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Abstract— This paper presents a method for predicting the
probability of future connectivity between mobile robots with
range-limited communication. In particular, we focus on its
application to active motion planning for cooperative localiza-
tion (CL). The probability of connection is modeled by the
distribution of quadratic forms in random normal variables and
is computed by the infinite power series expansion theorem. A
finite-term approximation is made to realize the computational
feasibility and three more modifications are designed to handle
the adverse impacts introduced by the omission of the higher
order series terms. On the basis of this algorithm, an active
and CL problem with leader-follower architecture is then
reformulated into a Markov Decision Process (MDP) with a
one-step planning horizon, and the optimal motion strategy
is generated by minimizing the expected cost of the MDP.
Extensive simulations and comparisons are presented to show
the effectiveness and efficiency of both the proposed prediction
algorithm and the MDP model.

I. INTRODUCTION

Active and cooperative localization is a promising
paradigm for multi-robot systems (MRS) to work within
GNSS denied environments, wherein the robots exploit an
active, optimal motion strategy to obtain mutual observa-
tions that provide better spatial formation and more reliable
information for a variety of practical applications in target
tracking [1], environment monitoring [2], active perception
and active SLAM [3], search and rescue [4] and so on.

An active motion policy aims at choosing optimal actions
such that the system costs (rewards) can be minimized
(maximized). However, in real-world deployments, robots
usually suffer from uncertainty arising from both unknown
external disturbances in motion and also noisy measurements
from imperfect sensors. Precise prediction is much more
critical and significant for MRS in cooperative localization
(CL) scenarios since the robots are restricted to use only
relative observations and communications to help localize
themselves. Thus, the accuracy of their estimates highly
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Fig. 1. Overall description of the problem. How to use known information
at planning time to predict the future connection of two robots.

depends on the efficiency and stability of communication
and observation links, which are fragile and stochastic due
to the presence of practical limitations and uncertainties.

Early research on CL mainly focused on the theoretical
realization [5]–[7] and experimental validation [8], [9] of
the estimation and inference algorithms, in both centralized
[6], [7] and distributed frameworks [10], [11]. Applications
included optimal static formation [12], reallocation of com-
munication resources among networks [13] and so on. More
recently, CL in MRS have also been expanded for use in
scenarios such as multi-robot target tracking [14]–[18], active
information gathering [19]–[22] and autonomous exploration
[23]–[26]. For some simple cases where the robots are
assumed to have perfect knowledge about their positions,
various algorithms have been proposed to derive optimal
action polices. However, few methods are able to effectively
handle robot uncertainty. One such example is the Belief
Space Planning framework [27], [28] solved as a partial
observable Markov decision process (POMDP) [23]–[29].

The prevailing methods for predicting the evolution of
future team formations are mainly by 1): a deterministic
connectivity computed by the prior estimated means, which
has been shown to be unreliable and inconsistent, 2): a
statistical connectivity whose distribution is computed by an
approximated method e.g. an inversely proportional model
to the mean distance between robots [23], [24], [29].

In this paper, an exact probability model of connectiv-
ity for a unit-disk communication model is developed and
considered under the problem of CL using active motion
planning under a leaders-followers architecture (CLAMP-
LF). Under the assumption of Gaussian noise, we propose
a novel algorithm to predict the probabilities of future
connectivity for every pair of robots. This algorithm is
developed under the basis of a series expansion formula of
the quadratic positive form in a normal distribution, wherein
an infinite summation of series is used to compute the
cumulative distribution function (CDF). We propose several
novel modifications to realize the balance of computational



tractability and the prediction accuracy. Our extensive simu-
lation results show that the probability error remains within
7% given the underlying MRS environment. We compare our
method to prior work that optimizes the actions of followers
using the connectivity that is predicted only by the estimated
means [30]. Results show that our proposed method can
provide an average improvement of 53.9% on the leaders’
pose uncertainties when the motion and observation models
are both linear.

The contributions of this paper are twofold:
1) A novel predictive algorithm for the connectivity of

robots given only the possible control actions and the
current mean and covariance estimates.

2) The reformulation of the CLAMP-LF problem under the
framework of an MDP with a one-step-ahead planning
horizon.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

CLAMP-LF: Consider a multi-robot system composed
of N leaders, M followers and O anchors, where anchors
know their global positions exactly whereas robots (both
leaders and followers) can only obtain their initial positions
and are required to jointly estimate their positions using
only local, relative range measurements and the messages
exchanged with their neighbors (other robots/anchors) via
the interoceptive/exteroceptive sensors mounted on them. A
robot (robots/anchors) can observe and communicate with
others if their relative distance is smaller than a threshold ρ,
which results in a time-varying connectivity within the MRS.

The motion model for the i -th robot and observation model
for nodes i and j at time step k are denoted by,

p i (k +1) = f
[

p i (k),ui (k), w i
]

, (1)

z i , j (k) = h
[

p i (k), p j (k), v i , j

]
sρ

[
di , j (k)

]
, (2)

with zero-mean Gaussian process and measurement noise
w i ∼ N (0,Q) and v i , j ∼ N (0,R), and known information
matrices Q and R. sρ(·) is a binomial Regulation Function
(RF) used to account for the loss or resurgence of the
connection between robots i and j , which is given by,

sρ(di j (k)) =
{

1, di j (k) ≤ ρ

0, di j (k) > ρ,
(3)

and di , j (k) is the true relative distance i.e.

di , j (k) =
∥∥∥p i (k)−p j (k)

∥∥∥
2

. (4)

For simplicity, the time index will be dropped when clear
from the context. The dimensionality of measurement z i , j is
determined by the type of sensor.

Network Topology: Assume all robots and anchors are as-
sociated with the nodes of a time-varying undirected network
topology graph Gk = {V ,Ek } where V and Ek are the set of
graph nodes and edges at time step k, respectively. The i -th
node in the graph is denoted by vi , i ∈ {1, . . . ,O+M+N }. The
notation (vi , v j ) ∈ Ek implies that di , j (k) ≤ ρ.

B. Problem Statement

At current time step k, the uncertainties of all robots
are propagated by the Riccati recursion from the standard
Extended Kalman Filter after obtaining the observation zk :=
{z i , j (k)|∀i , j ∈ V },

P k|k =
(
P−1

k|k−1 +H T
zk

R−1
k H zk

)−1
, (5)

where the notation Hzk is the Jacobian matrix of observations
evaluated over the state of motion prediction p̂k|k−1 :=
{p̂ i (k|k −1)|∀i ∈ V } where

p̂ i (k|k −1) = f [p̂ i (k −1|k −1),u(k −1)]

and the structure of Hzk (i.e. existence of each row) is de-
pendent on the network topology Gk , which can be extracted
from zk .

However, in order to choose an optimal action u?
k from

the action space Ak , it is common to virtually propagate
the uncertainties by (5) over every possible action in Ak

within the planning horizon (here we take one-time-step as
an example) and then a cost (reward) function is defined
according to the outcome of virtual propagation. The optimal
control is selected to minimize (maximize) this cost (reward).
Differing from the inference phase, we cannot determine
zk+1 at time k. Thus the Jacobian matrix of observation
H zk+1 cannot be fully determined during a planning session.

In the following, we focus on predicting the structure of
Hzk+1 , where an accurate and efficient algorithm to predict
the probability of future topology is proposed. Before mov-
ing on, Provost and Mathai’s theorem is presented, which is
the basis of our algorithm:

Theorem 1: [31] Given the p-dimensional multivariate
normal distribution X ∼ Np (µ,Σ), Σ > 0 and its quadratic
form Y = Q(X ) = X T AX ,A = AT > 0, let b = P TΣ− 1

2µ

and λ = [λ1, ...,λp ]T be the eigenvalues of Σ
1
2 AΣ

1
2 , i.e.

P TΣ
1
2 AΣ

1
2 P = di ag (λ), P T P = I . Then the corresponding

cumulative distribution function (CDF) of Y , that is Pr {Y ≤
y}, denoted by Fp (λ;b; y), can be expanded as follows:

Fp (λ;b; y) =
∞∑

k=0
(−1)k ck

y
p
2 +k

Γ( p
2 +k +1)

, 0 < y <∞, (6)

where the coefficients ck and dk are defined by,
c0 = exp(−1

2

p∑
j=1

b2
j )

p∏
j=1

(2λ j )−
1
2 ,

ck = 1

k

k−1∑
r=0

dk−r cr , k ≥ 1,

(7)

dk = 1

2

p∑
j=1

(1−kb2
j )(2λ j )−k , k ≥ 1. (8)

III. CONNECTIVITY PREDICTION FOR TWO NODES

A. Modeling and finite-term approximation

Consider two robots whose true positions p1, p2 are
distributed according to two normal distributions P̄ 1 ∼
N2(µ1,Σ1) and P̄ 2 ∼ N2(µ2,Σ2), respectively. The subtrac-
tion is also a normal distribution, i.e. ∆P̄ = P̄ 1−P̄ 2 ∼ N∆(µ1−



Fig. 2. Performance evaluation of the predictive algorithm for two nodes in two cases. {A,B}: Case 1, distribution of P̄1 and P̄2 in A, distribution of
∆P̄ in B; {C,D}: Case 2 with ten times smaller covariance matrices for both tow nodes. {E,G}: Comparison of prediction performance before & after
modifications for different deg under Case 1. {F,H}: Comparison of prediction performance before & after modifications for different deg under Case 2.

µ2,Σ1 +Σ2). Thus, by denoting X =∆P̄ = [∆P̄ x ,∆P̄ y ]T , the
square of the true distance computed by d12 = ∥∥p1 −p2

∥∥
2

can be equally represented by a quadratic random variable
Y =Q(X ) =∆P̄ 2

x +∆P̄ 2
y = X T AX , where A = I .

Let a discrete random variable C be the state of connec-
tivity between these two robots, where C = 1 if they can
observe and communicate with each other and C = 0 if they
can’t. Given the maximum communication range ρ, then the
relationship between the random variables Y and C is,

Pr (C = 1) = Pr
(
Y ≤ ρ2) . (9)

As a result, it is straightforward to use Theorem 1 with
dimensionality p = 2 to predict the probability of connection
between two nodes, given only the estimates of means and
covariance matrices of both positions. However, Theorem 1
needs to compute an infinite summation of power series
terms, which is intractable for practical applications. One
instinctive approach is to sum only a finite but sufficient
number of terms. This means replacing (6) with

Fp (λ;b; y) =
deg∑
k=0

(−1)k ck
y

p
2 +k

Γ( p
2 +k +1)

, 0 < y <∞, (10)

where deg is a proper maximum degree for our algorithm to
be determined. However, this method will introduce errors to
the calculation of Fp compared with the original infinite sum
version in Theorem 1. Thus, the main difficulty that remains
is how to maintain the balance between the tractability and
predictive accuracy of our algorithm.

B. Drawbacks and solutions

In this subsection, we focus on reducing the predictive
error of Fp based on the finite-terms equation in (10). We
observed two main drawbacks caused by the omission of the
higher order terms from the simulation in Figs. 2E–H.

The first problem is that the forecast of Pr
(
Y ≤ ρ2

)
computed from (10) will dramatically tend to ∞ or −∞
when the independent variable ρ is greater than a certain

threshold defined by an inflection point (InP). The tendency
to positive/negative is determined by the deg chosen and
used in (10). This phenomenon is shown in Fig. 2E. From
the figure, we can see that our method can only estimate the
probability correctly and stably within the stable set [0 InP].

The reason behind this problem is clear from the equation
(10), where the term (−1)k drives the two consecutive
polynomials, whose powers are k and k+1, in totally opposed
directions and thus the overall sum of infinite terms in (6)
can be bounded in [0 1]. Since those terms after deg have
been eliminated in (10), the approximated value of Fp can
no longer be stable after ρ > InP.

The second disadvantage is shown in Fig. 2H when the
covariance matrix of ∆P̄ is very small or is near singularity.
At this point, (10) cannot estimate the probability on the
increasing surface (here, when 4 < ρ < 6) regardless the
value of deg . To explain this degeneration, we know that the
computation of coefficients ck and dk requires the reciprocal
eigenvalues (c0 in (7)) and the inverse of the covariance
matrices (b = P TΣ− 1

2µ), which makes those coefficients
abnormally large if the covariance matrix is not well con-
structed, causing the prediction to diverge from [0 1] much
easier and faster. However, it is still important to get the
accurate probability of connection when the mean distance
lies around the communicating range.

Based on our finite-term approximation (10), three solu-
tions are proposed for those problems:

Concerning the first drawback, two corrections are devel-
oped here. On the one hand, 3δ regulation is applied by
simply assigning the probability to 1 if the ranging maximum
ρ is larger than the 3δ area, and 0 if less, regardless of the
output from (10). This originates from the fact that ∆P̄ is
a two-dimensional normal distribution, thus, 99.7% of the
sampled points lie in the 3δ confidence area. On the other
hand, if the output of Fp is negative but larger than the mean
distance when ρ is within [ρ1 ρ2], which indicates Fp is
beyond the stable set, then the probability will be assigned



to 1. This procedure is named saltation regulation.
Regarding the second problem, the covariance is expanded

by multiplying a proper coefficient to protect our coefficients
from being abnormally large,which is referred to as Approxi-
mate Covariance Expansion (ACE) in the rest of this paper.

Fig. 3. Covariance Expansion for addressing the second drawback

A detailed description of ACE is shown in Fig. 3 where
the red solid ellipse Er2 represents the 3δ confidence area
corresponding to the covariance matrix Σ = Σ1 +Σ2 of ∆P̄ .
Under such circumstances, Σ is multiplied by a coefficient
co ≥ 1 and therefore is enlarged into the blue solid ellipse
Eb2. Taking the maximum communication distance to be
ρol d where its ranging circle from the origin O with radius
ρol d intercepts with the 3δ area of Er2, there exists a
smaller ellipse Er1 that is tangent to this ranging circle. After
enlargement, this tangent ellipse Er1 is extended to Eb1 with
the same proportion co. Hence, initially, the probability of
connection between those two robots is,

Fp (λ;b;ρol d ) ≈ S( ÚABC ∩Er2)

S(Er2)
, (11)

where S(·) stands for the shape’s area. Fp (λ;b;ρol d ) is
generated by equation (10). After expansion, we get

S( ÚABC ∩Er2)

S(Er2)
= S(ÚH J I ∩Eb2)

S(Eb2)
. (12)

Thus, by taking the approximation

S( ÚDEF ∩Eb2)

S(Eb2)
≈ S(ÚH J I ∩Eb2)

S(Eb2)
, (13)

we can use another CDF, Fp (coλ; 1p
co

b;ρnew ), with a new
ranging circle ρnew to approximate the original probability
Fp (λ;b;ρol d ), where we have the relationship,

Fp (coλ;
1p
co

b;ρnew ) ≈ S( ÚDEF ∩Eb2)

S(Eb2)
. (14)

Therefore, the probability can be computed by a larger
covariance matrix,

Fp (coλ;
1p
co

b;ρnew ) ≈ Fp (λ;b;ρol d ). (15)

From the basic geometric similarity shown in Fig. 3, the
alternative circling radius ρnew can be calculated under the
assumption that points J and E are approximately equal,
which results in,

ρnew =
∥∥∥(1−p

co)
−−→
OM +p

co
−−→
OB

∥∥∥
2

, (16)

where
−−→
OM ,

−−→
OB are the vectors combining the corresponding

points shown in Fig. 3. Moreover, we have
∥∥∥−−→OM

∥∥∥
2
= dm

which is the mean distance and
∥∥∥−−→OB

∥∥∥
2
= ρol d . However, it

is usually still difficult to compute the tangent point B and
hence we can further assume that points O,B , M are collinear,
so that we can use a simpler formula to compute ρnew as,

ρnew ≈ (1−p
co)dm +p

coρol d . (17)

It should be noted that there are various ways to choose
a proper co. In the following algorithm, we calculate co by
expanding the covariance matrix to a new one whose smallest
eigenvalue is larger than 1.

C. Algorithm

Algorithm 1: Probability of Connection

Result: Pr (Y < ρ2
ol d )

Data: µ1,µ2,Σ1,Σ2,u1,u2,R1,R2,ρol d ,deg ;
1 µ1(k +1|k) =µ1 +u1, µ2(k +1|k) =µ2 +u2;
2 Σ1(k +1|k) ← Motion update (Σ1,R1);
3 Σ2(k +1|k) ← Motion update (Σ2,R2);
4 µ=µ1(k +1|k)−µ2(k +1|k);
5 Σ=Σ1(k +1|k)+Σ2(k +1|k);
6 [ρmi n

3δ ρmax
3δ ] ← 3δ area identification ;

7 if ρol d < ρmi n
3δ then

8 Return Pr (Y < ρ2
ol d ) = 0 ;

9 end
10 if ρol d > ρmax

3δ then
11 Return Pr (Y < ρ2

ol d ) = 1 ;
12 end

13 co = 1

mi n(ei g (Σ))
;

14 if co < 1 then
15 co = 1,ρnew = ρol d ;
16 else
17 ρnew ← (17) ;
18 end
19 Σ= co ×Σ;
20 b = P TΣ− 1

2µ;λ= di ag onal (P TΣP ), P T P = I ;
21 while r ≤ deg do
22 cr ← (7),r = 0, ...,deg ;
23 dr ← (8),r = 1, ...,deg ;

24 yr = (−1)r ρr+1
new

Γ(r +2)
,r = 0, ...,deg ;

25 end
26 Fp (λ;b;ρnew ) ← (10) ;
27 Pr (Y < ρ2

ol d ) = Fp (λ;b;ρnew ) ;
28 if Pr (Y < ρ2

ol d ) < 0 & ρol d > dmean then
29 Pr (Y < ρ2

ol d ) = 1 ;
30 end
31 Return Pr (Y < ρ2

ol d )

The probability prediction algorithm for the future con-
nectivity between two nodes is summarized in Algorithm 1
and takes as input the current estimates of mean positions



(µ1,µ2), covariance matrices (Σ1,Σ2), the possible control
action (u1,u2) as well as the covariance of motion noise
(R1,R2). The sequence of this algorithm is as follows: lines
6–12 describe the realization of 3δ regulation; ACE is pre-
sented within lines 13–26; saltation regulation corresponds
to lines 28–30.

IV. APPLICATION TO CLAMP-LF

In this section, Algorithm 1 is applied to the CLAMP-
LF problem, which is formally reformulated into a one-step
finite state MDP.
A: For the proposed MRS, we have Nn =O+M+N nodes,

and thus have NGC = Nn (Nn−1)
2 possible connections.

Let’s denote the i -th connection by Ci where i ≤ NGC .
B: The MDP state is the combination of all possible pair-

wise connection statuses in the graph Gk , which has the
notation S = [C1,C2, ...,CNGC ]T . Since each connection
is either 1 or 0, the MDP has in total Ns = 2NGC states.
The state space is given by S = {S1,S2, ...,SNs }.

C: The random variable Xk ∈ S represents the state of the
MRS graph Gk at time step k. The overall control space
is Ak = A1

k × ...×AN
k .

D: Given a control action a ∈ Ak, the transition model is
a Ns × Ns probability matrix denoted as Pa(Si ,S j ) =
P (Xk+1 = S j |Xk = Si ,u = a),∀S j ,Si ∈ S. It is updated
according to,

Pa(Si ,S j ) =
Ns∏

r=1
Pr {Cr = S j (r )}, (18)

where each element in the product on right hand side is
repeatedly computed by Algorithm 1.

E: Each transition emits a cost Ra(Si ,S j ), which is the
predicted covariance uncertainties of all leaders,

Ra(Si ,S j ) = tr ace(P̂ k+1|k+1)Lk

P̂ k+1|k+1 =
(
P−1

k+1|k +H T
k+1|k (S j )Q−1

k H k+1|k (S j )
)−1

.
(19)

With the definition processes A-E, we get the MDP
denoted by a 4-tuple 〈S,A,P,R〉. The optimal policy π? for
all followers is defined by minimizing the expected one-step-
ahead cost, which is formulated as,

π?(S) = argmina

{
Ns∑
j=1

Pa(S,S j )Ra(S,S j )

}
. (20)

It is worthwhile to note that the current state cannot com-
pletely account for the cost function in (19). It is also affected
by the informative matrix of motion noise, Rk , and the
measurement Jacobian, H k+1|k . Thus, if the motion model
and observation model in (1)-(2) are linear, this definition
A-E holds strictly. However, if the models are nonlinear,
in the algorithm, they are all linearized by the first-order
Taylor series expansion approximation over the estimated
states, which introduces estimated stochastic values to the
Jacobian matrices of both observation and motion and thus
results in the correlation between the cost and the random
values.

V. SIMULATION RESULTS AND DISCUSSION

A. Performance of the algorithm

The performance of Algorithm 1 when a predicting single
connection is compared with the original finite-term approx-
imation (10). The results are shown in Fig. 2. It can be
seen from the comparisons of Fig. 2{E, G} and {F, H},
that our proposed algorithm improves the performance of
the probability prediction procedure.

Next, we test the performance of simultaneously predicting
multiple connections using our algorithm when applied to
MRS. In the following simulation, three robots (r1,r2,r3) and
one anchor (A) are used, thus we have in total 6 possible
observation links. The relative distances are initialized in
Table I. The covariance matrices R i , i = 1,2,3 are all set to
be di ag ([0.04,0.04]). The maximum ranging distance of our
communication and measurement devices is set to ρ = 5m.

TABLE I
INITIAL DISTANCE AND LINK CONFIGURATIONS

Index 1 2 3 4 5 6
Nodes {A,r1} {A,r2} {A,r3} {r1,r2} {r1,r3} {r2,r3}
Dis(m) 3 5.83 4.47 3.61 4.12 3.16

Given this setup, each robot first generates a control
action, the distance to travel for each control is limited to
under 1m regardless of the direction. Each robot predicts
its next position by the motion update, and then uses its
predicted values to calculate the probabilities of connections
according to Algorithm 1. Meanwhile this control command
is corrupted by a sampled noise from R i to get the true
positions. This corruption process is repeated 1000 times
to count the frequencies of true link status, which are used
as ground-truth of the connection probabilities under this
control and are compared to the outputs of the proposed
algorithm. In total, we generated 200 control actions. The
distribution of errors between real frequencies and our pre-
dicted probabilities from Algorithm 1 is shown in Fig. 4
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Fig. 4. Distribution of probability errors

In Fig. 4, the upper bound of the probability error for
future connections is no more than 7%, validating the ap-
proximations made in the former section.

B. CLAMP-LF Simulation

In this section, the optimal policy in (20) is applied to
the CLAMP problem and is compared against the optimal
method in our previous work [30], which only uses an A-
optimality indicator computed by the estimated means. Both



linear and nonlinear measurement models are used and the
robots are modeled as points with motion given by,

p i (k +1) = p i (k)+ui (k)+w i . (21)

A linear measurement model assumes the robot can di-
rectly measure relative distance along both x and y directions
to any other robot, i.e.

z i , j (k) = p i (k)−p j (k)+v i , j . (22)

Here the dimensionality of the known covariance matrix
Ri , j is 2 × 2. The nonlinear measurement model that we
test can only measure the distance along the communication
direction,

zi , j = ||p i (k)−p j (k)||2 + vi , j , (23)

where the measurement and noise are scalar. Taking the over-
all concatenated position state as p = [p1, p2, ..., p N+M ]T , the
basic row-block for the r -th link in the observation Jacobian
connecting nodes i and j for the linear model is,

H o(r, :) =
[

02×2, ..., I i
2×2,02×2, ...,−I j

2×2,02×2, ...,02×2

]
, (24)

where I i
2×2 lies on the i -th column and I j

2×2 on the j -th
column. Whereas, for the nonlinear measurement model, the
basic row-block is,

H o(r, :) =
[

01×2, ...,hi
0,01×2, ...,h j

0,01×2, ...,01×2

]
, (25)

where h j
0 =−hi

0 = [
px

i −px
j

di , j
,

p
y
i −p

y
j

di , j
] and px

i , p y
i are the elements

in the position vector of robot i . Since we can only get the
estimated values of positions at planning time, hi

o and h j
o

are essentially stochastic.
The setup of the MRS and the initial configurations are

the same as in Table I. As in our prior work [30], the
leader’s high level task is to reach a goal position in the
opposite diagonal corner of the environment, and it moves
directly towards the goal. The action space for the i -th robot
is defined as Ai = {

North, South, East, West, DoNothing
}
.

Each movement in the space is limited to 1m. The degree of
(10) in our algorithm is set to 150.

Simulation results are shown in Fig. 5 and Fig. 6 where
our proposed method is denoted by ‘OS-MDP’ and the
optimization method in our previous work [30] is referred
as ‘A-optimality’. Both linear and nonlinear measurement
models are simulated for 200 trials. Table II shows the
processed statistical results in the final step.

TABLE II
DISTRIBUTION OF THE FINAL STEP OVER 200 TRIALS

Linear Model Nonlinear Model
Mean Variance Mean Variance

OS-MDP 0.0827 0.0026 0.3218 0.53×10−3

A-optimality 0.1794 0.0163 0.3415 2.73 ×10−3

Improvement 53.9% 82.3% 5.8% 80.4%

As shown in these figures, using our proposed method, the
leader’s uncertainty is lower and has a lighter tail. Therefore,
the optimal policy from (20) can improve the localization
performance for both types of observation model.

Specifically, for linear models, our proposed method sur-
passes the best performance of the A-optimality method in

Fig. 5. Evolution of the leader’s localization uncertainty for a Linear
Observation model (22) .

Fig. 6. Evolution of the leader’s localization uncertainty for a Nonlinear
Observation model (23)

over 75% of the trials at the final step. The upper bound of
outliers is also sparser and lower than that of the A-optimality
method. For nonlinear models, however, the improvement is
a little smaller with respect to the means of all trials in the
final step. The reason, as mentioned in the previous section
and summarized again here, is that the linearized Jacobians
of both motion and observation will introduce stochasticity
into the MDP model. The consequence of which is that the
MDP cost does not completely depend on the state. However,
our proposed policy can substantially improve the variance of
the uncertainty, which helps reduce the long tails from which
the A-optimality method suffers. Despite the aforementioned
advantages in the nonlinear case, we notice that the proposed
method also suffers from a worse “best solution" than the A-
optimality approach. This is partly due to the errors of the
predictive algorithm introduced by the approximations made
to ensure tractability. This is left as an open problem for
further investigation in the future.

VI. CONCLUSIONS

In this paper, we proposed a novel algorithm to predict
the probability of future connections across a MRS based
on only the current estimates of positions. Our contribu-
tions in this part mainly focus on the improvement of
the predictive accuracy as well as tractability through a
finite-terms approximation. Using the proposed prediction
algorithm, the CLAMP-LF problem was then cast as a one-
step MDP problem and the optimal policy for all followers
was designed in order to minimize the expected localization
uncertainty of the leaders. Future work will concentrate on
further improvements in nonlinear cases, distributing the
motion strategy and applications to large scale MRS.
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