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Distributed PDOP Coverage Control: Providing
Large-scale Positioning Service using a Multi-robot

System
Liang Zhang1, Zexu Zhang1∗, Roland Siegwart2 and Jen Jen Chung2

Abstract—This manuscript addresses the active positioning
service using a multi-robot system (MRS) for providing large-
scale coverage and scalability in terms of MRS size. Inspired
by the coverage control problems from Wireless Sensor Network
(WSN) literature, we propose a gradient-based control method
where a position dilution of precision (PDOP) field is applied to
indicate the performance of the positioning service. We derive
the gradient of the PDOP field through rigorous derivation,
which can be distributively computed by each robot using only
the local information from itself and its neighbors. Extensive
simulation results show that our proposed method is robust
to initial positions, scalable to MRS size, and can extend the
coverage area of the positioning service by leveraging the mobility
and coordination within the MRS.

Index Terms—Multi-Robot Systems; Optimization and Opti-
mal Control; Distributed Robot Systems; PDOP field Coverage;
Active Positioning Service.

I. INTRODUCTION

ACCURATE and easy-to-access positioning systems are
gradually becoming essential for people’s daily life and

society in general, such as GNSS (Global Navigation Satellite
Systems). However, GNSS suffers from attenuation, distortion,
multi-path effects etc. in critical environments, for example,
indoors, in tunnels, underwater, or outer space [1]. There-
fore, research into large-scale positioning services in GNSS-
limited areas is getting growing attention for various possible
applications in monitoring and exploration, search and rescue,
surveillance, or base construction on the Moon or Mars, and
so on [2].

Positioning systems for GNSS-limited areas have been
widely developed over the past decades and can be generally
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categorized according to its coverage size: 1) regional systems,
such as the LORAN [3]; 2) local systems, like the Locata [4];
3) indoor systems, for example, the Vicon [5] and Cricket [6].

However, most existing systems assume that the anchors
remain either stationary or keep moving along a regular
orbit or a predefined trajectory. Therefore, the underlying
positioning system can only provide a passive service, where
the users can be positioned only when they are inside the
coverage areas. Besides, the quality of the positioning service
also cannot be adjusted on-the-fly. Lastly, the possible mission
space is constrained by the size of the positioning systems. As
a result, state-of-art systems tend to deploy redundant anchors
for maintaining an efficient mission space.

In this paper, we put the anchors on mobile robots and
present a distributed control solution for dynamically deploy-
ing the MRS in GNSS-limited areas to provide active and
optimal positioning service. The designed control strategy is
formulated and solved by the coverage control scheme from
WSN [7], where the positioning performance is indicated as
the distribution of the PDOP field over a specified hotspot area.
Theoretical derivations show that the gradient of the PDOP
field can be computed locally, which results in a gradient-
descent-based motion strategy for each robot. Therefore, the
MRS can be autonomously maneuvered to an optimal geomet-
ric configuration over the given hotspot area.

Innovations of the proposed control method are threefold,
1) greatly extending the coverage by leveraging the mobility
and coordination within MRS, 2) adjusting positioning perfor-
mance on-the-fly and 3) scalability to MRS size.

The main contributions of this paper are: 1) The reformu-
lation of active positioning service into a coverage control
problem over a PDOP field; 2) The rigorous derivation of the
PDOP gradient both within the coverage dominance and on
the boundary over a single robot’s position.

A. Related work

Positioning systems: Existing regional and local systems
mainly attempt to either enhance GNSS by applying pseu-
dolites or provide additional location information by incor-
porating new measurements. A pseudolite is a generator and
transmitter that can receive and augment GNSS signals on
either ground-based [4], [8], [9] or airborne-based [10], [11]
platforms. Consequently, the signal from a pseudolite can be
orders of magnitude stronger than from a satellite and hence
it can overcome the attenuation caused by obstacles in the
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environment. Regarding indoor systems, different techniques
have been developed over the past decades. The employed
signal technologies involve radio frequency devices [12] (e.g.
WLAN, WIFI, Bluetooth, ultrawideband and RFID), ultra-
sound [13], infrared [14], IMU, vision-based systems, mag-
netic fields and visible light [15]. As a consequence, the
physical characteristics include internodal range, signal fre-
quency and strength, fingerprint, acceleration, angle and so on.
Besides, optimal deployments for stationary pseudolites have
been investigated in [16]–[18]. However the final solutions are
derived case-by-case with respect to the number of pseudolites.
Such deployment strategies are usually centralized onto a
ground station or a central node, and hence are not robust
and not scalable.

PDOP in GNSS: DOP is a concept that is tightly related to
GNSS, but extendable to any range-based positioning solution
[16], [19]. The most commonly used one is the Geometric
DOP (GDOP), which states how errors in the pseudorange
measurement will affect the final state estimation [20], [21].
Mathematically, GDOP is composed of both PDOP and time
DOP (TDOP). While PDOP reveals the scaling effect of
3d relative positions, the TDOP accounts for how the time
synchronization matters in state estimation.

In practice, the positioning accuracy of range-based systems
is affected by many factors, such as the atmosphere refraction,
multi-path effects, geometry, clock offset, etc. While others
depend on either environment or devices, only the geometry
(indicated by PDOP) is fully controllable. Therefore, seeking
a lower PDOP over hotspot areas becomes the primary moti-
vation of the active positioning service.

Coverage control: Each sensor in a WSN aims at maxi-
mizing the probability of detecting an event happening within
the mission space. While finding the optimal global coverage
configuration is NP hard [22], recent works focus on local
solutions by utilizing greedy gradient descent along a proper
coverage objective [7], [23]. The prevailing objectives are the
expected sensing cost of event locations or the joint event
detection probability of sensors [7], [24]–[26]. As most works
assume that every sensor detects the event independently, the
derivation of gradient over each sensor’s location can be also
independently extracted from the objectives.

However, the PDOP reflects the relative formation of the
MRS with respect to users and hence the robot positions are
no longer independent. Therefore, the computation of PDOP
involves several complicated matrix operations and hence is
more difficult for analysis. Besides, most existing coverage
control problems mainly focus on 2D applications with either
a fixed or unlimited covering radius. We extend the benchmark
by deploying the robots into 3D mission space. Though the
coverage area is still on a 2D plane, the covering radius varies
with the altitude of the flying robots.

II. PROBLEM FORMULATION

As shown in Fig. 1, we consider a large-scale mission space
F ⊂R3 in 3D space as a vertical prism generated by a convex
polygon on the ground plane Ω⊂ R2 i.e. the x-y plane (gray
area in Fig. 1). In order to provide a positioning service for
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Fig. 1. Mission space with notation definitions.

possible clients on the ground plane, a MRS is deployed. The
position of the i -th robot is thereby a 3D vector which is
denoted as S i = [si x , si y , si z ]T ,S i ∈ F . When the number of
mobile robots is N , their joint location vector is defined as
S = [S1,S2, · · · ,SN ]T .

The MRS is deployed to guard or monitor the mission space
in the long term. Therefore, the MRS is able to build a precise
map of the environment in advance utilizing SLAM and other
coordination techniques. As a result, these robots can localize
themselves even without GNSS. However, the ground user
p ∈ Ω may be a temporary robot that is traversing across
or intruding into the mission space. The MRS is tasked to
localize the user using range-based measurements. If the user
is a cooperative unit, the MRS becomes a set of pseudolites
and provides positioning service in a similar way as GNSS.
For the non-cooperative user, passive range sensors (e.g. stereo
vision or radar) can be utilized and the user is localized at the
“MRS-end". As the mapping and self-localization steps are
not our focus, we assume here that each robot is aware of its
own position S i exactly. We leave the problem of an inexact
self-localization with uncertainties as future research.

Constrained by the practical capacities of sensors and flying
platforms, we investigate a coverage model as ground circle
Ωi ⊂ Ω whose center is projected from the i -th robot with
a non-fixed and limited radius ri . Applying the prevailing
notation in geometry, we use the prefix ∂ to denote the
boundary of a set, so that ∂Ωi is the boundary of Ωi ,∀S i ∈ S.
In practice, the coverage area for a sensor is usually and
directly relevant to its height si z . Therefore, we uniformly
denote the coverage radius as a function of the robot’s altitude
i.e.

ri = r (si z ). (1)

For example, Fig. 1 shows a reciprocal model with respect to
the flight altitude si z ,

ri =
√

L2 − s2
i z , (2)

where L is the maximum communication distance and thus
also the maximum relative-distance measurement. This re-
ciprocal model in (2) shows that our coverage model is not
ideal but limited by practical constraints. Note that any other
differentiable models can also be used to derive the distributed
control strategy in the following sections.

To evaluate the service quality for the ground user, we
borrow the concept of PDOP from the scope of GNSS re-
search [21]. Considering the user p in Fig. 1, let’s denote
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N k
p := {S i |p ∈Ωi } as the observed set of flying robots from

point p at time step k and nk
p the size of N k

p . After augmenting
the user position p into a 3D point p̄ = [pT ,0]T , the unit
direction vector hi from user p to the i -th observed pseudolite
is

hi = hp→Si =
p̄ −S i

||p̄ −S i ||2
. (3)

Stacking all the unit vectors with ∀S i ∈ N k
p derives,

H =
[

hT
1 · · ·hT

nk
p

]T
. (4)

Then the quality of positioning information provided by the
MRS is indicated by the PDOP, which is computed directly
from H

PDOP (p ,S) = tr
((

H T H
)−1

)
, (5)

where tr (·) computes the trace of an input matrix. Notice
that PDOP is a coefficient enlarging the noise of the relative-
distance measurements and feeding it into the uncertainty
of the user’s location. Therefore, seeking a smaller PDOP
becomes the main motivation to optimally arrange the MRS.

Instead of serving a single point on the ground plane, this
paper focuses on providing a positioning service over a specific
area, called hotspot coverage. The objective of this paper is
to design a transition policy for all robots, so that whenever
a hotspot is given within the mission space the MRS can be
autonomously deployed to provide an optimal PDOP field over
the hotspot.

III. COVERAGE CONTROL FOR PDOP FIELD

In order to specify the hotspot areas, a density function
R(p) : Ω→ R captures the importance of providing a better
positioning service to any point on the ground plane i.e.
lower PDOP. We assume that the density function is positive
and finite for all points on the x-y plane, i.e. R(p) > 0
and

∫
ΩR(p)d p <∞,∀p ∈Ω. Typically, the Gaussian density

function is used,
R(p) = exp(−α||p −pd ||2), (6)

where pd is the central point and α is the parameter deter-
mining the decay rate of the density distribution.

We reformulate the active positioning service problem into
maximizing the following locational optimization function:

H (S) =
∫
Ω

R(p) f
(
PDOP (p ,S)

)
d p , (7)

where f (·) is a continuous and monotonically decreasing
function that converts a lower PDOP to a larger value. The
output from f (·) is therefore called a general PDOP value.

However, before developing our main control law, we need
to further investigate the PDOP value computed from (5) as
it tends to be singular for some special configurations of
the MRS. Observing from (3)-(4), the size of the collected
measurement matrix H is nk

p ×3, whereby the size of H T H is
exactly 3×3. However, if the number of observed robots from
the ground point p is less than 3, i.e. nk

p < 3, or those unit
vectors in H are linearly dependent so that det (H T H) < 3,
then the inverse operation in (5) is impossible and tends to
infinity. Therefore, in order to deal with this problem, we
separate the underlying ill-constructed configurations from

the normal cases and once these singular configurations are
detected, the general PDOP value computed from f (·) is
assigned to a constant, i.e. let

f̄ (·) =


a, if nk

p = 1

b, if nk
p = 2

c, if nk
p ≥ 3 but det (H T H) < 3

f (·) , otherwise,

(8)

where a,b,c are three positive constants and we may want
the relationship as a < b < c because more observed robots is
always better for lowering its PDOP in future.

Note that the function f̄ is non-continuous at some special
MRS configurations due to the limited coverage range for each
robot. More descriptions on designing f (·) will be provided
in Section V. To simplify the following derivation, we just
ignore the derivative operation for those special cases and set
them to zeros. Only the last term in (8) is considered i.e.

∂ f̄ (·) =


0, if nk

p = 1,2

0, if nk
p ≥ 3 but det (H T H) < 3

∂ f (·) , otherwise.

(9)

Therefore, the modified utility of coverage control problem
can be reformulated into

H (S) =
∫
Ω

R(p) f̄
(
PDOP

(
p ,S

))
d p . (10)

As a result, to solve the original active positioning service
problem, we try to find a distributed control protocol for every
mobile robot S i , such that an optimal configuration of the
MRS can be reached for the simultaneous coverage utility (10)
when the hotspot density distribution is given to all robots.
This can be achieved by solving the following optimization:

max
S

∫
Ω

R(p) f̄
(
PDOP

(
p ,S

))
d p

s.t. S i ∈ F , i = 1, · · · , N

ri = r (si z ), i = 1, · · · , N

(11)

IV. DISTRIBUTED CONTROL METHOD

Moving on, let’s denote N k
Si

:= {S j | j 6= i ,Ω j ∩Ωi 6=∅} the
set of neighboring robots whose coverage areas intersect with
the coverage of the i -th robot at time step k. We present an
important assumption as prerequisite in the following,

Assumption 1: Every robot S i can always obtain its set of
neighboring robots N k

Si
.

Note that this assumption is general in WSN research [25]
and can be distributively established if each robot additionally
equips a communication device that is responsible exclusively
for exchanging positions among all the pseudolites. Then if
the communication range of this device is larger than the sum
of maximum coverage ranges of the two adjacent robots, the
neighboring set N k

Si
can be formed by simply collecting all the

received messages from the communication device on robot i .
Inspired by existing coverage control problems [25], [26],

a gradient-based controller is implemented in this work. Ac-
cording to the gradient descent updating rule, the next position
of robot i can be determined by

Sk+1
i = Sk

i +λk
∂H (S)

∂Sk
i

, (12)

where k is the time step and λk is the step size [7].
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A. Gradient derivation

Given a ground point p , the positions of robots are coupled
with each other when computing the PDOP value at p .
However, the partial derivative of the objective function over a
single robot only exists within the coverage area of this robot,
as the PDOP value at an outside-coverage ground point is
irrelevant to the robot’s position. Consequently, although the
objective function in (11) cannot be partitioned according to
the “dominance region” of each robot as [23], such a partition
is applicable to its partial derivatives as

∂H (S)

∂S i
= ∂

∂S i

[∫
Ωi

R(p) f̄
(
PDOP (p ,S)

)
d p

]
. (13)

However, this derivative is still non-trivial as the integrand
and dominant of the integration are functions of S i . In order
to evaluate it, we apply the well-known Leibnitz rule for
differentiating an integral and a “physical” extension in [27].
From an overview perspective, we have

∂H (S)

∂S i
=

∫
Ωi

R(p)
∂ f̄

(
PDOP (p ,S)

)
∂S i

d p

+
∫
∂Ωi

R(p) f̄
(
PDOP (p ,S)

)
v ·nd w,

(14)

where the newly introduced variables in the second term on
the right hand side are illustrated in Fig. 2. Specifically, d w
is the arc length element around a boundary point p and
variables n, v are the unit outward normal and the velocity
of p disturbed by the movement of S i , respectively.

The expansion in (14) contains two main parts, which are
the gradients within the coverage area and on the boundary.
They are discussed separately in the following.

Gradient within coverage area: According to the chain
rule, the derivative of f̄ over robot i ’s position is

∂ f̄
(
PDOP (p ,S)

)
∂S i

= ∂ f̄

∂PDOP

∂PDOP (p ,S)

∂S i
. (15)

After incorporating the modifications in (9), the term ∂ f̄
∂PDOP

is general if a continuous and differentiable function f in (10)
is selected. Moving on, the following facts [28] about matrix
calculations are presented to help further derivations:

∂

∂x
f (A(x)) =tr

[
∂ f

∂A

∂A

∂x

]
(16)

∂

∂A
tr (A) =I (17)

∂

∂x
A−1 =− A−1

(
∂A

∂x

)
A−1 (18)

Therefore, the chain rule can again be applied to the
calculation of ∂PDOP (p ,S)

∂Si
after recalling the computation of

PDOP in (5):

∂PDOP (p ,S)

∂S i
=
∂tr

[(
H T H

)−1
]

∂S i

= tr

∂tr
[(

H T H
)−1

]
∂
(

H T H
)−1

∂
(

H T H
)−1

∂S i


= tr

[
−(

H T H
)−1 ∂H T H

∂S i

(
H T H

)−1
]

.

(19)

Now let’s consider a ground point p ∈ Ωi . To derive the
value of the above equation, the observed set N k

p is needed
to form the joint measurement matrix H by (3)-(4). Taking

Fig. 2. Illustration of the gradient on the boundary.

Assumption 1 and recalling the definition of the neighboring
set N k

Si
, it is easy to get the following relationship,

N k
p ⊂ N k

Si

⋃
Si . (20)

Therefore, we know that the calculation of H can be com-
pleted based on local information available to robot i given
Assumption 1 and hence the derivative in (19) can also be
computed ∀p ∈Ωi in a decentralized manner.

Next, let’s discuss the term ∂H T H
∂Si

in (19). We have

∂H T H

∂S i
= ∂hT

1 h1

∂S i
+ ∂hT

2 h2

∂S i
+·· ·+

∂hT
nk

p
hnk

p

∂S i
= ∂hT

i hi

∂S i
. (21)

Based on the definition of unit vector hi in (3) and denoting
p = [px , py ]T , we can obtain,

∂hT
i hi

∂si x
= 1

||p̄ −S i ||22

2(si x −px ) si y −py si z

si y −py 0 0
si z 0 0

 , (22)

∂hT
i hi

∂si y
= 1

||p̄ −S i ||22

 0 si x −px 0
si x −px 2(si y −py ) si z

0 si z 0

 , (23)

∂hT
i hi

∂si z
= 1

||p̄ −S i ||22

 0 0 si x −px

0 0 si y −py

si x −px si y −py 2si z

 , (24)

where p̄ is the augmented 3D position of p through p̄ =
[pT 0]T . As a result, the first term on the right hand side of
(14) can be computed by:∫
Ωi

R(p)
∂ f̄

(
PDOP (p ,S)

)
∂S i

d p =

∫
Ωi

−R(p) ∂ f̄
∂PDOP tr

[(
H T H

)−1 ∂hT
i hi

∂si x

(
H T H

)−1
]

d p∫
Ωi

−R(p) ∂ f̄
∂PDOP tr

[(
H T H

)−1 ∂hT
i hi

∂si y

(
H T H

)−1
]

d p∫
Ωi

−R(p) ∂ f̄
∂PDOP tr

[(
H T H

)−1 ∂hT
i hi

∂si z

(
H T H

)−1
]

d p

 .

(25)

Gradient on the boundary: To compute the second term
in (14), the two newly introduced variables n, v are the key
factors to be explained. Given a boundary point p ∈ ∂Ωi , the
relationship between this 2D boundary position and the robot’s
3D position S i can be rewritten in polar coordinates:

px = ri cos(θ)+ si x , (26)
py = ri sin(θ)+ si y . (27)
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Vector n is the unit outward normal. Therefore, its
expression can be derived by rotating a tangent vec-
tor at p backward. From the relationship in (26)-(27),
the tangent vector can be calculated by 1

d w [d px ,d py ]T =
1

d w [−ri sin(θ)dθ,ri cos(θ)dθ]T . Then the normal vector n can
be computed as:

n = 1

d w

[
d py

−d px

]
= dθ

d w

[
ri cos(θ)
ri sin(θ)

]
. (28)

Regarding the variable v , its physical meaning is the ve-
locity of a boundary point p caused by the movement of
S i . Therefore, this velocity can be deduced by taking the
derivative of boundary points over the robot’s position, which
yields

v =


∂px
∂si x

∂py

∂si x
∂px
∂si y

∂py

∂si y
∂px
∂si z

∂py

∂si z

=
 1 0

0 1
∂r
∂si z

cos(θ) ∂r
∂si z

sin(θ)

 . (29)

Substituting both (28) and (29) into (14) and replacing
the integration domain from the coverage boundary Ωi with
the relative angle θ through the relationship in (26)-(27), the
second term on the right hand side can be rewritten as∫

∂Ωi

R(p) f̄
(
PDOP (p ,S)

)
v ·nd w =

∫ 2π

0
R(p(θ)) f̄

(
PDOP (p(θ),S)

)ri cos(θ)
ri sin(θ)

∂ri
∂si z

dθ,
(30)

where the notation p(θ) represents the ground points on the
boundary line denoted by the relative angle θ in (26)-(27).

B. Distributed control law

Given the derivations in the previous subsection, one can
immediately complete the main control law for updating each
robot’s position locally. The structure of the final motion
strategy is (12) with the gradient computed by (14) whose
sub-items are derived through (25) and (30). This is the stan-
dard process of gradient descent update. However, practical
applications reveal that it tends to obtain an extremely small
gradient when the robots are far away from the density center.
As a result, robots that follow the update rule in (12) cannot
quickly move toward the desired service center when their
initial positions are sparsely distributed. In order to overcome
this problem, we instead apply the direction of gradient and
a fixed step size λ to update the robot positions. Let’s denote
∆Sk

i = ∂H (S)
∂Sk

i

, then the gradient-based update rule in (12) is
slightly modified into

Sk+1
i = Sk

i +λ
∆Sk

i

||∆Sk
i ||2

. (31)

We use the same approach as [26] for the computation
of integrals in (25) and (30), where a numerical integration
method is used to approximate the integrals over the ground
plane and boundary by discretizing the integral domains into
meshes and line segments and then summing up all the
integrand values that are multiplied by the mesh size or
segment length. It is clear that the motion strategy calculation
for robot i only depends on the neighboring set N k

i . As under
Assumption 1, this set can be derived in a distributed manner.

Algorithm 1: Controller for robot i at timestep k

Result: Sk+1
i

Data: Sk
i , N k

i ,λ,W,U ;
1 Discretize the ground plane into W 2 meshes and the

boundary into U segments and represent each mesh
and segment by its central point pm and p s ;

2 Collect meshes within radius (1) of robot i into the set
Ωi . Determine the set ∂Ωi from (26)-(27).

3 For each point pm in Ωi , compute the integrand (25)
using Sk

i and N k
i . After multiplying by the mesh size,

the gradient within the covered area is computed by
summing up all the integrand values.

4 For each point p s in ∂Ωi , compute the integrand (30)
using Sk

i and N k
i . After multiplying by the segment

length, the gradient on the boundary is computed by
summing up all the integrand values.

5 Combing steps 3 and 4 together, ∆Sk
i is derived;

6 Given a step size λ, update Sk+1
i using (31) ;

7 Return Sk+1
i

Thus, the proposed control law in (31) is also distributed.
Given W,U , the tunable resolution parameters for ground
plane and boundary discretization, respectively, the controller
for the i -th robot at time step k is summarized in Algorithm 1.

The analysis of convergence time for the proposed control
algorithm can be generally divided into two phases. The first
is the time that each robot arrives at the density center, which
we call the arriving time. The other is the time it takes the
pre-arrived robots to react to the introduction of new robots,
i.e. the reaction time. Although it is tricky to figure out the
reaction phase, the arriving time is, however, simple and can
be approximated and estimated by treating the fixed update
step size λ as the traversing velocity of the robot.

Similar to the discussion in [26], the worst-case computation
of the proposed control law is of order O

(
3N 2(W 2 +U )

)
,

where O(3N 2) is responsible for the most expensive operation
of matrix multiplication in (5). The worst case assumes the
jointly covered area intersected by all robots is nonempty and
therefore the matrix H in (4) is of N rows. However, as the
size of H T H is merely 3×3, the complexity of its inversion
is omitted.

Finally, a complete 2D application, e.g. robots operating on
the ground plane, can be easily achieved from our proposed
method by eliminating the elements corresponding to the z
axis in (25) and (30).

V. SIMULATION AND DISCUSSION

To evaluate the performance of our proposed control law,
we present three groups of simulations1. The first tests a given
density function and random initial positions of robots to
validate correctness and efficiency of the distributed control
scheme. Then the size of the MRS is intermittently changed
to test its robustness to node failures and the introduction
of new robots. Lastly, a long-term simulation with changing

1More details about these simulations can be found in the supplementary
downloadable material available at http://ieeexplore.ieee.org, provided by the
authors, including three video clips corresponding to the three simulations.
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(a) PDOP performance computed by (10) over 1000 time steps for 100 trials. The red line denotes the global optimal. The blue
line is the mean while the shaded area contains all objectives from 100 trials at the corresponding time step.
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Fig. 3. Statistical results for four robots serving a fixed density. (b,c,d) are the distributions of f̄ (·) for each pattern. Red dots are the maximum point
.

density distributions is provided to test the system’s ability to
dynamically track and serve different target areas.

Consider the mission space F := {[x, y, z]T |0 ≤ x, y ≤ 100,0 ≤
z ≤ 20} and the ground planeΩ is defined as the x-y plane in F .
The coverage model used in this section is the reciprocal one
in (2) whose maximum communication and relative distance
measurement range with the user is chosen as L = 20m. We
design a function f (·) in (10) from the sigmoid function,

f (x) = 1

1+eβ(x−γ)
,

∂ f

∂x
=β f (x)

(
f (x)−1

)
. (32)

Therefore, there are five parameters to define f̄ (·), which
are respectively β,γ in (32) and a,b,c in (8). Their effects on
f̄ (·) are shown in Fig. 3(e). In principle, γ can be treated as
a threshold that separates the normal configurations of MRS
from singular cases, while the rate β should be relatively
small to avoid sharply decreasing as illustrated by the red
solid line in Fig. 3(e). Since f (x)|x=γ = 1

2 , a,b,c for singular
cases should be far smaller than this value while keeping
the relationship of a < b < c. In the following simulations,
these parameters are set to β= 0.1, γ= 30, a = 0.05, b = 0.1,
c = 0.15.

We choose the Gaussian density in (6) to represent the
hotspot area to be served by the MRS. The decay rate depends
on the specific task and is fixed to α = 1 in the following
simulations. The center of density can be changed if different
hotspots should be covered for better positioning service. The
resolutions U ,W affect the computational complexity and
the accuracy of numerical integration. Theoretically, larger
values of U ,W always result in better integration accuracy

but worse run time. In the following simulations, they are set
to W = 100,U = 200. Concerning the fixed step size λ, one
should guarantee that the robots can reach the desired density
center with the velocity given by λ. In the following, we set
λ= 0.1 for the simulations in Sections V-A and V-B. Then it
is changed to λ = 0.2 in Section V-C to speed up the robots
for the last simulation.

A. Fixed-size MRS serving a static hotspot density

This set of simulation experiments tested four robots with
random initial positions tasked with serving a fixed density
distribution. We conducted 100 trials in total and each trial
lasted for 1000 time steps. During each simulation, the initial
positions of the robots were randomly generated within the
mission space, and then each robot applied Algorithm 1 to
compute its motion strategy. The hotspot density center in the
Gaussian function (6) was pd = [50,50]T .

The statistical results are shown in Fig. 3. To better
demonstrate the efficiency of Algorithm 1, we also derived
a global optimal solution by repeatedly calling a coarse-to-
fine search algorithm and finally returning a solution with
the maximum objective score as the “global optimality”. Its
coverage performance is presented as the red upper line. As
we can see from the distribution, all 100 trials finally converge
to local solutions whose performances are close to the global
bound. Notice that there are various equilibria and we can
observe from the results in Fig. 3(a) that most trials converge
to two clusters, which we call the “higher pattern” and the
“lower pattern”, respectively. Two representative cases are
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Fig. 4. Distribution of the overall PDOP performance computed by (10) for the node failure and recovery simulation over 30 trials. The insets unveil more
details of the experiment. (A) shows the distribution of the performance using 3 robots to serve a fixed density after excluding the worst case. The system
performance after introducing two more robots and removing one robot are presented in (B) and (C), respectively. (C) also applies the exclusion of the worst
case, where the robot failure leads to a singular configuration of the remaining MRS. (D) shows the final equilibria over 30 trials..

(a) Trajectories for three robots. The spherical markers
are their initial locations and the triangles represent the
equilibria achieved for each hotspot density.

(b) f̄ (PDOP ) distributions when the robots reach their
stable coverage positions for the four hotspot density
functions. Red triangles indicate density centers.

Fig. 5. Simulation results for the time-varying hotspot densities over 2000 steps, whose centers are switched every 500 steps. The sequence of centers is
dc1 = [20,20]T , dc2 = [80,20]T , dc3 = [80,80]T , dc4 = [20,80]T . These centers are also the points with maximum f̄ (·) values.

selected and their corresponding coverage maps for f̄ (PDOP )
are shown in Figs 3(b) and (c). Compared against the global
solution in Fig. 3(d), we see that the local equilibria cause
coverage fractures on the map and hence perform worse than
the global solution.

Another interesting observation here is that no trial con-
verged to the global solution. However, as we will illustrate
in the third simulation, we note that our proposed algorithm
is still capable of achieving global optimality in the presence
of appropriate initialization.

B. Resilience to robot failure and changing MRS size
This set of simulations tested the scalability of our control

law with respect to MRS size. The simulation setup follows:
1) Initially three robots are randomly deployed in the

mission space to serve a static density.
2) After reaching to the equilibrium within 700 steps, two

new nodes are introduced into the mission space, whose
starting positions are randomly generated.

3) Lastly after another 700 steps, one of the five nodes
is randomly removed from the MRS to demonstrate
stochastic robot failure.

This was repeated for 30 trials and the overall performance
is shown in Fig. 4. Notice that the results within the first
700 steps are actually a preservation and extension of the
previous results to 3 robots. Differing from the 4-robot case, it
suffers from a worst trial where all robots finally converge to a
singular equilibrium such that the overall objective is almost
zero i.e. no ground point is effectively served by the MRS.
Apart from this special case, however, Fig. 4(A) shows that
most trials are efficiently stabilized.

From Fig. 4(B), the introduction of two new robots after the
700-th step helps enhance the performance of the positioning
service. Even the singular case is quickly promoted to the
main distribution. After that the average performance of the
5 robots increases with the distribution tightening until next
event. Generally speaking, the removal of a robot lowers the
service quality as seen from both the overall distribution and
Fig. 4(C). However, it also shows that the failure of a robot
does not lead to severe reactions from the remaining MRS,
which may be explained by the local optimality of the derived
equilibria. Fig. 4(D) shows us the reallocation of robots after
node failure further degrades the performance of our control
scheme as some trials assemble into a poorer position than the
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“lower pattern” shown in Fig 3(a).

C. Dynamically tracking hotspots
In this final set of simulation experiments we evaluated

three robots dynamically serving four hotspots in a time
sequence. A single demonstration is given in Fig. 5. It shows
that the designed control protocol is capable of following the
hotspot transitions during service. However, it also reveals that
our method can only achieve a local equilibrium due to the
separation between two PDOP areas that is caused by the
co-planar ground positions with three robots. Note that the
equilibrium formed by 3 robots when serving the first density
is actually equal to the global solution.

VI. CONCLUSIONS
We have presented a decentralized solution to guide a

MRS in 3D mission space for the purpose of providing a
positioning service over a designated coverage area where
performance is qualified by the PDOP field. Our proposed
algorithm implements the rigorous derivations used to obtain
the gradients of the PDOP field over each individual robot to
apply a gradient descent update control law for each respective
robot. Since our proposed method is distributed, from both
theoretical analysis and simulation demonstrations, we show
that it is (i) robust to the initial positions of the robots, (ii)
scalable to system size and hence is robust to node failure and
robot recovery, and (iii) adjustable to the convergence time by
tuning the parameter λ in Algorithm 1.

However, this method still suffers from some drawbacks.
Firstly, current analysis is completely based on perfect knowl-
edge of each robot’s individual location. How to integrally
analyze the influence of a robot’s self-localization uncertainties
in the active positioning service is still very challenging.
Further, the current control scheme assumes that all robots
have access to the hotspot distribution, which is challenging
to implement in reality, especially for a decentralized system.
Finally, the designed control scheme is constrained by local
optimality. From our statistical results in Sections V-A and
V-B, the local equilibria for larger team sizes is close to the
global solution. Our results have also shown that the difference
in performance is negligible in general. However, a singular
equilibrium is still able to stabilize the 3-robot MRS as shown
in Fig 4(A).

Real communication devices also tend to suffer from limited
energy and bandwidth resources across the network. Therefore,
another important issue in practical applications is the impact
of imperfect communication, such as network delay and packet
loss. Thus, a robot may not immediately detects its neighbors
and receive their latest positions at decision time (when com-
puting the gradient). As a result, the positioning performance
may deteriorate in terms of convergence and ability to instantly
react to changes in the high-level task. More investigations are
needed to analyze how packet loss and network delay affect
the performance of convergence and to design more robust
control strategies. In addition, the MRS is exposed to collision
risks under a severe network delay or large rate of packet loss,
especially during the reaction phase. Guaranteed collision-free
strategies should be considered for real experiments.
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