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Abstract— This paper addresses optimal trajectory genera-
tion for active target positioning using a collective localization
scheme under a time-varying observation topology. We show
that a team of assisting robots using the optimal trajectories
can improve the localization accuracy of leader robots whose
commands are assigned by high-level tasks. We apply the
standard centralized extended Kalman filter to estimate all
robot positions by using distance-only relative measurements. In
this work, we also explicitly consider the limits on the maximum
ranging distance within which the robots are able to make
pairwise measurements. The trace of the covariance sub-matrix
corresponding to the leader robot’s position estimate is selected
as the optimization criterion. Simulation results are presented
that demonstrate the applicability of this method and provide
insights into the difficulties in optimizing this problem.

I. INTRODUCTION

Active and optimal motion strategy design in cooperative
localization (CL) of multi-robot systems (MRS) has drawn
more and more attention due to the versatility and range of
applications that robotic teams can provide. These include
environmental monitoring [1], surveillance [2], object track-
ing [3], search and rescue [4] as well as active SLAM [5],
which have been proposed in the last few decades. As
shown in Fig. 1, in this paper, we focus on a new CL
task where an active motion strategy is generated under a
time-varying topology. Our motivation arises from the need
to autonomously navigate while accomplishing a predefined
mission within a critical GNSS denied environment.

CL schemes have provided primary method to simulta-
neously estimate all robot positions and their covariance
matrix with only relative observations and local odometry
in a centralized [6]–[8] or distributed [9]–[11] manner.
However, concerning the active strategy of the robot team,
only a few operations have been developed, such as the
frequency optimization of communication [12] or optimal
formation design [13], [14]. There are several problems that
are similar to our mission, like the CL and active target
tracking (CLATT) problem [15]–[20], active information
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Fig. 1. One leader robot is executing its high-level task while localizing
itself. A static anchor with known position and some assisting robots are
used to reduce the leader’s localization uncertainty via relative ranging-
only measurements. Followers also need to estimate their positions by those
measurements, thus their movements are controlled to minimize the leader’s
localization uncertainty.

acquisition by cooperative robots [21]–[23] and active SLAM
with multiple robots [24]. However existing works either rely
on perfect knowledge of the robots’ positions, or requires
many landmarks to ensure enough data association. Here we
consider the case where all robots need to estimate their
positions while planning and mutual observation is the only
source of data under an explicit time-varying topology.

The main contributions of this paper are a new multi-
robot CL scheme wherein several followers are used to
help improve the leaders’ self-localization with time-varying
measurement topology as well as an optimization framework
for this problem. In this paper, firstly, a binomial regulation
function (RF) is introduced into the measurement model
to further explicitly explain the loss or resurgence of an
observation. Then a centralized standard EKF from the
CL framework is implemented for estimation. Lastly an
optimizer is designed based on the current estimates and the
optimality criterion is chosen as the trace of the covariance
matrix corresponding to all leaders.

We evaluate our method over 100 Monte-Carlo simulations
with up to 20 robots (1 leader and 19 followers) and 1 anchor.
Our results show that by using our proposed optimization
strategy, the leader’s localization uncertainty is lower than
the cases where all followers either remain static or mimic
the control of the leader.

II. TASK ILLUSTRATION

As shown in Fig 1, consider a group of M leaders,
and N followers moving on plane and O static anchors.
There are both proprioceptive and exteroceptive sensors
equipped on the robots (i.e. leaders and followers). The
exteroceptive ranging measurement is limited by the relative



distance, which means only robots within a known threshold
(the maximum ranging distance) are able to measure and
communicate their relative distance. This results in a time-
varying connection topology. The objective of this system
is to design optimal motion strategies for the followers so
that the localization accuracy of the leaders can be improved
across the executing time of the high-level tasks.

III. PROBLEM FORMULATION

The range-only measurement model with RF is,

zij(k) = sρ(rij(k))rij(k) + vij(k), (1)

where rij(k) is the real distance and sρ is the RF, where

sρ(rij(k)) =

{
1, rij(k) ≤ ρ
0, rij(k) > ρ

. The Ricatti recursion from

the centralized and standard EKF gives,

P k|k =
(
P−1k|k−1 +HT

kR
−1
k Hk

)−1
. (2)

Resulting in the optimization problem,

min
u1,...,uN

trace(PLk
)

s.t. abs(ui) ≤ τI2×1, i ∈ {1, 2, ..., N}F .
(3)

where P k|k = [P Fk
∗ ; ∗ PLk

] and subscripts F
and L refer to the matrix components related to followers
and leaders, respectively.

IV. SIMULATION AND DISCUSSION

Our tested MRS configurations are presented in Table I,
including the number of different robots, anchors as well as
the network topology, where “TV” stands for time-varying
network and “FC” is fully connected topology all the time.
In all simulation cases, follower robots that were controlled
according to (3) result in the lowest localization uncertainty
of the leader robot, see Figure 2

TABLE I
SIMULATION SCENARIO CONFIGURATIONS

O M N G
A 1 1 2 FC
B 1 1 19 FC

O M N G
C 1 1 2 TV
D 1 1 19 TV

For the smaller team size in configuration A, the mean
uncertainties at the final step of the {optimal, mimic, static}
data sets are {0.1212, 0.1963, 0.3395}. Our optimized con-
trollers were able to reduce the final mean uncertainty by
{38.3%, 64.3%} when compared to the {mimic, static}
followers for the fully connected case. In configuration C, the
mean values are {0.3606, 0.3425, 0.6590}. The improvement
rises to 45.3% when compared to the static followers, but
is slightly worse (5.3%) than the mimic followers. The
uncertainty distribution also becomes more skewed across
time steps. Given the smaller team size, moving out of range
of a single follower robot can severely impact the localization
performance of the leader. Thus, the longer tails can be partly
attributed to cases where a follower robot moved out of range
of the leader robot due to noise in its actuation.

In the 20 robot team case, the leader’s localization uncer-
tainty is substantially lower due to the increased number of
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Fig. 2. Distribution of the trace of leader’s covariance matrix. Note that
the y axis scales are not the same.

available ranging measurements. Here, the optimal followers
obtained more accurate results than the other two types of
movement and achieved a further {25.1%, 66.6%} improve-
ment over the final mean uncertainty of the {mimic, static}
robots in the scenario B, and {54.7%, 27.6%} in case D. The
mean values of the final uncertainties are {0.0109, 0.0146,
0.0327} and {0.0568, 0.1254, 0.0784}, respectively. Notably,
the mimic followers produced a much wider distribution of
results than either the static or optimal followers when the
robots were range-limited. Closer inspection of the team
formation showed that the initial formation of the robots
makes it harder for the leader robot to create new observation
connections compared to losing one due to the presence
of motion noise. The same control inputs for all robots
are meant to keep the initial topology, but since follower
robots are initially distributed across the space, the leader
robot is often too far to build new connections, whereas its
initial links are easily broken. So applying the same control
input doesn’t even perform as well as the static followers.
The same degeneration didn’t occur to the case with fewer
followers because the initial topology (triangle) is much more
robust. However, it’s clear that our proposed control strategy
can overcome this challenging condition and thus can yield
more improvement when there are more followers.

V. CONCLUSIONS

In this paper, we proposed an active localization method
in the form of a multi-robot system under a time-varying
observation topology. The distance-only measurement model
is reformulated and an A-optimality indicator is chosen to de-
sign a motion optimizer for the assisting robots. We showed
that the main difficulty lay in the inconsistent prediction
of the measurement Jacobian matrix. This occurs in the
optimizer due to the approximation and from the fact that the
estimated positions from the EKF are necessarily stochastic.
Future work would include developing a better indicator, as
well as a distributed form of our motion strategy generation.
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