) can be reduced to
a given threshold 6 f > 0, i.e.,

AFy(k;b,y) < 6f (36)
if the degree w,,, € N7 in (23) is selected as
w gy Vie {1,2)
Wy > ey + D (37
meSD—ln<cj$) —1.

Proof: Based on Corollaries 1-3, we recall and expand the
expression AF5(A; b, y) deriving

. B > o yw+1
AFZ(x,b,w—w; ("

> |Cw| yw+1

Z H‘?:l(w+2—j) (w+1-D)!

W=Wm

IN

w+1

= Z |~D|w+1 D)!

y'll)
1
< +Z T (wm+1+jD)>

ywm+1 S yw
cp1——— | 1 — . (38
<P, ¥ 1- D)l +§::1 wn -y ) OY

On the one hand, the latest infinite summation term in
AF5(\;b,y) can be scaled down to the Basel Problem. Let

1 1

ywm+1

(merl D)!

<ép

(39)

then the infinite summation term in AF5(X; b; y) has

(o Et) ol 2) o2

(40)
Therefore, the requirement in (39) can be cast into
1 1 wm —D\"
—m < —==— 2w
(wm 70) w? Y
Yy
21
= In(wy, — D) — In(y) > 2 gy

ln(w)

It is clear that the maximum of Accordlngly we need

2
In(w,, — D) —In(y) > — = wy, > ety +D. (42)
e
On the other hand, let us denote g(w,,) = #:D)’ and

take a subtraction between g(w,,, ) and g(w,,, + 1), which yields

g(wm + 1) - g(wm)
ywm+2 ywm-&-l
" (W +2—-D)! (wy,+1— D)
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TABLE II
VALUES OF Wy, WHEN g(w;n, ) 1S LESS THAN A CERTAIN THRESHOLD GIVEN
FINITE y AND D.

gwm) <
103 102 109 1070
y=25(p=5).,D=10 108 109 118 133
y=25(p=5),D=20 139 141 149 163
y =100(p = 10), D =10 327 327 340 359
y = 100(p = 10), D =20 375 378 387 405

Conditions

-5 ()
(w1 =D \w, +2—-D '
As a result, we know that g(w,,) takes its maximum when
Wy, =y + D —2o0rw, =y+ D —1, and that g(w,,) is de-
creasing after w,,, > y + D — 1.Besides, its limitis exactly zero
when the selected w.,,, tends to infinity.
Consequently, the error function is bounded by
2
AR (hibiy) < époy (1 i 6) glwn).  (@3)

We remark here that given finite y and D, the output of g(w,,, )
decreases sharply after w,, >y + D — 2. Table II gives the
tendency of its decrement. Therefore, despite the value of ¢p_1,
we could just simply take a larger w,, to reduce the truncation
error AF5(A; b;y) as ¢p_1 is finite.

However, in contrast to our previous method of fixing the
selected degree w,, beforehand, it would be more flexible to
adaptively determine that degree online given the different dis-
tribution of relative distance between two nodes at each time. As
aresult, we need to dig into this error equation further to provide
some insights on real-time access for the choice of such degree
if a desired threshold § f of the truncation error is defined, i.e.,
find a proper wy, so that AFy < §f.

Firstly, with the help of the recursive computation version of
Cy 11 (30), we can derive an explicit equation of ¢,

. k—1+d"
Ck—ik Ck—1
k=1, o\ -
_ iz (@ +9) . (44)

k1, o
Hj:(l)(J +1)

Since d* < D, [[25 (d" +1) < [[25' (D + i) = OFesbt
we therefore know that

(D+w—-1)!_ "
(D = 1)1 ¢o YweN

Cuw >

(45)

and as a result
~ (2D —-2)!
LS B D -
then recalling Lemma 1 yields
- (2D —2)!
o= Do
e(D —1)2P-2

ST\ D-1,5 D10
(P57 (P

(46)

e2P-15, — ¢2D-1¢,.

IN

(47)

Next, let us consider the term g(w;, ). If we denote o = w,,, +
1 — D, then g(w,,) = ¥ 7.
obtain

Again, by recalling Lemma 1, we

YeN* b
=)
«
So if an error threshold §f is given, in order to limit the
truncation error under such a value, we can set

a+D
< Y
al o

y a+D€a

g(wm) = (48)

2 (6%
AFy(x; b y) < 2P ey <1 n W) (%) yP < &f. (49)
6 «

Since 1 + %2 < e, the above requirement can be further rewrit-
ten as

2D (@)a < (50)

o coy?”
Let us denote g(a) = (%), then similar to the analysis of
g(k.), it is easy to show that §(«) is monotonically decreasing
when o > ey, Va € NT. Therefore, we propose two stages to
determine the proper degree o,
D if a > e?y = w,, > e*>y+ D — 1, then

2D (yj)“ < ¢(2Da) (51)
o
2) we can let e2P~®) < cjsz’ then
Sf )
a>2D —1In

(CoyD

)
:>wm>3D—ln< fD>—1. (52)

Coy

Considering the conditions both in the Basel Problem (42) and
in Corollary 1, we can summarize the set of sufficient conditions
as listed in (37). [ |

C. Translational Approximate Covariance Expansion

Theorem 1 demonstrates that one can reduce the truncation
error introduced by the finite-term approximation in (23) by
increasing the selected degree w,,,. The rules of determining w.,,
show its relationship between the shape of the covariance, the
range limitation, and also the desired error threshold. It presents
a guaranteed and numerically efficient computation method
for the probability of connection. However, all aforementioned
analyses are built upon a very important assumption in (35), that
is, the proposed finite-time approximation can only be efficient
when the given relative covariance is well-constructed, i.e., its
eigenvalues are greater than %

This is a very critical constraint since in real applications the
robot beliefs continue to be updated after each new control action
or whenever a new measurement is obtained. Demonstrated
as the second disadvantage in our previous work [10], this
constraint will cause fatal prediction failure when using the
finite-term approximation in (23) for the case where the relative
covariance is too small or near singularity and the relative
distance of the two corresponding robots di2 = ||p; — ps||2 is
very close to the range threshold p.

Though this constraint is partly relieved by the approximate
covariance expansion (ACE) proposed in our prior research,
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Fig. 2. Geometric illustration of TRACE.

Algorithm 1: TRACE.

Result: p,,25,0 ;
Data: py,%,01 ;
1 Apin — compute the minimum eigenvalue of X ;
2 if Ajin < 3 then

3 ‘ ﬁ:ﬁ) Zy=BZ1, 1y = /Biy, p2=/Pp1
4 else

5| Z2=Z, py=py p2=p1

6 end

7 Return p,,25,p2

ACE suffers from lots of approximations and hence the proba-
bility precision is corrupted and degenerated. Regarding these
problems, we further propose an improved version of ACE,
where the expansion is transitioned to a new and collinear center
instead of dilating the covariance at its ellipse center. This
approach is hereafter called the translational approximate co-
variance expansion (TRACE). A geometric depiction of TRACE
is shown in Fig. 2, where the red solid ellipse E,; repre-
sents the 36 confidence area corresponding to the covariance
matrix ¥ = %1 + X5 of AP. Taking the maximum range of
the measurement device to be pq, its ranging circle from the
origin O with radius p; intercepts with the 39 area of E,.
There exists a smaller ellipse Fj; that is tangent to this ranging
circle. Therefore, the probability p(Y < p?) can be indicated
by

S(ABCNE,;)
S(E,1)

where S(-) represents the shape’s area of input arguments. Now
suppose that the covariance X is very small or near singular, then
we enlarge the covariance X by a coefficient § > 1 and translate
it into the solid red ellipse E,..

In contrast to ACE, the expanded ellipses are collinear with
the original ellipses, i.e., .5 and Eps in TRACE are moved to
a new center Oy, which is collinear with the original center O
and the coordinate origin O. In doing so, we can simply derive

p(Y <pi) = (53)

IEEE TRANSACTIONS ON ROBOTICS

Algorithm 2: APSE Algorithm for CPP.

Result:
p(Y < p?): future connection probability p(sfgr I=1);
Data:
p(xkrtkeLlky o n(FIRLER 5y oropagated belief ;
p : ranging maximum of sensors;
Of : desired theoretical limit for the truncation error.
1 Extract p¥*! ~ N(pYHIE 30), pht! < N(pETIR 3,
from b(Xk+1:k+L\k):
2 Compute ApK*! ~ N(p,2) by:
3 F:ﬁerllk—ﬁngllk»Z:Zl +2y 221
4 [p%’”pé’(’;‘_’“] — 36 area identification [10] ;
5 if p<pls" then
6 | Return p(Y <p*)=0;
7 else if p > p " then
8 | Return p(Y <p?)=1;
9 end
10 [p,2,p] —TRACE(p,2,p) ; /+ algorithm 1 */
11 A — compute the eigenvalues of Z;
12 P — compute the orthogonal matrix composed of the
eigenvectors of X ;
13 b= PTZ‘%F, y =p?, wy =50;
14 for r=0;r<wy,;;r=r+1 do
15 d; — using (21) for r =1,..., wpy;
16 ¢ — using (20) by using d, for r =0,..., wy;

yr+1
=(-D" =0,k
7 yr=( )F(r+2)r m

right side of (23) without ¢, */
18 if d, reaches its maximum then /+ adaptive

/* yr is the

strategy for selecting wpy */
— — 1 1 =L, _1
19 D=d;, wpm = b tono1 o Wm2= 2t o,
[
wm3=€2y+D s wm4:3D—ln($)—l ;
0
20 W =max(Wmi, Wm2, Wm3, Wma W) ;
21 end
22 end

23 Fy(A; b;y) < (23) using the series ¢, yr ;
24 Return p(Y < p?) = F,(A; b; p)

the following equation according to basic geometric similarity:

S(ABCNE;)  S(DEFN Eys) 54)
S(Erl) B S<Er2)
if po = v/Bp1.

The pseudocode of TRACE is presented in Algorithm 1.
It should be noted that there are various ways to choose a
proper expansion coefficient /. In the following algorithm, we
calculate $ by expanding the covariance matrix to a new one
whose smallest eigenvalue is no less than 1. Although TRACE is
proposed to deal with the case of a singular or small covariance,
we could also revise it inversely by narrowing a larger ellipse
at O to a smaller but “well-constructed” one at O;. This way
we can avoid a very large ranging threshold p in computation
because y = p? is heavily used in our finite-term approxima-
tion in (23). A large p may also introduce and accumulate
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rounding errors from numerical computation on a hardware
platform.

D. Adaptive Power Series Expansion (APSE)

So far, we have presented the two main parts of our algo-
rithm. In Section IV-B, we provided a theoretical derivation
showing that Theorem 2 can accurately calculate the probability
of connection of two nodes as long as the covariance of the
relative distance is proper and most importantly that the degree
of the finite-term approximation can be adaptively selected.
Then in Section IV-C, we provided a novel method for dealing
with the constraint of the covariance to extend our method to
more general cases. Jointly, we conclude the pseudocode for
computing the probability of a future connection in Algorithm 2.

As shown by the top-down order, this algorithm takes as inputs
the estimated mean g, covariance 3 of the relative distance
distribution of two nodes, and the ranging threshold p. It finally
returns the probability of the event Y = d2, < p?. Lines 4-8
are the content of 36 regulation, which has been developed and
explained in our previous work [10]. The purpose of preserving
this part is to reduce the computational complexity when the
relative distance computed from the estimated means lies far
beyond the 99.7% sample coverage area (i.e., 30 area). So we
just simply assign the probability to be 1 or O and accept the
consequently possible 0.03% error.

Moving on, the TRACE algorithm is called in line 10 to
derive a proper covariance 3 whose eigenvalues meet the critical
constraint in (35). Meanwhile, the mean vector g and ranging
threshold p would be updated accordingly. Then lines 11 — 22
are the computation of our proposed finite-term approximation
of Theorem 2. Within the pseudocode, we first give an initial
value of the selected degree w,, = 50 so that we can find
the maximum of the series d,,. Note that the initialization of
w,, presented here is not necessary but is instrumental in the
preallocation of storage. Here, we suppose that d,, can reach its
peak within the first 50 elements and therefore our code could
enter lines 18-21. Here are the main results of Theorem 1 for
adaptively choosing a proper degree w,, for the summation.
We note that this part only needs to be run once and since we
compare all the candidates of w,,, with the initial at line 20 the
total number of summations of our finite-term approximation in
(23) will be at least 50.

V. SIMULATIONS AND RESULTS

In this section, we present extensive analyses of the proposed
methods and perform comparisons against benchmark methods
from related works. We first evaluate the performance of APSE
in Algorithm 2 in terms of accuracy and computational effi-
ciency. Then, two instances of the cooperative localization and
active planning (CLAP) problem are investigated. The first is
drawn from our prior work [10] and formulates the problem as
a one-step finite state MDP (OS-MDP), where the state space
consists of all possible network topologies and the reward is
a function of the leader’s localization uncertainty. The second
is derived from a patrolling task and we study the impact of

Algorithm 3: Bernoulli Model.

Result: p(Y < p?)
Data: p, p;
1 Pr(Y<p®=0;
2 if ||ull2 < p then
3| ply<p?=1
4 end
5 Return p(Y < p?)

/* Initialized with 0 */

Algorithm 4: Linear Model.

Result: p(Y < p?)
Data: u, =, p ;
[pg'(lsi”, p?')’é“x] — 30 area identification;
if p<py5'" then
| Return Pr(Y <p?)=1
else if p > pZi" then
| Return Pr(Y <p*) =0
end
2y — 1 miny .

Return p(Y<p ) = W(p—p36 ) 5

N N R W N =

Algorithm 5: Random Sampling-Based Model.

Result: p(Y < p?)
Data: p,2,p,dim ;
1 Count =0 ;
2 while k<dim do
3 | data — RandomlySample(y,X) ;
4 if ||datall, < p then

5 | Count = Count + 1 ;
6 end

7 end

8 Return p(Y < p?) = %;

a longer planning horizon by using a generalized belief space
formulation (GBS).

In addition, to show the effectiveness of the proposed APSE
algorithm in active planning problems, we compare against
several prevailing approaches that solve the CPP in existing
works, these are

1) a deterministic Bernoulli model in Algorithm 3.

2) a Linear distribution in Algorithm 4.

3) a Random sampling-based distribution in Algorithm 5.

Note that the Bernoulli distribution has been widely applied to
many existing active planing problems by taking the well known
ML assumption [S]. This is due to the similarity it offers to the
estimation problem, whereby the standard estimation engines
(for both the filtering method and smoothing formulation) can
be directly introduced to recover the future beliefs given a control
candidate. As a result the corresponding cost can be easily
derived. The linear distribution, however, is a partly empirical
formula, which does not consider the exact motion and mea-
surement models. Indelman et al. [6] came up with this method
in their problem formulation to show the influence of uncertain
observations but no further detail is given about how the active
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planning framework can deal with such a probabilistic future
measurement and communication topology. Finally, the random
sample distribution is a completely intuitive method, which uses
the frequency of a connection to represent its probability as used
in [7]. However, the number of samples may lead to different
performance in terms of predictive precision and computational
tractability.

The code for all simulations was implemented in Matlab
R2019a and executed on a Windows machine with an i7-9750H
@ 2.6 GHz processor and 8 GB of memory.

A. Performance of APSE

In this section, we test our proposed APSE in Algorithm 2 to
evaluate its probability accuracy and computational complexity.
By comparing against existing methods, we will show that
one great advantage of APSE is its high precision. Since the
Bernoulli and linear models are merely two rough guesses of
the real distribution of the connection, we only compare our
proposed algorithm against the random sampling-based method
with different sampling degrees.

Before moving on, we remark here that the implementation
of our proposed probability algorithm is realized using the
for-loop in MATLAB, while the comparison methods using
random sampling apply the built-in function mvrnd. Therefore,
the computation time performance of our proposed APSE algo-
rithm, presented in this subsection, could be further improved if
more optimization can be introduced.

The setup is given as follows. We test two nodes A and
B whose estimated means are fixed to p, = [0.5,1]7 and
pp = [2,2.5]7 and the mean distance between them is ||p 4 —
Pgll2 &~ 2.21. In each simulation trial, we do the following
actions:

1) Randomly generate two symmetric and positive matrices
P4 >0, Pg > 0 as the covariance of nodes A and B.

2) Experimental method: for each range p in the sets S, :=
{0.1:0.1:6}, ps,pp, Pa,Pp, and p are taken as the input
of APSE with the desired accuracy 6 f = 107'°. We record the
output probability and run time corresponding to each p € S,
into the set P 4psg and T 4 psr, whose sizes are both 60.

3) Comparison methods: Random sampling (Algorithm 5)
is tested for six different sampling degrees, i.e., dim =
[10,10%,10%,10%,105,105,107]. For each dim, repeat step 2)
and record six sets of probabilities P 4, and run times T g, .
When dim = 107, the probability is treated as the ground truth,
ie., -lDdz'm:lO7 = Piruth-

4) Compute the root mean squared error (RMSE) for each
method in {APSE, 10,102,103, 104, 105, 106, 107}:

60

Z [Pmethod(i) — Piryth (Z)]Q

i=1

RMSEmethod =

and compute the mean run time per calculation as

60
) 1 )
MeanRunTime = 0 Z(Tmethod(z))'

i=1
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The statistical distribution of both RMSE and mean run time
per calculation over 200 trials are presented in Figs. 3 and
4, respectively. It is not surprising to see that the comparison
group, the random sampling-based algorithm, produces higher
calculation accuracy but worse computational complexity as
the sampling degree gets larger. The experimental group, the
APSE Algorithm 2, surpasses all the comparison groups in
terms of probability precision, which is indicated by RMSE. At
the same time, it achieves a relatively moderate computational
complexity, remaining in the same order of magnitude as the
random sampling algorithm with degree between 103 and 10*.

B. CLAP With OS-MDP

As depicted in Fig. 5, this simulation follows a similar setup
to our previous work [10]. Here we consider a MRS consisting
of one leader and four followers in a GNSS-limited and noisy
environment. All robots only know their initial positions exactly
(as shown in Table III) and need to localize themselves due to the
existence of motion noise. A point-mass motion model corrupted
with Gaussian noise is considered

Pt = o+ uf +w;
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Fig. 5. Initial configuration of the CLAP problem with an OS-MDP active
planning framework.

TABLE III
INITIAL POSITIONS FOR THE LEADER AND FOUR FOLLOWERS

Nodes L F1 F2 F3 F4
Pos(m) [0;0] [-1;6] [2:4] [S:-1]  [-3;-2]

where w; ~ M0, R), Vi € 7 with known information matrix
R = diag([0.04,0.04]). The leader is initially located at the
bottom-left corner and is tasked to reach its destination by
traversing the mission plane along a predefined trajectory. The
leader’s motion strategy used in this simulation is calculated
simply by heading toward the destination, i.e.,

wp = u Dges — ﬁ
= Umax =
dees _pH2

where p,. is the position of the destination, p is the estimated
position of the leader, and .4, is the limited moving distance
at each time step.

Four followers are deployed to help reduce the leader’s accu-
mulated localization uncertainty during the mission by optimiz-
ing their motion sequences. The action space for each follower
is set as

A; = [0;1], [1;0], [0; =1], [-1; 0].

All robots equip ranging devices whose maximum measurement
distance is set p = 3 m. As no global localization is available in
the mission space and no landmarks or anchors are available, the
relative measurements between robots are the only information
source for robots to correct their localization uncertainty. The
measurement model used in the simulation is exactly (5) with
known information matrix () = 0.01 and the active planning
framework is the OS-MDP [10] with a one-step-ahead planning
horizon. The immediate cost is computed as the leader’s local-
ization uncertainty

I (b (:ckH’Uk)) = trace <2pxz+1> .

All four methods of predicting the probability of future con-
nectivity are tested for 50 trials and the statistical results are
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Fig. 6. (a)—(d) Statistical distribution of the leader’s localization uncertainty

over 50 trials for CLAP with OS-MDP.
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Fig. 7. Leader’s mean uncertainties over 50 trials for all four methods.

TABLE IV
FINAL TRACE OF THE LEADER’S LOCALIZATION COVARIANCE

Methods Mean + std (m) APSE improvement
Bernoulli  0.4539 + 0.1914 20.8%
Linear 04114 + 0.1774 12.6%
Random 0.3958 + 0.0818 92 %
APSE 0.3595 + 0.0719 —

shown in Figs 6 and 7. Besides, the mean and standard deviation
of the trace of leader’s localization covariance at the final step
are also calculated and listed in Table I'V.

It is not surprising to see that the distributions of the trace
for all four methods all keep increasing and diverging. There is
no fixed location source and therefore the absolute drift of the
overall system cannot be corrected. More theoretical results of
this observation can be found in [31]. However, we also observe
that our proposed APSE algorithm surpasses all the existing
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methods, i.e., {Bernoulli, Linear, and Random}. Our proposed
APSE algorithm has the slowest localization performance de-
cay and improves over the other methods by {20.8%, 12.6%,
9.2%}, respectively. Therefore, we conclude that a more accu-
rate probability of future connection can indeed help improve
the performance of active planning in noisy environments.

C. CLAP With Generalized Belief Space (GBS)

We investigate a more realistic MRS planning scenario based
on a patrolling mission and allow a longer planning horizon.
Here, two mobile robots operate in a noisy and GNSS-limited
environment, of which robot L is the leader robot responsible
for the high-level tasks that are assigned by a human operator.
The follower robot F' is scheduled to help the leader reduce
its localization uncertainty. The follower serves as a relay node
that actively and optimally generates extra communication and
observation links when the leader is out of the anchor’s coverage
area. The single anchor in the scene knows its exact position and
can communicate with and observe nodes within its coverage
area. The initial configuration is illustrated in Fig. 8, where
the leader is executing a cruise or monitoring mission whose
predefined trajectory is completely out of the communication
and observation range of the anchor. Through a relay node, the
leader is virtually connected to the anchor by the relay link as
demonstrated by the green dashed lines in Fig. 8. The quality of
such a virtual connection depends on the relative position of the
measurement graph, which can be controlled by optimizing the
follower’s trajectory.

The motion and measurement models applied in this scenario
are the same as the previous simulation experiment. The plan-
ning horizon is set to 3 s look-ahead. Denoting p’;, and 250 as

the predicted mean and covariance of the leader robot while p.
and Ei)LF as those of the follower, then the immediate cost in the
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objective function is defined as

c (b (XkH, UkH*l) = witrace (252) + watrace (Zﬁ%) .
(55)

The initial positions are p? = [6,0]7 and p% = [3,2]7. The
anchor is located at the origin. Initially there is a connection
between the follower and anchor. Both robots are initialized with
some localization uncertainty. The leader’s high-level trajectory
is defined by four sequential waypoints W; = [6,6]7, Wy =
[_Ga G]Ta
W3 = [-6,—6]T, W, = [6,—6]7. We calculate the leader’s
control input by directly heading to its destination way-
point, which switches to next one once dr,w, = |[p, —
W;|| < 0.2m, where p;, is the leader’s estimated position.
The maximum moving distance at each time step for leader
and follower are 0.5 m and 0.7 m, respectively. The gains
in the objective function are chosen as w; =9 and wo = 1.
The GBS proposed in [6] is utilized as the active planning
framework.

Statistical results are presented in Fig. 9(a)—(d) showing the
distribution of the leader’s localization uncertainty over 20 trials.
Notice that the total run time for every trial differs since differ-
ent control strategies are executed due to varying localization
uncertainties. The lighter vertical bars in each distribution show
the time ranges when the leader reaches each waypoint. The
horizontal colored bar along the top demonstrates the number
of active trials at the corresponding time step.

We further collect the processed characteristics for all four
methods into one plot to make a clearer comparison as shown in
Fig. 9(e) and (f). Here two performance metrics are considered,
the evolution of the trace of the leader’s uncertainty and the
mean RMSE of the leader’s localization error (deviation between
the estimated and real position). More statistical results are
computed and compared in Table V. The performance metrics
considered here are as follows:

1) mm-RMSE: the leader’s localization RMSE when taking
the mean over all time steps and over all trials.

2) mm-Trace: trace of the leader’s covariance matrix when
taking the mean over all time steps and over all trials.

3) m-TotalCon: mean over 20 trials of the total number of the
relay connections transmitting location information from anchor
to leader through follower in each trial.

4) m-TotalTra: mean distance of the leader’s real trajectory
for each trial. The distance of the nominal trajectory assuming
perfect knowledge of the leader’s position is 42 m.

By comparing Fig. 9(e) and (f), we can draw two main
conclusions:

1) the methods {Linear, Random, APSE} under probabilis-
tic connection perform better than the traditional approach,
Bernoulli, under a deterministic connection;

2) the localization uncertainty becomes more convergent and
its mean uncertainty is smaller if a more accurate algorithm,
such as APSE, is used to calculate the connection probability.

From Table V, an evident conclusion that can be directly
derived is that our proposed APSE method surpasses all other
approaches {Bernoulli, Linear, Random}. The improvement in
performance of mm-RMSE for APSE is {24.28%, 22.18%,
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TABLE V
STATISTICAL CHARACTERISTICS OVER 20 TRIALS
Performance metrics - - Methods
Bernoulli Linear Random APSE
mm-RMSE (m) 1.0669 1.0381 09119 0.8079
mm-Trace (m) 1.5651 1.1715 0.8208 0.6752
m-TotalCon 41.85 + 23.47 44.70 + 14.09 66.85 + 20.07 75.85 + 8.85

m-TotalTra (m) 47.1090 + 1.9839

46.9427 + 2.4161

46.6451 £ 1.6078  45.7925 + 1.5493

11.40%} when compared with the other three methods. As
for the mm-Trace, its reduction rates are respectively {56.86%,
42.36%, 17.74%}. In addition, the comparative increase in the
m-TotalCon is {81.24%, 75.73%, 13.47%}.

Regarding the traveled distance, a more meaningful way is to
compare the extra distance, computed by subtracting the nominal
shortest trajectory from the executed one. Intuitively, the extra
travel distance is introduced due to the existence of uncertainties
and hence it can reflect how uncertainties are accumulated
across the evolution. As the leader’s nominal travel distance
is 42 m, we say that by applying the underlying four active
planning strategies, the extra distances are {5.1090, 4.9427,
4.6451, 3.7925}m. Therefore, our proposed APSE achieves a
{25.76%, 23.27%, 18.35%} reduction on the distance traveled.

VI. CONCLUSION AND FUTURE WORKS

This note addressed the algorithmic challenges in ac-
tive planning problems that arise when the future observa-
tion/communication connection is unknown at the time of
planning. The most important contribution is an improved
algorithm—APSE—for computing the exact probability of a
future connection considering the disk communication and ob-
servation model based on available information at the current
time and given the control candidates. Through both theoretical

analyses and numerical simulations, three conclusions are made
as follows:

1) The APSE can achieve a theoretically guaranteed accuracy
under an adaptive selection of the summation degree.

2) The computational complexity of APSE is at the same
magnitude as random sampling methods with their number of
samples between 102 and 10%.

3) We have verified the idea that the performance of active
planning can indeed be further improved by accurately predict-
ing the distribution of future unknown variables.

However, despite the aforementioned achievements, the
APSE algorithm still suffers from round-off error from the
computation platform. This error may significantly impact its
accuracy if the communication and observation threshold p is
too large. Though the TRACE algorithm can be used inversely
to deal with this problem, the critical requirement on the eigen-
values of the covariance still restricts its performance. A direct
way to address this problem is by applying packages with higher
precision of quantities such as the Multiple Precision Toolbox for
the MATLAB platform https://www.advanpix.com/. Another
roadmap may refer to the variants of a standard chi-square
distribution, where a look-up table is often used to search for
the probability and interpolation needed for the values missing
in the table. Either Patnaik’s approximation [47] or Pearson’s
approximation [48] may be an underlying solution.
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In addition, more investigations should be conducted to reason
about the independence relationships depicted in (14) and (15)
regarding future connectivities. Though spatial independence
can be established by the separated measurement process, tem-
poral independence should be further looked into, especially in
terms of the applicability of the Markov assumption.

Moving on, another important topic is to extend our analysis
from 3 DOF to 6 DOF. The key challenge in such an extension
is how to build a mathematical measurement model and reason
about the correlation between the limits of the measurement
model caused by future positions and attitudes.

Finally, more complex environments could be taken into
further consideration. Here we only assume an empty world with
an ideal disk communication and observation model. However,
real deployment of the active planning problem will likely have
to deal with different configurations, like physical obstructions
in the environment, the blocking of data transmission or radio
measurement signals, the separation of communication and ob-
servation devices, various types of sensor noise, faults, failures,
etc.

APPENDIX A

Recalling the definition of the coefficient d,, (21), we know
the subtraction of two consecutive terms, d,, 41 and d,, is

dw+1 - dw
(22) " o
2 ~1 2 -1
=5 {wtf [1-(20)) 1+ (1) (22) ' -1}
j=1
(56)
As we have [1 — (24;)7!] > 0, then if
>l 1 vj e {1,2) 57)
YR Ty —r TR
the subtraction has
dw+1 —dy > 0.
Moreover, it is clear that d,, < 0,Vw € N7 if
1
w2 Ve {12} (58)
J
From (21), the limit of d,, is
i dy, = Tim S 1 _p v Vjel,2
wee M T B 2\ T iy ) ST

j=1

Then according to the well-known L’Hopital rule, if 2A4; > 1,
the right-hand side of the limit is exactly zero.

In conclusion, we derive that if the given distribution of
relative distance between two nodes is well-defined, i.e., A > %,
the output of |d,,| will keep decreasing when the degree w grows
large enough to realize the conditions in (57), as the condition
in (58) is included in (57). Therefore, we know that there exists
a maximum d“ > 0 so that |d,,| < d“,Yw € RT.

This ends the proof of Corollary 1.
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APPENDIX B

Let expand two consecutive terms €1 and ¢,
wiy = (Godu + Erduy 4+ éurdr) (59)
and
(w+ Vews = (Godusr +erdy + -+ Gudi ) . (60)
Adding ¢,, to both sides of (59) derives
(w+ 1w = (Godu + E1diyr + -+ + Eyady +E0 ) . (6D)
Taking the subtraction of (61) and (60) has
(w+1) (Curpr — Cw)

=& (dw+1—dw)+.--+5w,1 (dg—d1)+éw (Jl—l).

(62)
Since dw+1 = CZU, =...= Jl = d", we can further get
(w+1) (Gt — Cu) = (d" = 1) Gy
d* +w
Cowtrl = Co- 63
= Copr =@ (63)

Recalling that ¢y = ¢y > 0, then we know &, > 0,Vw € N7,
Next, we need to show that |c,,| < |é,,], Vw € NT. Ithas been

already shown that ¢y = ¢y = |co| < |¢o|. Hence, we have
le1] = [eoda| < eolld"| = [éu]- (64)

Similarly, we suppose that |¢;| < |¢;| wheni = w — 1. Then we
can derive

1
|C'w‘ = ‘; (COdw + cldwfl + -+ waldl) |

Lo U ~ u ~ U ~
- (col|d®] +|eaf|d |+ Cw]ldY]) = |Cuwl.
(65)

IN

Note that the above equation is held by the fact that two new
series ¢, and d,, are all positive.

Similarly, we can also conclude the same result as shown
above when ¢ > w — 1. Therefore, the conclusion in (31) can be
drawn. This ends the proof of Corollary 2.

APPENDIX C

A similar series 2 can be built using ¢, according to the

definition of 65 in (32) and (33). Therefore, the relationship
between c¢,, and ¢,, in (31) can be equally extended to 65 and
éD . whereby we know that
leP] < 1eP| vw e N*T.
According to (30), the following extension can be made when
w>D —1:

D .
~D d“+wHJ:1(w+2*])ép

Epil = (66)
+ w+1 T2 (w+3 )
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So, if D = 1, we derive,

~1 d"+w 4 ~1

€w+1:mew<e VwZO

b (67)

This means ¢ gets smaller when w tends to infinity.
Otherwise, when D is general and D > 2, we have

b du+w(w+1)(w+2—D)Hf:_21(w+2—j)éD

Cwt1 = T (w+2)(w+ 1) [ g(w+3— )
(d* +w)(w+2— D) [ (w+2—j)
(w+2)w+1) 175 (w+2-7)

(@ +w)(w+2-D). _

— w2t 65 Yw>D — 1.

éD

(68)
A simple calculation derives

(d+w)(w+2—-D)—(w+2)(w+1)
=(d"-D-1w+d"(2—-D)—2.

As we know that 0 < d“ < D and D > 2, hence (d“ — D —
1) < 0and d“(2 — D) — 2 < 0. As aresult, €2 is also decreas-
ingwhenw > D — 1,ie., b, <él), Vw> D — 1. There-
fore, the limit of €2 is bounded, lim,, , €% = Const.

Since &2 is the envelope of 2, then the limit of |e] is also
bounded, which gives the result in (34). The maximum of 5111; is
obviously the first element e(l) = ¢o. Asfor D > 2, we recall the
relationship of ¢,, and ¢,,11 in (30). We know that ég is increas-
ing when w < D — 2 and the last element é5_, = ¢p_o is the
largest value thus far. After that, 65 will decreasq over the in-
crement of w, which gives its peak value €5_; = 251 < ép 4
when w > D — 1. Since we have ¢p_» < ¢p_1, the maximum
value of 2 is therefore ¢p_1. Consequently, it is also the upper
boundary of |eZ|. This ends the proof of Corollary 3.

REFERENCES

[1] C.Cadenaetal., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309-1332, Dec. 2016.

[2] Y. S. Hidaka, A. I. Mourikis, and S. I. Roumeliotis, “Optimal formations
for cooperative localization of mobile robots,” in Proc. IEEE Int. Conf.
Robot. Automat., 2005, pp. 4126—4131.

[3] B.Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas, “Any-
time planning for decentralized multirobot active information gathering,”
IEEE Robot. Automat. Lett., vol. 3, no. 2, pp. 1025-1032, Apr. 2018.

[4] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54—69,
Aug. 2005.

[5] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proc. Robot.,
Sci. Syst., Zaragoza, Spain, 2010. [Online]. Available: http://www.
roboticsproceedings.org/rss06/p37.html

[6] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous
domain: A generalized belief space approach for autonomous navigation
in unknown environments,” Int. J. Robot. Res., vol. 34, no. 7, pp. 849-882,
2015.

[7] S. Pathak, A. Thomas, and V. Indelman, “A unified framework for data
association aware robust belief space planning and perception,” Int. J.
Robot. Res., vol. 37, no. 2-3, pp. 287-315, 2018.

[8] E. I. Farhi and V. Indelman, “IX-BSP: Belief space planning through
incremental expectation,” in Proc. Int. Conf. Robot. Automat., 2019,
pp. 7180-7186.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

V. Indelman, “Cooperative multi-robot belief space planning for au-
tonomous navigation in unknown environments,” Auton. Robots, vol. 42,
no. 2, pp. 353-373, 2018.

L. Zhang, Z. Zhang, R. Siegwart, and J. J. Chung, “A connectivity-
prediction algorithm and its application in active cooperative localization
for multi-robot systems,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp- 9824-9830.

A. Mathai and S. B. Provost, Quadratic Forms in Random Variables:
Theory and Applications. New York, NY, USA: Marcel Dekker, Inc., 1992.
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

E. V.Denardo, Dynamic Programming: Models and Applications. Chelms-
ford, MA, USA: Courier Corporation, 2012.

G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Auton. Agents Multi-Agent Syst., vol. 27, no. 1, pp. 1-51, 2013.
D. Hsu, Wee Sun Lee, and N. Rong, “A point-based POMDP planner
for target tracking,” in Proc. IEEE Int. Conf. Robot. Automat., 2008,
pp. 2644-2650.

J. Wang, X. Li, and M. Q.-H. Meng, “An improved RRT algorithm
incorporating obstacle boundary information,” in Proc. IEEE Int. Conf.
Robot. Biomimetics, 2016, pp. 625-630.

S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief
space by factoring the covariance,” Int. J. Robot. Res., vol. 28, no. 11-12,
pp. 1448-1465, 2009.

A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty and
imperfect measurements,” Int. J. Robot. Res., vol. 33, no. 2, pp. 268-304,
2014.

D. Kopitkov and V. Indelman, “No belief propagation required: Belief
space planning in high-dimensional state spaces via factor graphs, the
matrix determinant lemma, and re-use of calculation,” Int. J. Robot. Res.,
vol. 36, no. 10, pp. 1088-1130, 2017.

D. Kopitkov and V. Indelman, “General-purpose incremental covariance
update and efficient belief space planning via a factor-graph propagation
action tree,” Int. J. Robot. Res., vol. 38, no. 14, pp. 1644-1673, 2019.

M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, “Maintaining network
connectivity and performance in robot teams,” J. Field Robot., vol. 25,
no. 1-2, pp. 111-131, 2008.

M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math. J.,
vol. 23, no. 2, pp. 298-305, 1973.

Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue
of a state-dependent graph Laplacian,” in Proc. Amer. Control Conf., 2005,
pp- 99-103.

P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R.
Sukthankar, “Decentralized estimation and control of graph connectivity
for mobile sensor networks,” Automatica, vol. 46, no. 2, pp. 390-396,
2010.

M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized
estimation of Laplacian eigenvalues in multi-agent systems,” Automatica,
vol. 49, no. 4, pp. 1031-1036, 2013.

M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connec-
tivity of mobile networks,” IEEE Trans. Robot.,vol.23,no. 4, pp. 812-816,
Aug. 2007.

M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic
connectivity control of mobile robot networks,” in Proc. IEEE Proc. IRE,
vol. 99, no. 9, pp. 1525-1540, Sep. 2011.

Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” IEEE Trans. Autom. Control, vol. 62,
no. 7, pp. 3109-3121, Jul. 2017.

J. Banfi, A. Quattrini Li, I. Rekleitis, F. Amigoni, and N. Basilico, “Strate-
gies for coordinated multirobot exploration with recurrent connectivity
constraints,” Auton. Robots, vol. 42, no. 4, pp. 875-894, 2018.

S. I. Roumeliotis and I. M. Rekleitis, “Analysis of multirobot localization
uncertainty propagation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
vol. 2, 2003, pp. 1763-1770.

A. I Mourikis and S. I. Roumeliotis, ‘“Performance analysis of multirobot
cooperative localization,” IEEE Trans. Robot., vol. 22, no. 4, pp. 666—-681,
Aug. 2006.

R. Kurazume and S. Hirose, “An experimental study of a cooperative
positioning system,” Auton. Robots, vol. 8, no. 1, pp. 43-52, 2000.

N. Trawny and T. Barfoot, “Optimized motion strategies for cooperative
localization of mobile robots,” in Proc. IEEE Int. Conf. Robot. Automat.,
2004, pp. 1027-1032.

Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—
Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp- 4956-4980, Nov. 2010.

Authorized licensed use limited to: University of Queensland. Downloaded on September 06,2022 at 07:26:02 UTC from IEEE Xplore. Restrictions apply.


http://www.roboticsproceedings.org/rss06/p37.html
http://www.roboticsproceedings.org/rss06/p37.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18

[35] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband
localization—Part II: Cooperative networks,” IEEE Trans. Inf. Theory,
vol. 56, no. 10, pp. 4981-5000, Oct. 2010.

[36] R. W. Cottle, “Manifestations of the Schur complement,” Linear Algebra

Appl., vol. 8, no. 3, pp. 189-211, 1974.

K. Zhou and S. I. Roumeliotis, “Multirobot active target tracking with

combinations of relative observations,” IEEE Trans. Robot., vol. 27, no. 4,

pp. 678-695, Aug. 2011.

[38] A. I. Mourikis and S. I. Roumeliotis, “Optimal sensor scheduling for
resource-constrained localization of mobile robot formations,” IEEE
Trans. Robot., vol. 22, no. 5, pp. 917-931, Oct. 2006.

[39] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor, “Network
operation strategies for efficient localization and navigation,” in Proc. IRE,
vol. 106, no. 7, pp. 1224—1254, Jul. 2018.

[40] D. Levine, B. Luders, and J. P. How, “Information-theoretic motion
planning for constrained sensor networks,” J. Aerosp. Inf. Syst., vol. 10,
no. 10, pp. 476-496, 2013.

[41] M. Zhong and C. G. Cassandras, “Distributed coverage control and data
collection with mobile sensor networks,” IEEE Trans. Autom. Control,
vol. 56, no. 10, pp. 2445-2455, Oct. 2011.

[42] T. Regev and V. Indelman, “Multi-robot decentralized belief space
planning in unknown environments via efficient re-evaluation of im-
pacted paths,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp- 5591-5598.

[43] T. Regev and V. Indelman, “Decentralized multi-robot belief space plan-

ning in unknown environments via identification and efficient re-evaluation

of impacted paths,” Auton. Robots, vol. 42, no. 4, pp. 691-713, 2018.

S. Thrun, “Probabilistic robotics,” Commun. ACM, vol. 45, no. 3,

pp. 52-57, 2002.

S. Kotz, N. L. Johnson, and D. Boyd, “Series representations of distribu-

tions of quadratic forms in normal variables. I. Central case,” Ann. Math.

Statist., vol. 38, no. 3, pp. 823-837, 1967.

S. Kotz, N. L. Johnson, and D. Boyd, “Series representations of distribu-

tions of quadratic forms in normal variables II. Non-central case,” Ann.

Math. Statist., vol. 38, no. 3, pp. 838-848, 1967.

[47] P.Patnaik, “The non-central x 2-and F'-distribution and their applications,”
Biometrika, vol. 36, no. 1/2, pp. 202-232, 1949.

[48] J.-P. Imhof, “Computing the distribution of quadratic forms in normal
variables,” Biometrika, vol. 48, no. 3/4, pp. 419-426, 1961.

[37]

[44]

[45]

[46]

Liang Zhang (Member, IEEE) received the B.Sc.
degree in automation from Shandong University,
Jinan, China, in 2015 and the Ph.D. degree in aeronau-
tical and astronautical science and technology from
the School of Astronautics, Harbin Institute of Tech-
nology, Harbin, China, in 2021. He was also a visiting
Ph.D. student in the Autonomous System Lab, ETH
Ziirich, Switzerland, from 2018 to 2019 under the
foundation from China Scholarship Council.

He is currently a Lecturer in the School of Engi-
neering and Automation, Anhui University, China.
His research interests are mainly around the multi-robot or multi-agent system
(MAS/MRS), including cooperative control, planning under uncertainty and
coverage control.

IEEE TRANSACTIONS ON ROBOTICS

Zexu Zhang received the master’s degree in signal
and information processing and the Ph.D. degree
in pattern recognition and intelligent systems from
Harbin Institute of Technology, Harbin, China, in
2000 and 2004, respectively.

He is a Full Professor with the Harbin Institute of
Technology, Harbin, where he is also the Director of
the Institute of Aircraft Dynamics and Control. His
research interests include aircraft autonomous navi-
gation and control, intelligent cooperative perception
and autonomous decision-making in drone swarm,
data visualization. He was the Director of the Committee of Space Intelligence
of the Chinese Society of Space Research (2021-2025).

Roland Siegwart (Fellow, IEEE) received the
Diploma degree in mechanical engineering and the
Ph.D. degree from ETH Zurich, Zurich, Switzerland,
in 1983 and 1989, respectively.

He is a Professor for autonomous mobile robots
with ETH Zurich, Zurich, Switzerland, the Founding
Co-Director of the Technology Transfer Center, Wyss
Zurich, and a Board Member of multiple high-tech
companies. From 1996 to 2006, he was a Professor
with EPFL Lausanne, held visiting positions with
Stanford University and NASA Ames, and was the
Vice President of ETH Zurich from 2010 to 2014. His research interest include
the design, control, and navigation of flying, and wheeled and walking robots
operating in complex and highly dynamical environments.

Prof. Siegwart received the IEEE RAS Pioneer Award and IEEE RAS Inaba
Technical Award. He is among the most cited scientist in robots world-wide,
Co-Founder of more than half a dozen spin-off companies, and a strong promoter
of innovation and entrepreneurship in Switzerland.

Jen Jen Chung (Member, IEEE) received the B.E.
and the Ph.D. degrees in field robotics from the
University of Sydney, Sydney, Australia, in 2014 and
2010, respectively.

She is a Senior Researcher in the Autonomous
Systems Lab (ASL) at ETH Ziirich. Her current re-
search interests include perception and learning for
mobile manipulation, algorithms for robot naviga-
tion through crowds, informative path planning and
adaptive sampling. Prior to working at ASL, she was
a postdoctoral scholar at Oregon State University
researching multiagent learning methods and she completed her Ph.D. on
information-based exploration-exploitation strategies for autonomous soaring
platforms at the Australian Centre for Field Robotics in the University of Sydney.

Authorized licensed use limited to: University of Queensland. Downloaded on September 06,2022 at 07:26:02 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


