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Abstract. In this paper we introduce a novel algorithm for incorporat-
ing uncertainty into lookahead planning. Our algorithm searches through
connected graphs with uncertain edge costs represented by known prob-
ability distributions. As a robot moves through the graph, the true edge
costs of adjacent edges are revealed to the planner prior to traversal.
This locally revealed information allows the planner to improve perfor-
mance by predicting the benefit of edge costs revealed in the future
and updating the plan accordingly in an online manner. Our proposed
algorithm, Risk-Aware Graph Search (RAGS), selects paths with high
probability of yielding low costs based on the probability distributions of
individual edge traversal costs. We analyze RAGS for its correctness and
computational complexity and provide a bounding strategy to reduce its
complexity. We then present results in an example search domain and
report improved performance compared to traditional heuristic search
techniques. Lastly, we implement the algorithm on satellite imagery to
show the benefits of risk-aware planning through uncertain terrain.
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1 Introduction

When planning in unstructured environments there is a greater need for fast,
reliable path planning methods capable of operating under uncertainty. Plan-
ning under uncertainty allows for robustness when faced with unknown and par-
tially known environments. We introduce a method, Risk-Aware Graph Search
(RAGS), for finding paths through graphs with uncertain edge costs (similar to
Stochastic Shortest Path Problems with Recourse [1]). In the domain of interest,
a robot moves through an environment represented by a graph, and the true costs
for edges adjacent to the robot’s location are dynamically revealed. Our method
accounts for both the uncertainty in the edge costs and the dynamic revealing
of these costs. Thus, we bridge the gap between traditional search methods [2,3]
and risk-aware planning under uncertainty [4,5].

Traditionally, graphs are composed of nodes and edges, with a node rep-
resenting some state and an edge representing the transition between states.
Effectively searching through a graph with known edges has been extensively
researched and applies across disciplines in robotics, computer science, and op-
timization. We aim to expand the capabilities of graph search algorithms by
allowing for uncertainty in traversal costs and dynamic discovery of those costs,



2

while avoiding the blowup in computation from more expressive frameworks
(e.g., POMDPs). Our novel approach searches over uncertain edge costs with
known distributions and properly adjusts as new information about the edge
costs becomes available. This formulation allows for computationally efficient
methods of reducing the risk of traversing paths with high cost.

The main novelty of this work is the introduction of a non-myopic graph
search algorithm for risk-aware planning with uncertain edge costs and dynamic
local edge discovery. RAGS is an online planning mechanism that incorporates
live feedback for deciding when to be conservative and when to be aggressive.
With edge costs modeled as probability distributions, we can derive a principled
way of leveraging information further down a path. This leads to a tradeoff
between revealing the true cost of a large number of edges (exploration) and
traversing uncertain edges with low mean cost (exploitation). RAGS addresses
this tradeoff in a principled way, and the result is a low probability of executing
a path with high cost.

We compare our method to A*, sampled A* [5], and a greedy approach on a
large number of random connected graphs. The results show that RAGS reduces
the number of high cost runs compared to all other tested methods. In addition
to testing over random graphs, we validate RAGS using satellite imagery. By
applying a series of filters to satellite data, we are able to extract potential
obstacles that may impede a robot moving through the map. To deal with the
imprecise nature of obstacle extraction, we can utilize the benefits of RAGS to
find paths that are less likely to be substantially delayed. We show examples of
different cases in which RAGS finds preferable paths. The algorithm is run over
100 satellite images taken from a broad set of landscapes. The resulting path
costs over the image database confirms the benefit of the RAGS algorithm in a
real-world planning domain.

The remainder of this paper is organized as follows. First we review related
work and research in probabilistic planners (Section 2). We then introduce the
path search problem with uncertain traversal costs and dynamic edge cost dis-
covery (Section 3). Next we derive a method for quantifying path risk (Section
4.1) and present a way to reduce the search space by removing dominated paths
(Section 4.2). In Section 4.3 we present the RAGS algorithm and show compar-
isons to existing search algorithms in Section 5. We then highlight the utility of
RAGS by demonstrating its effectiveness for planning through various terrain
captured from satellite imagery (Section 6). Finally, we draw conclusions and
propose future directions for this line of research (Section 7).

2 Related Work

Planning under uncertainty is a challenging problem in robotics. An underly-
ing assumption in many existing planning algorithms is that the search space is
not stochastic. Under this assumption, researchers have developed many pow-
erful algorithms like A* [2] and RRT* [6] that perform efficient point to point
planning over expected costs (see [7] and [8] for surveys). These algorithms are
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efficient for problems with deterministic actions and a well-defined search space,
but are often not well suited to planning under uncertainty. Recent work has
explored ways of incorporating uncertainty into similar planners in field robotics
applications [4,9].

Reasoning probabilistically in robotic planning allows performance to de-
grade gracefully when encountering the unexpected. Notable work has been done
on incorporating uncertainty from sensors into the state estimation of the sys-
tem, [10,11], or in the path planning itself [12,13]. However, uncertainty can
lie in both the state and the world model, so we must address both sources of
uncertainty to plan effectively.

Prior work in uncertain traversability of graph edges has focused on a binary
status of the edge. This family of problems is a variant of the shortest path
problem known as the Canadian Traveler Problem (CTP) [14]. The CTP is
inspired by drivers in northern Canada who sometimes have to deal with snow
blocking roads and causing delays. The focus of CTP, and variations like it is
to plan paths/policies when graph connections are uncertain. A slight variation,
known as Stochastic Shortest Path with Recourse (SSPR) [1], adds random arc
costs. Our problem formulation, similar to the CTP and SSPR, provides local
information during traversal. This is also consistent with the algorithm PAO*
for domains where there is a hidden state in the graph [15]. The hidden state
relates this work to Partially Observable Markov Decision Process (POMDPs)
[16], which provides an expressive framework for uncertain states, actions, and
observations. In our case, we assume there is only uncertainty in the transition
costs, which avoids computational blowup often found in large POMDPs.

Planning over the expected cumulative cost is another relevant variant of
the shortest path problem [17]. Risk-Sensitive Markov Decision Process are one
approach to such stochastic planning problems. These solutions address cases
where large deviations from the expected behavior can have detrimental effects
[18]. Previous approaches have used a parameter for risk aversion to solve Risk-
Sensitive MDPs [19]. Like these techniques, we aim to avoid large deviations
from the expected value while planning for low costs; however we also look to
exploit local information available during execution. We build on work in risk-
aware planning (e.g., Risk-Sensitive MDPs), which deal with probability distri-
butions over outcomes. Other risk-aware planning techniques in the literature
use bounding of likelihood [20] by minimizing the path length with respect to a
lower bound on the probability of success. This is similar to work in [21], which
instead bounds the average risk. These algorithms define reasonable ways of as-
signing a value for trading off between risk and a primary search objective like
distance, but they do not incorporate dynamically revealed information as part
of the search.

The stochastic edge cost problem has been approached using an iterative
sampling method when dealing with uncertainty in terrain classification [5]. In
this prior work, the edge values between landmarks are sampled from modeled
cost distributions, and A* is used over each sampling to generate a list of paths.
The paths most frequently taken are considered the most likely to return low cost
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paths, which yields a method (sampled A* ) that we test our algorithm against.
In our work, we derive a formula for reducing the risk of a path based on the
uncertainty of the traversal costs themselves, which allows for a more expressive
framework than heuristic searches and reduced computational requirements than
sampled approaches.

3 Problem Formulation

In this paper, we consider the problem of planning and executing a risk-aware
path through an uncertain environment where knowledge of the true traversal
costs are revealed only as we arrive within some proximity of an area. This plan-
ning scenario can be described over a graph with edge costs initially represented
by some set of distributions, with the true edge costs identified as we arrive at
the parent node of each edge during the path execution. Although we focus on
a path cost minimization objective in this paper, we note that this formulation
could represent informative path planning objectives by considering the equiv-
alent maximization problem [22]. We now formulate the path search problem
with uncertain edge costs and introduce notation that will be used throughout
the paper.

Consider a graph G = (V, E) where the cost of traversing edge E ∈ E is drawn
from a normal distribution N

(
µE , σ

2
E

)
. The cost of a path P ⊂ E is the sum of

the edge traversal costs, each of which are normally distributed. Thus the total
path cost is drawn from N

(
µP , σ

2
P
)
, where µP =

∑
P µE and σ2

P =
∑
P σ

2
E .

This formulation is similar to that of the random network used in [1].

Assumption 1 The true edge costs are drawn as i.i.d. samples from the respec-
tive cost distributions when queried.

An important implication of Assumption 1 is that although multiple paths may
share a subset of edges, all paths can be treated as having independent cost
distributions. This is analogous to a problem where traversal costs are not fixed,
but instead vary over time, and edge costs are queried upon arrival at the parent
node. This assumption simplifies the computation of risk and dominance (shown
later in Section 4) without significantly changing the nature of the problem.

Given any pair of start and goal vertices in the graph, Vs, Vg ∈ V, the task is
to traverse the graph along the acyclic path of least risk. More precisely, since
each edge transition prunes the available set of paths to the goal, the path of
least risk retains the highest probability of traversing the overall least-cost path
as each transition is executed from Vs to Vg.

The decision at each vertex can be formulated by considering the next avail-
able transitions and their associated path sets. For example, say edge connec-
tions exist between the current vertex Vt and each of the vertices in the set
Vt+1 = {A,B,C, · · · }; furthermore, m acyclic paths exist from vertex A to Vg,
while n acyclic paths exist from vertex B to Vg, etc. Let A be the set of random
variables Ai, i = {1, · · · ,m}, where Ai ∼ N

(
µAi , σ

2
Ai

)
represents the cost dis-

tribution of path i from vertex A to Vg (see Figure 1). Let cAi be a sample of
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Fig. 1. Setup of pairwise comparison for sequential lookahead planning. Given the path
cost distributions, we can directly compute the probability that traveling from Start
to Goal through A will ultimately yield a cheaper path than traveling via B.

the random variable Ai and let cA0
be the known cost of transitioning between

Vt and A, then the lowest-cost path from Vt to A and onwards to Vg has cost:

cAmin = cA0
+ min
Ai∈A

cAi . (1)

Similar statements can be made for path sets B, C, · · ·. To traverse the path of
least-risk, each edge transition must select the next vertex V ∈ Vt+1 such that
the following probability holds,

P
(
cVmin < cV ′

min

)
≥ 0.5, ∀V ′ ∈ Vt+1 \ V. (2)

That is, transitioning to vertex V results in a higher probability of executing a
lower cost path than transitioning to any other neighboring vertex V ′.

The pairwise comparisons between the available path sets obey a total or-
dering of preference. That is, given

P (cAmin < cBmin) = γ,

P (cAmin < cCmin) = ε,

then,
γ ≤ ε⇔ P (cBmin < cCmin) ≥ 0.5,

with equality iff γ = ε. Thus |Vt+1|− 1 pairwise comparisons are needed to solve
for the next vertex V using (2).

4 Risk-Aware Graph Search (RAGS)

4.1 Quantifying Path Risk

The pairwise comparison P (cAmin < cBmin) describes the probability that the
lowest-cost path in the set A is cheaper than the lowest-cost path in the set B.
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Given Assumption 1, this probability can be expanded to,

P (cAmin < cBmin) =

∞∫
−∞

P (cBmin = x) · P (cAmin < x) dx. (3)

We can now express each term in the integral according to the path cost distri-
butions of each respective set. Let,

f(x,A) = P (cAmin < x) ,

g(x,B) = P (cBmin = x) .

Since each of the path costs are drawn from normal distributions, then

f(x,A) = 1−
m∏
i=1

1
2erfc (d(Ai)) , (4)

g(x,B) =

n∑
j=1

 1√
2πσBj

exp
(
−d(Bj)

2
)
·
n∏
k=1
k 6=j

1
2erfc (d(Bk))

 , (5)

where d (ζi) =
x−cζ0−µζi√

2σζi
.

As an aside, note that f ′(x, ·) = g(x, ·). Thus, using integration by parts, we
can show that

P (cAmin < cBmin) = 1− P (cBmin < cAmin) ,

confirming that these two events are indeed complementary.
Equations (4) and (5) give some intuitive insight into the calculation of path

risk. This formulation performs a tradeoff between the number of available paths
in each set and the quality of the paths in each set, the latter represented by
the means and variances of the path cost distributions. For example, f(x,A)
calculates the probability that the best path in A has a path cost less than
x (the plot of f(x,A) is shown in Figure 2 for µA0 = {20} and σA0 = {5}
as well as six other path set variants). From (4), we note that as m → ∞,
f(x,A)→ 1, ∀x ∈ (−∞,∞) and this is shown in the plots of f(x,A1,2). Path set
A1 has twice as many paths (of equal means and variances) as A0, while A2 has
three times as many. The curves show a trend towards an earlier and more rapid
transition to 1 as m increases; however it is also apparent that adding more paths
results in diminishing returns in terms of driving f(x,A)→ 1, ∀x ∈ (−∞,∞).

Other trends can be observed when adding paths of varying cost distributions
to the set. A3 includes a second path with lower mean and equivalent variance
to A0. The corresponding f(x,A3) is shifted significantly to the left of f(x,A0),
causing the transition towards 1 to occur much earlier. On the other hand, the
addition of a second path with higher mean and equivalent variance results in
almost no change to the curve, as shown by the overlap between f(x,A4) and
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Fig. 2. The plot of f(x,A) for seven path sets, A0 has a single path with cost drawn
from N

(
20, 52

)
. This plot shows the effects of including additional paths to the set

whose costs are drawn from varying distributions.

f(x,A0). Adding a path with equivalent mean but a lower variance results in
the plot of f(x,A5), which shows a much more rapid transition to 1 compared
to either f(x,A0) or f(x,A1). However, the addition of a path with equal mean
and higher variance increases the overall uncertainty associated with the path
set, as shown by the shallower gradation in the probability curve. Furthermore,
this means that although the transition towards 1 begins at lower values of x,
as x→∞, f(x,A6)→ 1 more slowly than for f(x,A1) or f(x,A5).

This analysis motivates a bounding approach that compares the values of
path cost means and variances to retain only the most relevant paths for the
calculation of (3). Bounding the path set is especially desirable since the com-
putation of each pairwise comparison has complexity O

(
n2m

)
, where n and m

are the sizes of the path sets under consideration.

4.2 Non-Dominated Path Set

Existing graph search algorithms, such as A*, use a total ordering of vertices
based on the calculated cost-to-arrive to find a single optimal path between
defined start and goal vertices. In contrast, an implementation of RAGS requires
two sweeps of the graph, since an initial pass is required to gather cost-to-go
information at each node for quantifying the path risk at execution. If all possible
acyclic paths between start and goal are to be considered, then this initial pass
is exponential in the average branching factor of the search tree. To reduce this
computation, we introduce a partial ordering condition based on the path cost
means and variances to sort the priority queue and terminate the search. This
bounds the set of resultant paths to be considered during execution by accepting
only those that exhibit desirable path cost mean and variance characteristics.
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As discussed in Section 4.1, the addition of paths with higher mean costs
to the existing path set results in little improvement in the overall risk of com-
mitting to that set. Similarly, adding paths with higher variances on the path
cost results in a slower convergence of f(x,A) to 1 as well as greater uncertainty
regarding the true path cost outcomes for the set. Thus, an intuitive bounding
condition is to only accept paths with lower path cost means and/or lower path
cost variances. Furthermore, the same condition can be applied to the cost-to-
arrive distributions to provide a partial ordering for the node expansions.

In practice, the partial ordering considers whether a path is dominated by
an existing path, either in the open or closed set. For any two paths, A and B,

A � B ⇔ (µA < µB) ∧
(
σ2
A < σ2

B

)
. (6)

That is, if both the mean and variance of the cost of pathB are greater than those
of path A, then path A is said to dominate path B. This is a similar method to
the one described in [13]. Using (6) to sort the priority queue guarantees that all
non-dominated nodes are expanded before any dominated nodes are considered
and only non-dominated paths to the goal vertex are accepted. This also allows
the search to terminate once all paths in the open set are dominated by paths
in the closed set. Thus the set of accepted paths from the initial search through
the graph is referred to as the non-dominated path set. It is worth noting that
the non-dominated path set is not guaranteed to contain the true optimal path;
however it is guaranteed to contain the A* path calculated on the mean.

Proposition 1. The non-dominated path set includes the A* path calculated on
the mean of the edge cost distributions.

Proof. The A* path calculated on the mean is the path with the lowest total
mean cost. This path cannot be dominated by another path since the first in-
equality on the right hand side of (6) will never be true. ut

4.3 RAGS Dynamic Execution

Given the non-dominated path set, path execution can occur by conducting
edge transitions at each node to select the path set of least risk according to
(2). The true edge transition costs, which become available for all neighboring
edges to the current node, are included by directly substituting the known value
of cV0

into (1).1 The pseudo code for the complete RAGS algorithm is provided
in Algorithm 1; an initial sweep of the graph is conducted to search for the
non-dominated path set while a second sweep is conducted during execution to
incorporate edge cost information as it is received.

1 Note that knowledge of the true neighboring edge costs is not required for RAGS to
formulate a path. The immediate transition costs cA0 and cB0 can be included as
distributions in (3) to determine a path from start to goal. Dynamic replanning is
only necessary if new edge cost information is discovered.
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Algorithm 1 Risk-Aware Graph Search

// Initial sweep
1: Initialize open, closed, N ← ∅ . Initialize open and closed sets, and node data
2: Vs ← start, Vg ← goal
3: N .append(Vs)
4: open.push(N) . Place the start node in the open set
5: while open 6= ∅ do
6: N0 ← open.pop() . Current search node
7: Vt+1 ← getNeighbors(N0,G)
8: for V in Vt+1 do . Assess all neighboring vertices
9: N ← N0.append(V ) . Compute child node

10: if notAncestor(V,N0) ∧ nonDom(N , closed) then
11: if V = Vg then
12: closed.push(N)
13: else
14: open.push(N) . Open set sorted according to dominance

15: if ¬nonDom(open.top(), closed) then . End search if all nodes in the open
16: break set are dominated by the closed set

// Path execution
17: GND ← closed . Directed graph formed by non-dominated path set
18: N ← ∅
19: V0 ← Vs

20: while V0 6= Vg do
21: N .append(V0)
22: Vt+1 ← getNeighbors(N,GND)
23: Vordered ← ComparePathSets(Vt+1,GND) . Total ordering of vertices from (3)
24: V0 = Vordered.pop() . Execute edge traversal

5 Comparison to Existing Search Algorithms

We compared RAGS against a näıve A* implementation, a sampled A* method,
and a greedy approach. Näıve A* finds and executes the lowest-cost path based
on the mean edge costs and does not perform any replanning. The greedy search
is performed over the set of non-dominated paths and selects the cheapest edge to
traverse at each step. The sampled A* method searches over graphs constructed
by sampling over the edge cost distributions and executes the path which is most
frequently found. To provide a fair comparison, the planning time of sampled A*
(related to the number of sampled graphs it plans over before selecting the most
frequent path) is limited to the time RAGS needed to find a path. We chose
A* to compare against as a simplified solution to the problem and sampled A*
because the method was previously introduced in a similar domain. The greedy
approach provides a baseline for comparison to a purely reactive implementation.

The search algorithms were tested on a set of graphs generated with a uni-
form random distribution of 100 vertices over a space 100 × 100 in size and
connected according to the PRM* radius [6]. Edge costs were represented by
normal distributions with mean equal to the Euclidean distance between vertices
plus an additional cost drawn from a uniform random distribution over [0, 100].
The variance of each distribution was drawn from a uniform distribution over[
0, σ2

max

]
, where σ2

max = {5, 10, 35} for the three separate sets of experiments.
Note that a minimum cost of the Euclidean distance was enforced in the fol-
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(a) (b)

Fig. 3. A sample search graph is shown in (a). The mean cost is the sum of the
Euclidean distance plus a random additional cost. Edge variances are represented using
greyscale on the graph. The darker the edges, the less variance there is on the cost.
The non-dominated path set (red) and the executed RAGS path (blue) shown in (b)
demonstrates the algorithm’s ability to account for both the path cost distributions as
well as the available path options to goal. Not only does it favor traversing edges with
balanced mean costs and variances, it also maintains a high number of path options
towards the goal.

lowing experiments. The start vertex was defined at Vs = (0, 0), with the goal
at Vg = (100, 100). Figure 3a gives an example of a randomly generated graph,
with edge variance shown in greyscale (darker lines having a smaller variance).
In Figure 3b the non-dominated path set is shown in red, and the RAGS path
is shown in blue.

In Figure 4 we show the results for 100 trials, where each trial drew new
edge costs from the same distribution as described above. Näıve A* performs
well in the mean but is prone to outliers of more expensive paths, especially as
the edge uncertainty increases due to edges with high variance along the path.
RAGS is able to mitigate against such outliers by choosing safer routes with
lower variances and more path options, demonstrating the benefit of risk-aware
planning. Sampling all edges in the graph and planning iteratively, as in the
sampled A* approach, can account for variability in costs along the edges as long
as it can sample enough paths. However this method is similarly prone to risky
paths yielding high-cost outliers because it doesn’t account for local information
like RAGS. The performance of greedy search is prone to more variability in
final costs as the edge cost variances increase. This trend can be attributed to
the fact that the greedy algorithm performs search over the non-dominated path
set, which becomes less representative of the true optimal path as the variances
in the edge costs increase. At low cost variances, the non-dominated path set is
a tighter representation of the optimal path set, and this bound becomes looser
as cost variances increase. Due to the myopic nature of its planning, greedy is
fallible to arriving at vertices with few path alternatives that all turn out to
have high cost. RAGS does not suffer from the same performance decay since
it accounts for the full path-to-goal cost distribution at each decision instance.
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(c)

Fig. 4. Path search results over 100 samples of three graphs with uncertain edge costs;
edge cost variances are drawn uniformly between 0 and {5, 10, 35} for the three graphs
(a)-(c), respectively. The difference in cost of the executed path and the true optimal
path as a percentage of the optimal path cost is shown. Note that the true optimal
path cost can only be calculated in hindsight.

The greedy results suggest that similar replanning strategies based only on the
immediate edge cost updates may suffer from similar one-step lookahead myopia
if downstream risks are not incorporated into the planning.

Table 1. Path Search and Execution Time (s)

σ2
max RAGS A* Greedy Sampled A*
5 0.895± 0.150 0.102± 0.007 0.071± 0.007 109 Samples
10 0.998± .245 .111± 0.008 0.066± 0.006 111 Samples
20 1.287± .228 .108± 0.008 0.072± 0.006 130 Samples

(Sampled A* times are matched with RAGS)

The computation time averaged over 100 samples of 20 different graphs is
presented in Table 1. Graph search and execution was calculated on a 3.2GHz
Intel Core i7-4702HQ laptop. As expected, both A* and greedy planning execute
significantly faster than either RAGS or sampled A*. The initial A* search is
faster than any of the other tested algorithms since it returns only a single path
which it then executes. Similarly, the greedy execution-time decisions require
only the comparison of immediately neighboring edge costs. The main increase
in computation time over A* is due to the initial sweep for the non-dominated
path set. Even so, this overhead is comparatively small when considering the
size of the non-dominated set. On average, this set contained 69 paths and took
0.04s longer to compute than the A* path.

As discussed in Section 4.1, the computation time of RAGS is heavily in-
fluenced by the pairwise risk comparison at each execution step and thus is
sensitive to the branching factor of the non-dominated path set. Although this
set is pruned as edge transitions are executed, causing path traversal decisions
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to increasingly become faster to compute, the RAGS execution decision (3) ac-
tively attempts to maintain a large set of future path options. Despite this, these
computation times suggest that real-time implementation on board a platform
is feasible, and future work will investigate methods for improving the compu-
tational speeds of the algorithm.

6 Satellite Data Experiments

We also applied RAGS to a real world domain using satellite data. In robotic
path planning there is often prior information available on the environment,
but this information is not necessarily reliable. An example of this is overhead
satellite imagery. In these trials, we used available satellite images, along with
some filtering, to extract potential obstacles for a ground robot or a low-flying
UAV. To convert the imagery into a useful mapping of obstacles, we performed
a series of filters to provide a correspondence between obstacle density and pixel
intensity. The satellite images were first converted to greyscale and were then
blurred using a Gaussian filter. We then increased the contrast of the image.
Finally, we eroded and then reconstructed the image to better identify trees and
obstacles.

After the filtering process, the images provided a rough estimate of obsta-
cles that could force the vehicle to slow down or fly around. In Figures 5-7, the
brighter the pixel, the more likely there is to be an obstacle. The satellite infor-
mation is too pixelated to provide fully reliable information, but we can use the
imagery as an estimate of the obstacles in the environment. To do this we calcu-
lated the mean and variance of the pixel intensity values over an edge and used
these to characterize the edge cost distributions. Similar to the previous compar-
ison trials, the mean intensity was added to the Euclidean distance to provide
a spatial scaling. Using the same method as before, we randomly sampled the
space to generate a connected graph. The edges were assigned distributions, and
then RAGS was used to search through the graph for a path from the top left
start vertex to the bottom right goal vertex. Actual values of the edge costs were
drawn from the distribution as the simulated robot moved through the terrain.

6.1 Results

We compared the performance of RAGS to the three other planning algorithms
across 100 satellite images. The images are of fields with trees of varying tree
densities and may also contain houses or other built structures. Images were
captured at different resolutions as well as at different altitudes. The majority
of the data have tree clusters scattered around the image to provide interesting
path planning dilemmas. Three distinct environments are shown in Figures 5, 6,
and 7. To avoid visual clutter, only the RAGS, A* and hindsight optimal paths
are shown here, compiled results for all four planning algorithms are presented
in Figure 8.
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Hindsight Optimal: 3808.66.38

A*: 4132.94

RAGS: 4020.56

Fig. 5. The RAGS, A*, and the global optimal (known only in hindsight) paths are
shown in the figure with the final path costs. The goal is to traverse from the top left
start vertex to the bottom right goal vertex. The empty field is a test case showing
that both algorithms plan direct paths as expected in an obstacle-free environment.

Hindsight Optimal: 3572.53

A*: 4301.06

RAGS: 3718.20

Fig. 6. Paths are planned through a dense cluster of trees surrounding the goal. Here
we can see RAGS plans around the cluster, where there are more low cost paths, before
traversing through a less cluttered area. RAGS takes advantage of the wide open region
instead of searching for narrow tracks within the tree cluster.

In Figure 5 the paths through an empty field are straight from start (yellow
triangle) to goal (orange circles). As expected there is little variance in edge
costs, and the trajectories for RAGS and A* are quite similar. Analyzing the
paths found in Figure 6 is more interesting. Here we see the benefit of RAGS in
obstacle-dense environments. The path from start to goal is blocked by a large
cluster of semi-permeable forest. A* executes a path through the center of the
cluster that has a low cost in the mean but does not allow for easy deviations
if the path is found to be untraversable. On the other hand, the path executed
by RAGS demonstrates the nonmyopic nature of this algorithm. RAGS selects
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Hindsight Optimal: 3135.38

A*: 3310.53

RAGS: 3255.21

Fig. 7. The RAGS path is shown traveling straight through the initial cluster of trees
to take full advantage of the direct route through the open field. A* finds a path that
does not navigate completely around the trees and so incurs additional traversal costs
on top of taking a less direct route. The costs after execution show that RAGS is
actually a cheaper path due to balancing the risk of finding a path through the initial
tree cluster that connects to a more direct path to goal. This demonstrates the benefit
of RAGS, knowing when to take risks and when to act conservatively.

a path that travels part way around the cluster to minimize the portion of the
path within the dense section of the forest. Values are drawn from the edge
distributions to calculate what would have been the optimal path in hindsight.
The optimal path (known only after execution) is shown in black, and we can
see that it follows a similar trajectory as RAGS.

The final test case can be seen in Figure 7, where a small cluster of trees
stands between a direct path from the start to the goal. In blue, RAGS plans
a path through the trees that is able to take advantage of the clearing in the
center. In this example, RAGS is able to assess the risk of taking the shorter,
more direct route through the trees and compare this to the expected cost of
traveling around the cluster. In comparison, the A* solution finds a less direct
route to the goal; however it does not navigate completely around the trees and
so incurs additional traversal costs on top of taking a longer path.

The compiled results for all tested algorithms are shown in a box plot of
percent above the hindsight optimal in Figure 8. From the comparison on the
three randomly generated graphs in Section 4.3, we showed that the relative
performance of RAGS increases as edge variance increases. This is accounted
for by the fact that the other planning algorithms are merely searching over
the single heuristic of mean traversal cost. If variance is low then this can be
enough to solve for a path that is close to the optimal solution. However, Figure 8
reveals that real world data sets can contain significant noise, and it is valuable
to account for that variability during planning. This is especially evident in
the sampled A* result, which shows an overall lower mean cost but contains
significant outliers (over twice as expensive) compared to the worst-case RAGS
path.
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Fig. 8. Results from satellite data experiment, using 100 images. Box plots represent
the path cost percent above what would have been in hindsight the optimal path. The
same trends in performance are seen as with the simulated graphs. RAGS accounts
for uncertainty in traversing the world, balancing risk of travel time (cost) to reduce
expensive outliers seen in the comparative algorithms.

7 Conclusion

In this paper we have introduced a novel approach to incorporating and address-
ing uncertainty in planning problems. The proposed RAGS algorithm combines
traditional deterministic search techniques with risk-aware planning. RAGS is
able to trade off the number of future path options, as well as the mean and
variance of the associated path cost distributions to make online edge traversal
decisions that minimize the risk of executing a high-cost path. The algorithm
was compared against existing graph search techniques on a set of graphs with
randomly assigned edge costs, as well as over a set of graphs with traversability
costs generated from satellite imagery data. In all cases, RAGS was shown to
reduce the probability of executing high-cost paths over A*, sampled A* and a
greedy planning approach.

Our next step will be to implement the RAGS algorithm in an informa-
tion optimization domain. In this case, edge cost probability distributions will
represent environmental information, and paths will be generated based on the
amount of information the vehicle may collect in different parts of the map.
Additionally, we will investigate methods to reduce the computational complex-
ity and memory requirements of the algorithm for implementation on a robotic
platform.
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