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Abstract—In this article, we investigate and deploy sampling-
based control techniques for the challenging task of the mobile
manipulation of articulated objects. By their nature, manipula-
tion tasks necessitate environment interactions, which require the
handling of nondifferentiable switching contact dynamics. These
dynamics represent a strong limitation for traditional gradient-
based optimization methods, such as model-predictive control and
differential dynamic programming, which often rely on heuris-
tics for trajectory generation. Sampling-based techniques alleviate
these constraints but do not ensure robots’ stability and input/state
constraints either. On the other hand, real-world applications in
human environments require safety and robustness to unexpected
events. For this reason, we propose a novel framework for safe
robotic manipulation of movable articulated objects. The frame-
work combines sampling-based control together with control bar-
rier functions and passivity theory that, thanks to formal stability
guarantees, enhance the safety and robustness of the method. We
also provide the practical insights that enable robust deployment of
stochastic control using a conventional central processing unit. We
deploy the algorithm on a ten-degree-of-freedom mobile manipu-
lator robot. Finally, we open source our generic and multithreaded
implementation.

Index Terms—Manipulation of articulated objects, mobile
manipulation, motion control of manipulators, optimization and
optimal control.

I. INTRODUCTION

THERE is a growing interest in deploying autonomous
systems in unstructured environments to perform com-

plex manipulation tasks for different applications like
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assistive service in the health-care domain [1], agrifoods [2], and
industrial inspection and maintenance [3] . In those scenarios,
the community is particularly interested in the manipulation of
movable and articulated objects (like the furniture in Fig. 1),
which poses additional challenges beyond those experienced
in a static environment. Mobile manipulator robots present a
compelling choice to tackle these problems since they combine
an unconstrained workspace with highly dexterous interaction
capabilities. However, to fully exploit these capabilities, systems
require planning and control algorithms that can generate fast,
accurate, and coordinated reactive whole-body motions that
account for multiple potential contacts with the environment.

A. Related Works

While traditional “plan-and-act” frameworks break down ma-
nipulation tasks into subproblems that are easier to solve (e.g.,
reach, grasp, and pull) [4], they do not offer fast replanning,
which is crucial for mobile manipulation in dynamic and uncer-
tain environments.

With the recent advancements in artificial intelligence, re-
inforcement learning (RL) is a promising method to solve a
range of robotic control tasks, including manipulation [5], as
they learn an end-to-end representation of the optimal policy.
However, real-world applications of RL typically require train-
ing times that are not practical for physical hardware and suffer
from the well-known sim-to-real gap [6]. On the other side
of the spectrum, model-predictive control (MPC) has gained
broad interest in the robotics community, thanks to its ability
to deal with input constraints and task objectives by solving a
multivariate optimization problem or using the principle of op-
timality. MPC has been successfully applied to aerial robots [7],
autonomous racing [8], legged locomotion [9], and whole-body
control [10]. Nevertheless, MPC requires a model that is locally
differentiable with respect to the input and the state [11]. On the
other hand, manipulation tasks involve changes in the contact
state causing sharp discontinuities in both the cost and system
dynamics, thus directly violating the differentiability require-
ments. Recently, sampling-based methods have emerged and
advanced in theory and applications [12], [13], [14], [15], [16].
In contrast to traditional MPC, sampling methods stem from a
probabilistic interpretation of the control problem. Rather than
solving a complex optimization problem, they rely on sampling
system trajectories, referred to as rollouts, and “weighting”
them according to the cumulative cost so that only favorable
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Fig. 1. RoyalPanda (a ten-DOF mobile manipulator) while performing a door
opening task.

trajectories survive the iterative sampling process. The only
requirement is that it is possible to forward simulate the system
evolution. This has been exploited to control camera motions
for target tracking in drone racing [12], robot arm motions for
manipulation tasks [13], and for generating aggressive driving
maneuvers such as drifting [14], [15].

Demonstrations on real systems involving different physical
interactions (e.g., a robot arm opening a drawer [13]) have
typically only been shown by breaking down the multicontact
task into stages and enforcing constraints when switching be-
tween them. Often these methods stem from a first principle
analysis of the problem and rely on strong simplifications,
heuristics, or precomputed interaction references. They often
follow the established control framework combining a high-level
heuristic-based reference generator and a low-level tracking
controller [9], [17], [18]. In this context, MPC is often used
to track an externally provided reference trajectory. In [10], for
example, a circular trajectory is computed for a door opening
task, and the gripper is rigidly connected to the handle prior to
the interaction. This can limit the control envelope of the system
and sacrifices solution optimality. For example, as in [19],
it is common practice to fix the gripper orientation between
successive reach and pull stages and perform manipulation
under a rigid grasp. In the presence of uncertainty and tracking
errors, this often leads to high contact forces and dangerous
behaviors. Even replanning might fail since heuristics do not
scale to most complex robot configurations. For those, it is
often unintuitive to think of the type of interaction that achieves
the task. In contrast, our sampling-based controller is deployed

as an interaction-aware and closed-loop reference generator
that can fully exploit the contact dynamics. We have observed
that the controller was able to use different contact points on
the robot hand to interact with the door, not just the fingers’
tips. Furthermore, we deploy a hook single finger design for
nonprehensile manipulation, alleviating the constraint of a rigid
grasp.

In order to avoid safety-critical configurations, additional
cost terms are often formulated. However, while these penalize
unsafe paths in sampling-based methods, they do not prohibit
them. As a consequence, constraint fulfillment merely relies on
sampling “safe” trajectories. Recently, control barrier functions
(CBFs) have been introduced as a mean to constrain the system
to a safe set. The safe set defines the locus where all safety
requirements are met, e.g., no self-collision happens and joint
limits are fulfilled. CBFs are expressed as affine inequality
constraints in the control input that, when satisfied pointwise
in the candidate safe set, imply forward invariance of the set and
hence safety [20]. This control method has been successfully
deployed in safety-critical applications such as aerial physical
interaction [21], adaptive cruise control and lane keeping [22],
segway stabilization [23], and human–robot collaboration [24].
CBFs have also been recently combined with an RL agent
to provide safety while deploying a learnt policy. The work
in [25], for example, learns barrier and Lyapunov functions,
which are robust to model uncertainties. The task is achieved
by a control Lyapunov function, which tracks a precomputed
swing trajectory for a simulated planar bipedal robot. In [26],
CBFs are instead used to guide the learning process. Rather
than bootstrapping a new policy update, which may operate in
an unsafe or irrelevant area of the state space, they update the
policy around the previously deployed controller containing all
previous CBF contributions. Taking inspiration from previous
works, we similarly try to combine CBFs with sampling-based
control methods for the reactive generation of interaction behav-
iors. In addition, we deploy CBFs to also guide the sampling of
input trajectories in safe areas, complementing for poor sampling
performance near the constraints.

Last but not least, sampling-based methods do not formally
guarantee stability, which, especially during autonomous in-
teraction, is as important as performance. In this regard, we
are interested in a stable interaction with an a priori poorly
known environment. This lack of knowledge might come from
sensing limitations or model mismatches. Passivity theory [27]
has drawn attention in recent years as a way to analyze the
stability of a controlled system. Intuitively, a passive system
cannot produce more energy than what it is provided with. A
rather new approach to ensure passivity is to use an energy
tank, i.e., an auxiliary virtual system that serves as a storing
element containing the maximum energy available to perform
the task [28]. When more than this energy budget is demanded,
actions that could destabilize the system are prohibited, and the
system is made passive. Energy tanks have been successfully
deployed in many robotics applications such as for impedance
controllers with time-varying stiffness [29], force–impedance
control [30], [31], and lately with CBFs for controlling a robotic
arm [24].
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B. Contributions

The novelty of the proposed method is in bringing together
sampling-based control, barrier methods, and passivity theory.
Sampling-based control is able to find contact-rich reference
trajectories, while barrier functions and passivity theory add
a safety layer that accounts for kinematic and dynamics con-
straints. The safety and stability of the system are ensured
through a sequential optimization problem that finds the closest
policy to the sampled one.

In summary, the main contributions of this article are: 1)
combining for the first time sampling-based control, barrier
methods, and passivity theory in a way that each component
complements the others’ limitations; 2) providing practical in-
sights that enhance the performance of the presented algorithm
and guide practitioners for successful hardware transfer; and 3)
open sourcing an efficient C++ implementation of the proposed
method including a multithreaded sampling-based controller
and an efficient quadratic program for addressing kinematic and
dynamics constraints.

To demonstrate the applicability and effectiveness of this ap-
proach, we perform several numerical and experimental studies
where we deploy the algorithms on our RoyalPanda platform
(a seven-degree-of-freedom (DOF) Franka Emika Panda arm
mounted on the holonomic Clearpath Ridgeback base, shown in
Fig. 1) for a target reaching and door opening task. A video of the
experiments can be found at https://youtu.be/Q1AohXmsLs4.
An open-source implementation of our solution is provided at
https://git.io/JXi4d.

To the best of the authors’ knowledge, this framework has
never been applied to whole-body control and manipulation of
articulated objects.

C. Overview

The rest of this article is organized as follows. In Section II,
the manipulation problem is formulated. In Section III, we
review the main theoretical background. These theoretical tools
are combined in a unified control method in Section IV. We
summarize the main practical insights and aspects of the al-
gorithms in Section V. We then evaluate the overall method
in Section VI by simulation and hardware experiments. We
present a qualitative discussion of the method’s limitations and
future research directions in Section VII. Finally, Section VIII
concludes this article.

II. MODELING AND PROBLEM FORMULATION

In this article, we consider the challenging task of manipu-
lating articulated objects1 with a mobile manipulator through
nonprehensile manipulation. We define q ∈ Rnq and q̇ ∈ Rnq

as the vectors of the robot configuration and its time derivative,
respectively, where nq ∈ N>0 is the robot’s DOF. Similarly, we
describe the object configuration and corresponding time deriva-
tive by o ∈ Rno and ȯ ∈ Rno , respectively, where no ∈ N>0 is

1We define articulated objects as nonactuated objects composed of more than
one rigid part connected by joints allowing rotations or translations.

the object’s DOF. The state vector is defined by

x =
[
q� q̇� o� ȯ�]� ∈ R2(nq+no). (1)

The time evolution of the state is given by ẋ = f(x,u), where

f(x,u)=

⎡
⎢⎢⎢⎣

q̇

M−1
r

(
J�

r f ext−Cr (q, q̇) q̇−gr(q)+τ cmd(u)
)

ȯ

M−1
o

(−J�
o f ext −Co (o, ȯ) ȯ− go(o)

)

⎤
⎥⎥⎥⎦.
(2)

M r ∈ Rnq×nq and Mo ∈ Rno×no represent the inertia matri-
ces, while Jr(q) ∈ Rnq×3 and Jo(o) ∈ Rno×3 are the Jaco-
bians at the robot and object contact point,2 respectively. JT

r

and JT
o map the interaction force f ext ∈ R3 at the contact point

into the efforts at the object and robot joints. Robot and object
Coriolis and gravity terms are denoted asCr(q, q̇)q̇,Co(o, ȯ)ȯ
and gr(q), go(o), respectively.

The system input u ∈ Rnq are the desired robot joint veloci-
ties q̇∗. The joint torques, denoted by τ cmd ∈ Rnq , are computed
by a low-level velocity controller as a function of the velocity
references u. We define with X ⊆ R2(nq+no) and U ⊆ Rnq as
the spaces of admissible states and inputs, respectively.

The control trajectory is defined as a sequence of control
inputs over a time horizon T and starting at time t: Ut =
{ut,ut+Δt, . . . ,ut+T−Δt} with Δt the time step. Each com-
mand sequence is sampled from a feedback policy distribution
Ut ∼ πθ , where θ are the distribution parameters. We denote
with Xt = {xt,xt+Δt, . . . ,xt+T } the state sequence obtained
by rolling out a policy sample Ut when starting at the current
state xt.

The control objective is to find the feedback policy πθ(xt)
that minimizes some statistics over an objective metric l : X ×
X × U → R that maps for each time t, the system state xt, the
desired state x∗

t and command ut to a scalar value. We can now
formulate the control objective as an optimization problem

min
θ

Eπθ

∫ ∞

t

l(x∗
t ,xt,ut) dt

s.t. ẋt = f(xt,ut) ∀ t

ut ∼ πθ(xt) ∀ t

xt ∈ X ∀ t

ut ∈ U ∀ t (3)

Commonly, the objective in (3) is simplified to the sum of a
finite-horizon and final cost term that approximates the infinite
horizon. In the discrete-time setting, we have

E
πθ

[∫ ∞

t

l(x∗,xt,ut)dt

]

2Without loss of generality, we consider single contacts to simplify the
notation. Nevertheless, extension to the multicontact case is straightforward.
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≈ E
πθ

[
cterm(xt+T ) +

K∑
k=0

c(xt+kΔt,ut+kΔt)

]
︸ ︷︷ ︸

J(Xt,Ut)

. (4)

For the sake of notation simplicity, we have omitted the depen-
dence from the desired state x∗

t . The cost function c(x,u) ∈
R≥0 maps the current state and input into a nonnegative scalar,
which indicates how close the state and commands are to the
goal, t and t+ T are the initial and final time of the horizon, K
is the number of discrete steps, and cterm(xt+T ) ∈ R≥0 is the
terminal cost that approximates the tail of the infinite-horizon
cumulative cost, which is denoted as J(Xt, Ut).

III. PRELIMINARIES

As the proposed method uses a combination of theoretical
tools that span different applications and previous works, we
present a short summary that can help the reader to better
understand the rest of this article and build some preliminary
background.

A. Sampling-Based Control

In contrast to deterministic policy optimization, we look at the
optimal control problem (3) from a Bayesian perspective. This
approach has many similarities with policy gradient methods
used in RL [32]. The key difference is that the method is used
online to iteratively update a parametric policy. While there
are several avenues to derive the update equation, for example,
variational inference [33] or free energy [15], here, we will refer
to stochastic control and follow a Bayesian approach similar
to [34].

The control problem is formulated introducing an additional
binary random variable O whose value is 1 when a trajectory
is optimal and 0 when it is not. The optimal control objective
is to find the optimal input parameters θ, which maximize the
success probability p(O = 1). In order to improve convergence,
we optimize its logarithm, as it has high gradients in the domain
where the probability is low

θ∗ = argmax
θ

log p(O = 1). (5)

The success likelihood can be further expanded to make explicit
its dependence on the policy parameters

p(O = 1) =

∫
πθ

p(O|Xt, Ut;xt)p(Xt, Ut;xt) (6)

=

∫
πθ

p(O|Xt, Ut)p(Xt|Ut)p(Ut) (7)

=

∫
πθ

p(O|Xt, Ut)πθ(Ut) (8)

= Eπθ
[p(O|Xt, Ut)]. (9)

The step in (7) follows from the assumption of deterministic
dynamics, and we drop the explicit dependence on xt as this is
already contained in the state sequence Xt. Any monotonically
decreasing function g(·) : R → R>0 can be used to map costs

to a pseudo success likelihood. Often the exponential function
is used as the success likelihood function

Eπθ
[p(O|Xt, Ut)] ∝ Eπθ

[J (Xt, Ut)] (10)

= Eπθ
[exp(−λJ(Xt, Ut))] (11)

where the higher the λ, the lower the cost needs to be in order
to be mapped to a small success likelihood. To optimize the
objective in (5) we perform gradient descent

θi+1 = θi + ρ∇θ logEπθ
[J (Xt, Ut)]. (12)

We choose the exponential function to map costs
to likelihoods and model the policy with a Gaussian
distribution, which is parametric in the mean Ut ∼
{N (μt,Σ),N (μt+Δt,Σ), . . . ,N (μt+T−Δt,Σ)}=πθ , where
θ = {μt,μt+Δt, . . . ,μt+T−Δt} are the mean vectors around
which the input is sampled at each time step. Σ ∈ Rnu×nu is
the diagonal covariance matrix of the multinomial distribution.
The derivation of the gradient step equation for this particular
design choice can be found in Appendix A. In the end, we
obtain the following update equation for the kth mean vector:

μi+1
k = μi

k + ρΣ−1 Eπθ
[exp(−λJ)εk]

Eπθ
[exp(−λJ)]

(13)

where εk = uk − μk is the random policy perturbation at time
k. The step size can be decoupled from the noise variance: ρ =
αΣ. Finally, the expectation can be estimated empirically via
Monte Carlo sampling, obtaining the final policy update rule

μi+1
k = μi

k + α
N−1∑
l=0

ωlε
l
k (14)

ωl ≈ exp(−λJl)∑N−1
s=0 exp(−λJs)

(15)

where N is the number of sampled rollouts. The input sequence
applied to the system is then chosen as the maximum-likelihood
estimator of the policy. This is given by the mean of each
Gaussian, modeling the input distribution for each time step:
U ∗
t = {μt, . . .μt+T−Δt} = θ.

B. Control Barrier Functions

It is desirable to design a controller that mediates performance
and safety. CBFs have been recently introduced as a means
to unify these objectives. This theory is based on the concept
of forward invariance of a safe subset C of the state space,
which is where safety conditions are met. A set S is called
forward invariant if for every x0 ∈ S, x(t) ∈ S for every t.
A differentiable function h(x) characterizes the safe set, such
that

C = {x ∈ Rn : h(x) ≥ 0} (16)

∂C = {x ∈ Rn : h(x) = 0} (17)

Int(C) = {x ∈ Rn : h(x) > 0} (18)

where ∂C and Int(C) denote the boundary and interior of the
safe set, respectively. The function h(x) is a zeroing barrier
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function (ZBF) for the set C if there exist a γ > 0 and a set D
with C ⊆ D ⊂ Rn such that, ∀ x ∈ D

ḣ(x) ≥ −γh(x). (19)

The existence of a ZBF implies the forward invariance of C [20].
Furthermore, defining the ZBF on a larger set than C allows the
system to be more robust to model perturbations.3 The condition
in (19) can be rewritten for a controlled affine system as

sup
u∈U

[
∂h

∂x
(f(x) + g(x)u) + γh(x)

]
≥ 0 ∀x ∈ D. (20)

When this inequality is fulfilled by the control input, the system
will be made forward invariant. As the constraint is affine in
the control input, it can be solved via a quadratic optimization
problem (QP). The advantage of a QP is that it allows trading-
off performance and safety through ZBF. When a feedforward
control is available from a nominal controller, a minimum per-
turbation on the feedforward command vector uff can be found
through the following QP [35]:

arg min
u∈Rn

1
2 ||u− uff||

s.t. ḣ(x) ≥ −γh(x).
(21)

In practice, the control input is constrained to the feasible set, and
therefore, controlled invariance cannot generally be guaranteed
for the real system. As a remedy, we add input limits as hard
constraints while softening CBF constraints with the use of slack
variables.4

C. Passivity and Energy Tank

It is important that the autonomous system preserves passive
behavior during interaction, which in turn implies stability.
Consider a system with statex ∈ Rn, inputu ∈ Rm, and output
y ∈ Rm. This system is said to be passive w.r.t (u,y) if for
all inputs and initial states, there exists a positive-semidefinite
storage function S : Rn → R+ such that for any time t

S(x(t))− S(x(0)) ≤
∫ t

0

uTy dτ. (22)

In other words, no additional energy can be produced other
than what is flowing into the system through the power port
(u,y). For an autonomously controlled system (including the
environment a robot is interacting with), this condition translates
to

Ṡ ≤ Pin = 0 (23)

wherePin is the power flowing into the system. As shown in [30],
autonomous passivity can be enforced by interconnecting the
controlled system with a secondary passive system, called the

3As shown in [20], CBFs induce an asymptotically stable behavior toward
the safe set C. This property is particularly useful when disturbances bring the
system outside the constraints.

4In comparison, Gurriet et al. [23] address this issue by finding viable sets.
A set is said to be viable if there exists a feasible input, which makes the set
forward invariant at all times. Efficient computation of viable sets is still an
open research area and is mostly applied to simpler systems due to the high
computational requirements.

energy tank, whose energy is bounded. The energy tank has state
xt ∈ R and storage function S(t) = 1

2x
2
t ∈ R, with St(0) as its

initial value. Its time evolution is described by{
ẋt = ut(t)

yt(t) =
∂S
∂xt

= xt(t)
(24)

where (ut(t), yt(t)) is the power port through which the tank can
exchange energy with the interconnected system. By intercon-
necting the controlled system with the tank, a passivity-violating
control action will result in the depletion of the tank, restoring
the passive balance of power flows. When the tank has no energy
left, nonpassive behaviors cannot be implemented anymore. The
interconnection can be implemented as follows:{

ut(t) = aT (t)u

y = a(t)yt(t)
(25)

where a(t) ∈ Rm is defined as

a(t) =
γ(t)

xt(t)
. (26)

The modulation variableγ(t) ∈ Rm can be chosen to implement
the desired value of y. With the above equations, one can easily
show that Ṡ = uT

t yt = uTy, and therefore, that power is either
injected into or extracted from the tank. As visible in (26), there is
a singularity when the tank is empty, and the desired behavior can
no longer be implemented. Therefore, it is necessary to ensure
that

S(t) ≥ ε > 0 ∀t. (27)

IV. CONTROL METHOD

In this section, we combine sampling, barrier functions, and
energy tank into a novel model-based control framework for
robust and safe interaction control.

We propose a cascaded control architecture composed of
an outer loop where the sampled policy is updated at a low
rate and an inner loop where the low-level controller tracks the
policy commands. In the outer loop, a sampling-based controller
(reference generation) generates joints velocity commands over
a finite horizon. A sequence of QPs, named Sequential FILTER-
QP, is solved to filter the commands and ensure that motion
constraints are fulfilled over the horizon using CBFs. In the inner
loop, a similar QP, simply named FILTER-QP, is solved to find
the best policy command that also satisfies safety and stability
constraints using barrier functions and a virtual energy tank.

1) The Sequential FILTER-QP takes as input the command
sequence Ũ ∗

t generated by the sampling-based controller
(reference generation) and the starting state xt and re-
turns a modified command-state sequence satisfying all
constraints Ū ∗

t . In turn, the new reference trajectory Ū ∗
t is

used to warm start the sampling procedure, thus informing
the controller with a safe initial policy guess.

2) The FILTER-QP takes, at each time step, a single input
command, linearly interpolating the reference command
trajectory coming from the outer loop. It enforces motion
and passivity constraints solving a single QP given the
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Fig. 2. High-level schematic of the method. The outer loop generates safe
trajectories at a low rate, while the inner loop tracks this reference enforcing
that passivity and motion constraints are enforced at a higher rate. The outer
loop block, including the details of the sampling procedure, is further expanded
in Fig. 5.

latest received state and output a single filtered velocity
reference ũt for the low-level controller. Since we solve
the QP for a single time step, the problem is not compu-
tationally expensive and can be solved at a high rate.

Finally, the reference joint trajectory is tracked by a low-level
controller that sends raw torque commands to the robot. The
complete high-level schematic of the full framework is depicted
in Fig. 2.

In the following, we present each component of the frame-
work. We start by presenting our cost formulation for the ma-
nipulation task. This is used in the reference generation sampling
procedure to weight different trajectory samples and drive the
robot to a successful task execution.

Afterward, we encode safety requirements in the form of
ZBFs. The safety objectives introduced here are formulated on a
kinematic level (obstacle avoidance, joint, and Cartesian limits).

We are also interested in the robustness of the dynamical sys-
tem during interaction, especially in cases of unexpected events
that could compromise its stability. To this end, we complete the
proposed framework with a passivity analysis and use an energy
tank to bound the energy dissipated during the manipulation task.
Passivity is guaranteed in the form of an additional constraint in
the quadratic program and, therefore, naturally fits the proposed
framework.

We conclude with the description of the deployed low-level
controller, which tracks joint velocity references.

A. Reference Generation

The sampling-based controller samples reference commands
for the low-level reference tracking controller. We decide to di-
rectly sample in the joint velocity space to account for objectives,
which are not in the operational control space such as joint limits
and self-collision avoidance. The internal model used to sample
trajectory rollouts has the same form as in (2).

As described in Section II, the control objective is to drive the
system to minimize a task-dependent cost function over time.
Furthermore, as state constraints are not explicitly taken into
account by the formulation, a common heuristic is to penalize
deviations from feasible states in the cost function. In the fol-
lowing, we define several cost components associated with the
different high-level objectives and constraints. We denote by

1[x] the indicator function such that

1[x]i =

{
1, if xi is true

0, otherwise
(28)

where 
i is the ith element of vector � ∈ Rn. In the following,
we drop from the notation the dependence on the current state.
We use W to denote positive-semidefinite weight matrices and
w for nonnegative scalar parameters. Note that input constraints
are not treated here as additional cost terms as the nonlinear
dynamics can be augmented with a function that projects the
sampled inputs into the feasible set U .

1) Target Reaching: In the target reaching task, the goal is to
bring a frame attached to the robot (generally the end-effector
frame) to a desired pose. We define with T ∈ SE(3) and T ∗ ∈
SE(3) the current and desired target frame pose, respectively.
The tracking cost is computed as a weighted distance in the
tangent space to SE(3) using the logarithmic mapping [36]

ct = || log (T − T ∗) ||2W t
. (29)

2) Collision Avoidance: Let γ ∈ {0, 1} represent an auxil-
iary variable, which is equal to 1 when the manipulator is in
contact with the environment. The value of γ can be computed
searching for collisions between bodies. This cost term is ac-
tivated when we want to execute a contact-free motion of the
end-effector. The contact cost is defined as

cγ = wγγ(x). (30)

3) Joint Position Limits: The manipulator is subject to phys-
ical joint limits. These can be addressed by introducing a cost
component that penalizes violation of the constraints. We define
the joint limits cost with

cj = 1[q > qupper]
T
(
wj + ||qupper − q||2W js

)
+ 1[q < qlower]

T
(
wj + ||q − qlower||2W js

)
(31)

where the scalar wj is a constant cost added when the limit is
violated. The matrix W js adds a quadratic term in the limit
violation. This was shown in [37] to help the controller find its
way back if poor sampling brings the system outside of the joint
position limits.

4) Arm Reach: We introduce an additional term that penal-
izes configurations where the arm’s end-effector moves exces-
sively relative to the base 2-D placement. This helps to bias
solutions where base motion is preferred over stretching the
arm, which can lead to singular configurations. The translation
vector from the end-effector frame E to the arm base frame B is
defined with the vector pBE ∈ R3. The current reach is then
rcurr = pT

BEPpBE . The projection matrix P = diag(1, 1, 0) ∈
R3×3 makes sure that the reach is only computed in the 2-D
plane. Given a maximum reach rmax ∈ R≥0, the reach cost is
then defined by

cr = 1 [rcurr > rmax]
(
wr + wrs (rcurr − rmax)

2
)
. (32)

5) Self-Collision Avoidance: Similarly to arm reach, self-
collision avoidance can be implemented as an additional cost
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term, which is active when the distance between a pair of
frames is less than a pair-dependent threshold. Given the distance
between two frames dij and a threshold dmin

ij the self-collision
cost for the pair is

csc =
∑
ij,i�=j

1
[
dij < dmin

ij

] (
wr + wrs

(
dmin
ij − dij

)2)
. (33)

6) Object Manipulation: In the manipulation task, the goal
is to change the state of an articulated object through interaction.
The manipulation cost penalizes deviations from the target
object configuration o∗

co(o;W o) = ||o− o∗||2W o
. (34)

7) Power Minimization: We propose a new cost component
that takes into account the power dissipated to perform the task.
In fact, a successful interaction (i.e., opening the door) could
happen in multiple ways; however, trajectories that dissipate low
power are most efficient as they do not act against the environ-
ment and robot kinematic constraints. We leverage the fact that as
rollouts are performed in simulation, the joint torque generated
through interaction can be easily computed by summing the
contribution of each force f c ∈ R3 at each contact point c

τ ext =
∑
c

JT
c f c (35)

where Jc is the contact Jacobian. The power dissipated during
the task is, therefore, −τT

extu, which is positive when acting
“against” the environment. The cost associated with power
penalization is

cp = wp ·max
(
0,−τT

extu− pmax
)

(36)

where pmax is the maximum power that can be dissipated during
the task.

8) Cost Scheduling: The manipulation task consists of two
phases. In the first phase, the manipulator reaches an estimated
contact point, allowing for a fast and successful exploration in
the following interaction phase. In the second phase, the goal is
to bring the object to the desired state while keeping the end-
effector close to the contact location. This switch is manually
enabled by turning on the object manipulation cost co after a
successful approach. Reducing the end-effector position penalty
during the manipulation phase allows the controller to choose a
trajectory that fully exploits the contact dynamics by changing
the hand pose.

B. Safety Constraints

In the previous subsection, a combination of cost components
was introduced in order to address both performance and safety.
The variety of objectives makes the cost landscape highly com-
plex such that trading off performance against safety objectives
can be quite challenging and tedious. Furthermore, as already
stressed, sampling does not provide any formal guarantee that
constraints encoded in the form of additional cost terms will be
satisfied. Therefore, we look at how barrier functions can encode
safety-critical constraints. As described in [24], a simple ZBF
can be derived for each joint to keep it between its lower and

upper bounds, q−i and q+i , respectively:

hi
ql =

(
q+i − q

) (
q − q−i

)(
q+i − q−i

) . (37)

In the following, we treat the safety requirements associated
with robot frames and denote with pA ∈ R3 the position of a
generic robot frame A computed through forward kinematics.
The ZBF constraint can then be derived using the differential
kinematics equation

ṗA = J lin
A q̇ (38)

with J lin
A being the linear Jacobian associated with frame A and

assuming that joint velocities are accurately tracked.
The self-collision safe set can be obtained by approximating

potentially colliding frames with nonintersecting spheres. Then,
the self-collision ZBF is defined as

hij
sc =

1

2

(||pCi − pCj ||2 − d2c
)

(39)

where dc = ri + rj is the sum of the radius of the two collision
spheres associated with the ith and jth collision pair frames.
Note that we can similarly encode arm reach limits. In fact, the
following is a valid ZBF, positive only when the end-effector is
within the prescribed maximum reach rmax with respect to the
arm base

har =
1

2

(
r2max − (pE − pB)TP (pE − pB)

)
. (40)

The projection matrix P = diag(1, 1, 0) ∈ R3×3 makes sure
that the reach is only computed in the 2-D plane. This prevents
the arm from stretching out and reaching singular configurations.
Each of these ZBFs translates to a constraint of the form in (21),
which is affine in the commands.

As described in Section III, we can formulate a quadratic pro-
gram to find the command that is the closest to the sampled one
while also satisfying the ZBF constraints previously introduced

min
ũt,δ

||ũt − ut||2 + δTΓδ (FILTER-QP)

s.t. ḣi
ql ≥ −γhql + δiql ∀ i ∈ [1,m] (Joint Limits)

ḣij
sc ≥ −γhij + δijsc ∀ (i, j) ∈ I (Self Collision)

ḣi
ar ≥ −γhar + δiar (Arm Reach)

ũt ∈ U (Input Limits)
(41)

where δ is the vector of slack variables and Γ is a positive-
definite diagonal matrix weighting the slack variable penaliza-
tion whose dimensions depend on the number of implemented
soft constraints.

Remark 1: Note that slack variables might cause a violation of
the constraint. We address this problem using more conservative
limits, allowing for a small constraints violation at the constraint
boundary. In particular, if h̃ is the original ZBF, we deploy a
stricter barrier function h = h̃−Δ with Δ ≥ 0. Imposing that
the slack variables are bounded from below

δ > −γΔ (42)
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Algorithm 1: Sequential FILTER-QP.

the ZBF constraints can be rewritten as

˙̃
h = ḣ ≥ −γh+ δ = −γh̃+ γΔ+ δ ≥ −γh̃. (43)

Therefore, satisfying the constraint on a stricter set with bounded
slack variables implies satisfying the hard ZBF constraint on the
original larger invariant set

ḣ ≥ −γh+ δ ⇒ ˙̃
h ≥ −γh̃. (44)

One can tune the stricter safe set such that the slack variable
does not get smaller than the safety margin−γΔ. Practically, for
our conservative choice of safe set, the constraints on the slack
variables are always satisfied; thus, we can solve the simpler
optimization in (41).

Finally, the set denoted by I is the set of collision link
pairs. We name this problem FILTER-QP as it changes the
control input only if it is unsafe. Instead of simply applying
this optimization pointwise, we can filter the full input sequence
in a sequential manner. After a policy update and for each time
step, a FILTER-QP is solved. The newly computed command
is applied to advance to the next step in the horizon and obtain
the next system state from which the constraint equation can
be updated. We call this procedure Sequential FILTER-QP and
describe it in Algorithm 1. The resulting filtered optimal input
sequence Ū ∗

t is then also used to warm-start the nominal policy
for the next round of rollout sampling (see Fig. 5). The reader
can also refer to Fig. 2 for a schematic representation of the
complete feedback control loop.

C. System Stability

While the optimization in (41) enhances the safety of the
system, we still lack stability guarantees. As described in Sec-
tion III, energy tanks can be used to make the system passive and,
thus, ensure stability. Inspired by the work in [24] and [30], this
adaptation naturally fits the control method we have developed
so far. If we augment the optimization problem in (41) with the
energy constraint ∫ t

0

τT
extq̇

∗ dτ ≥ −Stank(0) (45)

where S(0) is the initial energy stored in the tank, then the
following stability result holds.

Theorem 1 (Controlled system stability): If the optimization
problem FILTER-QP satisfies constraint (45), then the controller
makes the system (2) passive and, therefore, stable.

Proof: We start by augmenting the system model with a
virtual tank. We now need to define through which power ports
the tank exchanges energy with the rest of the system. To this
end, we perform a passivity analysis of the real system. We first
define the robot energy as

Srobot =
1

2
˙̃qTM(q) ˙̃q +

1

2
q̃TKI q̃. (46)

In order to study the passivity of the system, we need to derive
the robot energy dynamics Ṡrobot. A complete derivation can be
found in Appendix B. It turns out that

Ṡrobot = ˙̃qT τ ext − ˙̃qTKD
˙̃q ≤ ˙̃qT τ ext. (47)

The power flow through the external torque has indefinite sign
and can lead to a loss of passivity. Since the environment is
passive, there exists an environment energy Ṡenv such that [30]

Ṡenv ≤ −q̇T τ ext. (48)

The energy tank is finally connected to the system through the
power port (q̇∗, τ ext) and therefore

Ṡtank = q̇∗T τ ext. (49)

Then, the energy evolution of the autonomous system, composed
of robot, tank, and environment, is

Ṡtot = Ṡrobot + Ṡtank + Ṡenv

≤ ˙̃qT τ ext + q̇∗T τ ext − q̇T τ ext ≤ 0 (50)

showing the system’s passivity. Intuitively, the increase of the
robot’s energy is compensated with a reduction of the tank’s
energy. Therefore, the total energy stored in the system is bound
by Stank(0) + Λ with Λ some positive constant. In order for (50)
to be valid, we are relying on the silent assumption that the robot
is able to exchange energy with the tank at any time. As the tank
energy is a positive-definite quantity and therefore bounded from
below, we need to ensure that it is never completely depleted,
imposing

S(t) = S(0) +

∫ t

0

τT
extq̇

∗ dτ ≥ 0 (51)

recovering the constraint in (45), therefore concluding the proof.
In other words, (51) is a condition that is required for (50) to hold
at any time. �

In practice, the constraint in (45) is formulated as∫ t

0

τT
extu dτ ≥ ε− S(0) (52)

where ε is a positive minimum residual energy to avoid the
singularity that the tank suffers when it is completely depleted.
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D. Low-Level Controller

Finally, we describe the low-level control law. We consider a
dynamic manipulator as described in (2). The robot uses a dy-
namically compensated low-level velocity controller to convert
a velocity reference in torque commands

τ cmd=M(q)q̈∗+Cr(q, q̇)q̇
∗+gr(q)−KD

˙̃q−KI

∫ t

0

˙̃q dτ

(53)

with the auxiliary error variable q̃ = q − q∗ and KD and KI

being positive diagonal gain matrices.

V. PRACTICAL ASPECTS

We address here some issues that arise when implementing
the described algorithm on a resource-constrained platform.
Furthermore, we introduce many practical expedients that deal
with limited sampling budget, slow control rates, and finally
with sim-to-real transfer.

A. Gradient Clipping

The policy update rule in (14) consists of a receding horizon
mini-batch SGD. As a consequence, the gradient variance can
vary greatly between successive iterations of the algorithm. To
prevent this phenomenon, which is especially evident with a
small sampling budget, we clip the gradients to a user-defined
threshold

gi = sign(gi) ·min(|gi|, gmax) (54)

where gi is the ith component of the stochastic approximation
of the gradient vector and gmax ∈ R>0 is the gradient threshold.

B. Likelihood Mapping

The coefficient λ in (15) determines how “aggressive” the
weighting between different trajectories is. Adopting a constant
value would give a numerically zero weight to most of the
trajectories. Shifting the trajectory cost by the minimum cost
as proposed in [15] also does not alleviate this issue. Especially,
in regions of high cost, trajectories that are locally near optimal
can be assigned very different weights. We instead propose to
adopt the same technique as in [38], where λ is scaled to better
discriminate between the experienced trajectories. The modified
exponential utility is then defined by

exp(−λJ) = exp

(
−h

J − Jmin

Jmax − Jmin

)
(55)

which has the nice property of being invariant to the cost scale.
Assume, for example, that in a target reaching task, the goal
pose is far away, and thus, the cost incurred by each sampled
rollout is scaled by a common scalar factor. This factor would
disappear when using the previous equation for mapping rollouts
to likelihood. We show the effect of cost-scale invariance in
Fig. 3. In the figure, we assume that sample costs are uniformly
distributed in the range between minimum and maximum cost
and that the minimum cost shows a 20% reduction with respect

Fig. 3. In each plot, we change the maximum and minimum cost (80% of
maximum cost). We set λ and h to 10 in all comparisons.

to the worst rollout.5 We compare the exponential mappingJ =
exp(−λJ) (naive), with baseline reduction J = exp(−λ(J −
Jmin)) (baseline) and the mapping in (55) (invariant).

When the cost is high, the first two methods collapse all the
weight to a single sample, and in practice, other samples are
assigned a value that is numerically zero. As a consequence,
the gradient estimate in (14) can show a high variance. The
mapping in (55) instead assigns a nonzero weight to more
samples independently from the current cost scale and helps
to stabilize the gradient estimate.

C. Chattering

We observed that a naive implementation of the passivity
constraint leads to a chattering behavior at the constraint bound-
ary. We start discretizing the constraint inequality to obtain a
constraint that is affine in the input u∫ t+dt

0

τT
extu dτ ≈ τ ext(t)

Tu(t)︸ ︷︷ ︸
−Pdiss

dt+ S(xt(t)) ≥ ε

which is equivalent to

Pdiss ≤ αEres (56)

where we defined the residual energy Eres = S(xt(t))− ε. The
above inequality has the drawback that when the Euler integra-
tion is performed with small time intervals, then a dangerously
high power can be dissipated at any time, until very close to the
lower energy limit, thus leading to chattering. It is, therefore,
better to use a value of α < 1/dt. Furthermore, one can easily
verify that defining a passivity ZBF as hpass = S(xt)− ε we
obtain the same formulation. The ZBF constraint reads as

ḣpass = Ṡ(xt) ≥ −αhpass = α(ε− S(xt)).

The passivity can, therefore, be seen as a ZBF and, consequently,
inherits its properties. A smaller value forαmakes the constraint

5This is a reasonable choice since we are in an online setup and we assume
to be in a low sampling budget regime.
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Fig. 4. Worst case tank energy profile which is how the energy in the tank
would evolve if the maximum allowed energy would be dissipated. The smaller
the α, the more conservative the constraint, and thus, the energy is depleted at
a lower rate.

more conservative and improves its performance at the bound-
ary.

In order to gain a better intuitive understanding of this tuning
parameter, consider the worst case scenario. In this scenario,
the power flow is always equal to the maximal dissipated
power allowed by the passivity constraint: Ėres = −αEres. Then,
Eres(t) = Eres(0)e

−αt. A smaller α reduces the energy tank
depletion rate (as shown in Fig. 4) at the cost of making the
system more conservative. This effect is also shown in Fig. 12
in the experiment section.

D. Sampling Strategy

At each control step, it is desirable to sample a zero input
trajectory, meaning that all velocity commands are ut = 0 ∀ t,
as this would allow the robot to stop when the goal is reached.
Similarly, we would like to keep sampling the unperturbed nom-
inal command trajectory. In fact, if we assume this to be optimal
for a time instant, resampling would perturb it and very likely
increase its associated cost. With these motivations in mind, we
modify the sampling procedure such that the unperturbed and
zero velocity input sequences are always in the batch of samples.

Furthermore, at the beginning of a new sampling, a subset
of the best rollouts is kept and shifted back in time by the
real-time number of steps elapsed since the last optimization
to warm start the next iteration. As the sampled control is
not sufficiently smooth for a practical application, we filter
it using a moving window Savitzky–Golay filter [39] before
the Sequential FILTER-QP. In fact, the Savitzky–Golay filter
efficiently computes the optimal local polynomial approxima-
tion of the input sequence, without the need to explicitly solve
an optimization problem, as has been shown in [37]. The full
pipeline is visualized in Fig. 5.

E. Contact-Mesh Simplification

A large proportion of simulation time is spent on collision
detection. We reduce the component meshes to the relevant ones
and simplify to primitive shapes, as shown in Fig. 6. We are
especially interested in the collision objects belonging to the

Fig. 5. Implementation of the receding horizon scheme (reference generation;
see Fig. 2). Variables depicted in blue and dark green represent the informa-
tion available at the new optimization step and from the previous iteration,
respectively. All the previous samples and the nominal trajectory are shifted
by t− t−. The K best input sequences (according to their weights) are reused
and concatenated to a batch of N −K fresh samples to perform new rollouts.
The Sequential-QP block, highlighted in purple, is optional and deployed by
different variants of the method.

Fig. 6. Original collision meshes (a) provided by the robot manufacturer are
often approximated by convex hulls, which are inaccurate while also more
complex representations. The mesh in (b) is an exact collision shape for the
original gripper made of simple box primitives. We reduce the end-effector
complexity by designing a simple single-finger gripper (c) made of only two
boxes obtaining a computational performance gain in terms of simulation rate.
(a) Original mesh. (b) Two fingers. (c) Hook finger.

robot end-effector and the object. This adaptation tremendously
reduces computation especially during the contact phase. The
original finger design and vendor mesh is shown in Fig. 6(a).
Often, as well as in this case, the vendor mesh is a convex
hull of the actual finger geometry. In our evaluation, we have
replaced the convex hull with the real mesh, building it with
a set of nine box primitives, as shown in Fig. 6(b). Finally, to
further reduce simulation time, we redesigned the hand with a
single finger hook setup for nonprehensile manipulation, further
reducing the needed box primitives to three. We observed that
using the original mesh shown in Fig. 6(a) results in a mean
simulation rate of 0.98 kHz. In contrast, the two finger mesh
and hook finger mesh in Fig. 6(b)and6(c) allow mean simulation
rates of 2.13 and 2.94 kHz, respectively.

F. Simulator Tuning

1) Contact-Mesh Simplification: Crucial to the overall per-
formance is the accuracy of the simulation environment [imple-
menting (2)]. Unfortunately, the discrepancy between the simu-
lator and the real physical model known as the sim-to-real gap is
unavoidable. A typical failure case consists of an overestimation
of an object’s friction. In such cases, we have often observed a
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“scratching” emergent behavior where the robot would rely on
friction to move the object. In practice, friction is hard to measure
and depends on the contact patch between surfaces. On the
other hand, kinematic constraints between contact points depend
on the system geometry that can be accurately measured (e.g.,
from computer-aided design models). Therefore, solutions that
exploit the latter are more likely to succeed on the real platform.
One can bias the controller toward these solutions by setting, for
example, a very low friction coefficient between contact bodies.

2) Simulator Stability: A big bottleneck of the proposed ap-
proach is the computation required to forward simulate multiple
samples of the system dynamics in the physics engine. The time
complexity is linear in the number of rollouts, the time steps, and
horizon. In order to keep a sufficiently long horizon (1 s) and a
good amount of samples, we increase the time discretization for
forward integrating the simulated dynamics. However, simula-
tors suffer instability issues when the time steps are large [40]. A
direct implementation of (53) in the physics engine would often
cause instability during the 1-s time horizon. Fortunately, the
efficient simulator provides an internal proportional-derivative
controller [41] that allows it to track joint position and velocities
with big time steps (0.015 s in this article) without suffering
instability. The control law is then a simple P velocity controller
with the compensation of Coriolis and gravity terms

τ cmd = Cr (q, q̇) q̇ + gr(q)−KD
˙̃q (57)

with an appropriate choice of the positive-definite diagonal gain
matrix KD ∈ Rnq×nq .

Using a different low-level controller to simulate interaction
trajectories inevitably introduces a model mismatch. We argue
that if the real and simulated robot can track the joint velocities
well, namely they have similar closed loop velocity dynamics,
then we can abstract away the low-level control layer and look
at the two as robots that can be directly commanded in joint
velocity.

Furthermore, even when the two low-level control laws would
be identical, a mismatch is still potentially possible because
of numerical and model errors [40]. Addressing these errors
requires a comparative study of many simulators and involves
system identification, generally a harder problem than simula-
tion, and is outside the scope of our work. Qualitatively, our
approach is a good compromise between theoretical guarantees
(deploying (53) on the real robot), feasibility, and simulation
stability [deploying (57)] on the simulated robot.

VI. NUMERICAL AND EXPERIMENTAL EVALUATION

The full method is amenable to different variants. In particular,
by turning ON/OFF filtering in the outer or inner control loop, we
can synthesize four possible controller implementations. In the
following, we define with Π∗ each controller, where ∗ can be
N, I, O, IO

1) ΠN : It relies exclusively on a stochastic controller to gen-
erate velocity commands, namely, the Sequential FILTER-
QP and FILTER-QP are completely missing and the sam-
pled input trajectory is tracked as it is by the low-level
controller.

Fig. 7. Four articulated objects used in our simulation evaluations. From left to
right: shelf, dishwasher, microwave, and drawer. A red arrow shows the expected
end-effector trajectory to perform the task.

2) ΠI : a FILTER-QP is deployed in the inner control loop to
filter the instantaneous input command to be tracked by
the low-level velocity controller.

3) ΠO: the Sequential FILTER-QP is used in the outer loop
sampling controller to filter the full optimized command
trajectory in a sequential manner.

4) ΠIO: The full cascaded architecture is deployed, combin-
ing the previous two methods.

The goal of this section is to evaluate the proposed con-
trol methods and all the various implementation previously
introduced, highlighting the contribution of each algorithmic
component. To this end, we define the following metrics.

1) Cumulative constraint violation: As each barrier function
is, by definition, negative outside of the safe set, we define
the following metric as a proxy for the size of the constraint
violation along the duration of an experiment:

Δi
tot =

Kexp∑
k=0

max
(
0,−hi (xkΔt)

)

referring to the ith ZBF, where Kexp = �Texp/Δt�.
2) Average interaction wrench: Average wrench that is ex-

erted on the environment during the execution of the task.
3) Dissipated power: During an ideal interaction with an ar-

ticulated object, power is minimally dissipated. Therefore,
we use the dissipated power as an efficiency metric

Pdiss =

Texp∑
0

−uT τ ext. (58)

We always report a successful task execution, making unnec-
essary a success rate metric. The simulation experiments are
conducted on a dynamic manipulator model, as described by
(2). The manipulation tasks consist of maneuvering different
articulated objects: a shelf, a dishwasher, a microwave, and a
drawer, as shown in Fig. 7. They differ in type and orientation
of the joint. The shelf and microwave have a vertical revolute
joint, the dishwasher has a horizontal revolute joint, while the
drawer has a horizontal prismatic joint.
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The control methods are deployed on the RoyalPanda mobile
manipulator and evaluated through simulated and hardware ex-
periments. The platform consists of a holonomic mobile base
equipped with a seven-DOF manipulator. The robot’s wrist
mounts a six-axis force–torque sensor and a custom set of
fingers, as shown in Fig. 6(c). The omnidirectional base is
controlled by sending velocity commands to the mecanum wheel
controller. The arm’s low-level controller runs at 1 kHz, while
the base mecanum controller runs at 50 Hz. In both the real
and simulated robots, the arm velocity commands are converted
to joint torques using a low-level proportional–integral velocity
controller running at 1 kHz. An open-source implementation
of the proposed algorithms, supporting multithreaded sampling
and generic robotic systems, is available at https://git.io/JXi4d.

A. Comparison of Methods

We design the following experimental scenarios.
1) Object manipulation: We validate the applicability of the

method on the task of manipulating each of the four
articulated objects. In each environment, there is a handle
that the robot can use to move the articulated object. In
a first step, the end-effector reaches the handle and then
tries to make contact and move the articulation to the
desired position. The switch between hand reaching and
object manipulation is triggered by turning on the object
reference cost, as described in Section IV.

2) Target reaching and obstacle avoidance: We further inves-
tigate the validity of the constraints formulation for a target
reaching task in a confined environment. The end-effector
must reach a target goal, while the base is constrained in
a narrow corridor. Furthermore, the robot must avoid an
obstacle represented as a red sphere in Fig. 9. The obstacle
is not immediately visible but appears all of a sudden,
challenging the reactive response of the sampling-based
controller.

3) Robust interaction: We construct a challenging manipu-
lation scenario where robust interaction is needed; in this
case, the articulated object is fixed rigidly and is not able
to move for a short period of time.

4) Real-world experiments: We further test the methods on
the real robot for a door opening task.

The reference generation module outputs a discretized 1-s
horizon trajectory at ca. 100 Hz. The trajectory is discretized
using a discretization time interval of 0.015 s, resulting in ca. 66
steps. The low-level reference tracking controller then extracts a
joint velocity reference from the model predictive path integral
control (MPPI) trajectory which is the closest in time to the
current time step at the frequency of 1 kHz. Thus, the input
is oversampled by linearly interpolating between subsequent
time steps. The joint reference values are then filtered using
the FILTER-QP and then converted to joint torque commands
using (53). We run the presented algorithms on an Intel Core
i7-8550 U quad-core processor (1.8 GHz, up to 4.0 GHz) and use
eight threads for parallel forward sampling of rollouts. Forward
simulation is provided by the raisim physics engine [42]. The
FILTER-QP and Sequential FILTER-QP are solved efficiently

Fig. 8. Comparison between the different control methods. Note that the self-
collision bar plot has a data point at 3.4 in the ΠN method for the dishwasher
case, which is far outside the plot range.

using theosqpC++ library [43]. We measure an average solving
time of ≈ 0.1 ms. A summary of the main control parameters is
presented in Table I.

Note that the goal of this section is to evaluate the validity
of the framework. Nonetheless, similar experiments could be
conducted with a combination of an admittance controller and
a reference generator. However, a stochastic controller already
samples in joint space, thus optimizing for all DoFs, while also
accounting for constraints violation. An admittance controller
would instead require an extra redundancy resolution module.

1) Object Manipulation: We would like to investigate the
performance of the algorithms when working close or out-
side the safety boundaries. To this end, in all the simulated
experiments, the robot starts in a configuration that is near the
arm’s joint limits and self-collision. The base of the robot is
at (−3.0,−3.0), outside of the prescribed position limits of
[(2.0, 2.0), (−2.0,−2.0)]. The task of the robot is to open an
articulated object moving from its starting location. We perform
20 runs for each articulated object and for each control method.

The results of the experiments are summarized in Fig. 8.
We observe a reduction of cumulative joint limit violations as
well as self-collision violations. We deduce that filtering the
input sequence has a beneficial effect. ΠO and ΠIO attain the
best performance suggesting that in a low sampling regime,
the optimization problem helps to adapt the input sequence to
quickly reduce the amount of constraint violation. The second
row of Fig. 8 also shows that the naive controller ΠN even
experiences a dramatic failure, which is not visible because of
plot limits. This edge case never happens for the other methods.

The dissipated power is similar across the proposed methods
although filtering seems to also have a positive effect in this
aspect. A qualitative analysis has shown that the interaction
wrench measured during a simulated rollout can be inaccurate,
especially when the rollouts use big time steps (0.015 s) in order
to trade off simulation accuracy with speed. As the wrench infor-
mation is used to evaluate the system passivity, we activate the
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passivity enforcing constraint only in the outer-loop FILTER-
QP since this optimization problem consumes real wrench
measurements at high rates. This choice is additionally justified
by the fact that passivity is mainly a mechanism designed to react
to unforeseen events. As these are not modeled, the simulated
rollouts are not able to predict the true evolution of the interaction
wrench, and therefore, when passivity is enforced throughout
the rollouts, it could lead to detrimental effects, namely an
implementation of a nonpassive behavior on the real robot.

Overall, the simulated experiments confirm the validity of
the full framework (as implemented in ΠIO). Nevertheless, the
performance differences are not striking. We think that this
is due to the low chance of hitting the constraints during the
task, especially when the sampling-based controller is aware
of dangerous configurations through a well-engineered cost
function. In fact, high cost on safety-related objectives has the
effect of “trimming” bad trajectories, removing the need for
the postprocessing performed by the constrained optimization
problem. For this reason, in the following, we present a second
simulation experiment, which represents a challenge for a purely
sampling-based controller.

2) Target Reaching and Obstacle Avoidance: The naive
stochastic controller relies on a task-encoding cost formulation
and sampling to generate “good” rollouts. This method faces
two main challenges.

1) The cost needs to be nicely tuned in order to prevent edge
cases where performance is chosen in lieu of safety.

2) Sudden changes in the cost function lead to a drastic
change in the policy distribution.

While the first issue can be addressed by tuning the cost
with a trial-and-error method, the second is more subtle. In
fact, the policy should be able to quickly adapt but this can
be hard to achieve when only sampling around the previous
(outdated) input distribution. In this experiment, we reproduce
the described issue during a target reaching task. We place a
collision sphere at each robot link and an obstacle in the robot
workspace. The base motion is also constrained such that, in
order to achieve the goal, the robot is forced to avoid the obstacle
while going through a narrow passage. The obstacle is perceived
only when the robot is very close to it (< 1 cm) causing a sudden
change in the cost function. We show the end-effector optimal
trajectory for ΠN and ΠIO after the obstacle has been detected
in Fig. 9. We can see that the naive controller ΠN is not able
to quickly adapt to the unforeseen cost change and instead is
trapped in a high-cost region where it is hard to find a good
tradeoff between obstacle avoidance and the target reaching
objective. In contrast, theΠIO controller immediately adapts the
input sequence to comply with the constraints, and sampling can
later be performed in a more favorable region of the input space.
Note that if the controller would not be aware of constraints
in the form of additional cost terms, the generated trajectory
would not agree with the solution provided by the Sequential
FILTER-QP. In turn, this means that the controller would not
exploit the filtered trajectories, as they would be “less” optimal
based on a purely task-related cost function.

We repeat the simulation for ten runs for each of the methods.
The results are summarized in Fig. 10. As expected, ΠIO attains

Fig. 9. In this figure, we visualize the optimized end-effector trajectory when
the task is to reach a target beyond obstacles represented as transparent-red
objects in the simulated scene. Note that the base is also constrained to move
through a narrow corridor, visualized by the red markers on each side of the
robot. The naive controller ΠN is trapped in a high-cost region, while ΠIO

immediately reacts to the unexpected cost change. (a) Example rollout of ΠN .
(b) Example rollout of ΠIO .

Fig. 10. Cumulative Cartesian limits violation for the target reaching and
obstacle avoidance task. ΠOalready outperforms ΠN and ΠI . A further small
performance boost is achieved by ΠIO .

the best performance. We further observe that the presence of a
FILTER-QP in the inner loop additionally improves robustness
as it enforces constraints during the open-loop execution of the
optimized trajectory received by the stochastic controller.

3) Robust Interaction: The previous validations show how
the framework can address manipulation tasks and overcome
some limitations of a naive stochastic controller. We aim to find
evidence that the additional passivity enforcing constraint adds
robustness to the method. By adding the energy tank constraint
to the optimization problem, we limit the maximum dissipated
energy and, thus, generate a stable interaction behavior.

To evaluate this, we alter the shelf scenario described earlier
such that the motion of the shelf door is limited while the robot
is interacting with it. We fix the door position for 5 s, simulating
it becoming “stuck.” After this time, the object is released and
is free to move within its original limits again. This experiment
could approximate a real scenario where the object is temporarily
constrained because of defects in the opening mechanism or joint
wear.

From the results in Fig. 11, we note that when using ΠN ,
i.e., no passivity is ensured, the negative power flow is not
bounded, leading to high interaction wrenches. On the other
hand, when the energy tank is deployed, as in ΠIO, only a
maximal amount of energy, namely that stored in the tank, can
be used. Furthermore, we use a small value of α = 1 in the
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Fig. 11. Filter regulates the dissipated power when energy is low in the tank,
resulting in a reduced wrench when the object is “stuck.” The line plot and
shaded area show the mean and standard deviation from 20 simulation runs
of interaction with the shelf object respectively. (a) Orange-shaded area shows
the time interval when the object is fixed. Note that this might vary for each
experiment as the object reaches the prescribed position at different time points.
(b) Energy of the tank when the filter is deployed (red curve) is always above
the prescribed minimum, while it drastically drops in the other case. The plotted
energy is computed integrating the dissipated power during interaction.

passivity constraint formulation (56). As discussed in Section V
and shown in Fig. 12, this choice allows for a smoother power
regulation when approaching the lower energy bound as com-
pared to larger values of α and prevents chattering.

4) Real-World Experiments: The goal of the hardware ex-
periments is to demonstrate that the control framework can
be deployed on a real platform in a real-time setup. For this
purpose, we perform an interaction replanning and a door
opening experiment similar to the description provided in the
previous section with our RoyalPanda robot. A video of the
experiments can be found https://youtu.be/Q1AohXmsLs4here.
The door displacement and the robot’s base are tracked using a
motion tracking system, eliminating the need for precise state
estimation. We plan to remove this limitation in future work.

In the first hardware experiment, the door motion is limited
using a rope. With this experiment, we bring interaction to the
limit case of extreme force applied to the articulation. Also, this
situation might happen when a joint is stuck, e.g., because of
stiction, wear, and rust. We monitor the evolution of the tank
energy, and once it has reached the allowed minimum, we wait
3 s before manually cutting the rope. We repeat the experiment

Fig. 12. In this figure, we show the chattering effect happening when the
constraints are enforced with α = 1/dt = 1000. In contrast, a lower α greatly
alleviates this issue.

for the methods ΠN and ΠIO recalling that the latter only uses
the passivity constraint in the inner loop. The wrench norm and
the evolution of the energy in the tank during the experiments can
be seen in Fig. 13. As one can see in the accompanying video,
without passivity, the manipulator exerts a rapidly increasing
wrench until the rope is broken apart. On the other hand, when
passivity is enforced, the power flow and external wrench is
regulated leading to a robust interaction behavior and no need
for the operator to intervene. When the object is released, the
gripper gets stuck in a constrained configuration between the
door plate and the handle. When ΠN is deployed, the controller
tries to push aggressively and is, therefore, not able to escape
this gripper trap. Instead, when using ΠIO, the tank residual
energy is low and aggressive actions are prohibited. The overall
behavior is safer and allows the robot to escape from the bad
configuration.

In the second real-robot experiment, contained in the accom-
panying video, we aim to show the closed-loop and reactive
nature of the control framework. During the experiment, the
interaction with the articulated object is disturbed by a human
operator, forcing the end-effector to lose contact with the object
handle. We observe that the controller is able to react and quickly
find a new interaction strategy that achieves the task, while
staying compliant at all times.

VII. METHOD LIMITATIONS AND FUTURE WORK

In the following, we describe the most prominent issues
that emerged during the experiments and how they could be
addressed to improve the proposed method.

A. Model Mismatch

We have found that the method is highly sensitive to model
mismatches. While we can assume that the robot model is
known with high accuracy, this is often not the case for the
object we intend to manipulate. Unfortunately, we observed
that a small uncertainty in the estimate of the object pose and
geometry could lead to failures in the door opening experiment.
In particular, if the handle placement was not measured exactly,
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Fig. 13. Figures show that when passivity is enforced, the controller is able
to limit the overall interaction wrench. This experiment is also reported in the
accompanying video. (a) Wrench norm during the door opening experiment.
We measure an average wrench of 68 and 34 N for the ΠN and ΠIO methods,
respectively. The sharp wrench drop corresponds to the time when the rope
breaks and energy is suddenly released. The two time series have been aligned
to facilitate visualization. (b) Evolution of the tank energy over time during the
door opening experiment. The zoomed plot shows that energy is recovered when
the object is released.

the controller would generate a “tapping” motion, which would
cause a hard collision between the fingertip and the handle itself.
One can try to quantify the sensitivity of the method to model
mismatches and leverage this knowledge to account for the
estimate uncertainty. Nevertheless, this is not an easy task as
there are dependencies across a range of factors, including the
specific object geometry, finger design, object placement, and
articulation type.

B. State and Model Estimation

We believe that a tighter integration with perception could
be extremely fruitful and help to reduce the amount of prior
knowledge needed. A perception system could be devised to
extract local 3-D patches that are used as candidate interaction
hotspots. On the other hand, a surface mesh is not sufficient to
model the object motion and dynamical behavior. As a matter
of fact, an articulated object is also described by its kinematic
parameters, namely, the center and axis of rotation. Last but not
least, mass, damping, and friction could be estimated. However,
since we did not tune any of these parameters to accurately
match the real articulated object in our experiments, we conclude

Fig. 14. Location of the gripper frame used to compute the target reaching
cost for manipulation can play a big role in finding a successful manipulation
strategy. (a) Bad frame placement. (b) Good frame placement.

that the method is less sensitive to uncertainty in these model
parameters.

C. Cost Engineering

The generation of good trajectories strongly depends on a
well-engineered and task-dependent cost formulation. With poor
cost tuning, stochastic policy optimization, as in the presented
method, will tend to become trapped in local minima. Recall
that during the manipulation task, we rely mainly on two cost
components. We use an end-effector pose cost to drive a virtual
gripper frame to the location of an interaction frame, located on
the medial axis of the handle. This serves as an interaction loca-
tion prior. A second door-opening cost instead favors trajectories
that pull the door open. If the first term is too high relative to
the second, sampling could lead to suboptimal solutions where
the end-effector hovers in the proximity of the handle. In fact,
pose deviations, from which some are able to successfully pull
the door open, are highly penalized.

A second design aspect that influenced sampling quality is the
placement of the virtual gripper frame. If this was too close to
the finger collision geometry, random sampling would often fail
to find a solution that avoids collision and successfully reaches
the target pose. Instead, when this is placed at a small offset
away from the fingertips, one can prevent early collision and
successfully reach the prescribed target pose. Both placements
are shown in Fig. 14. While in this work we focus on a practical
method for high-rate closed-loop control, a larger sampling
budget or a multimodal policy distribution [33] could help to
find better solutions but always at the cost of higher compute
and lower control rates.

In future work, we would like to alleviate these issues by
developing solutions that do not depend on more sampling and
rather simplify cost engineering in a way to make it less sensitive
to tuning and more generalizable across tasks. One way of
achieving this goal would be to use a perception system to extract
candidate interaction points and orientations from sensor data
(as in [44]), as an automated way of generating an “interaction
prior” in a continuous and real-time fashion.

D. Sim-to-Real Gap

Last but not least, particular care must be taken regarding
the chosen physics engine used as a rollouts provider. Tuning is
often required to reduce the compute time and allow for a longer
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prediction horizon. One simple way, also adopted in this article,
is to increase the simulation step size at the cost of accuracy. This
is in part compensated by the closed-loop nature of the control
method that will reset the simulation to the newly observed robot
state and, therefore, limit the simulation drift. Nowadays, there
exists a plethora of physics engines that differ in algorithms,
programming language, and functionalities. A quantitative eval-
uation of the simulation accuracy and a comparative analysis
is out of the scope of this article and recent reviews suggest
that there is not an obvious winner [45]. Nevertheless, when the
task to solve is more complex, including contacts between more
bodies and extends over a longer prediction horizon, we think
that simulation fidelity can substantially improve the controller
performance and, therefore, should be further investigated.

VIII. CONCLUSION

In this article, we presented a novel control framework for
interaction control. We showed its applicability to the real
platform and enhanced its robustness adding new algorithmic
components, which deploys ZBFs and passivity. We devised a
cascaded control architecture that takes into account real-time
constraints and for the first time applied these methods on a
mobile manipulation platform in real-world experiments. The
proposed solution is robust and guarantees stability and safety
in the case of unforeseen and sudden safety-critical events as we
have demonstrated in our simulated and hardware experiments.
Last but not least, we open sourced an efficient multithreaded
implementation of the algorithms that we hope can help practi-
tioners to extend and use this method on new applications.

APPENDIX A
DERIVATION OF POLICY GRADIENT

Recall that the optimization variables are the parameters of
the current policy, namely, the mean vector of the normally
distributed control sequence θ = {μt,μt+Δt, . . . ,μt+T−Δt}.
With a small abuse of notation, we denote the input command at
time index k in the horizon,uk ∼ N (μk,Σ). Recall also that we
map costs to success likelihoods using the exponential function
p(O|Xt, Ut) = exp(−λJ(Xt, Ut)) = Jt. We show the deriva-
tion of the gradient for one nominal input vector μk

∇μk
logEπθ

[p(O|Xt, Ut)] =
∇μk

Eπθ
[p(O|Xt, Ut)]

Eπθ
[p(O|Xt, Ut)]

(59)

=
∇μk

Eπθ
[Jt]

Eπθ
[Jt]

. (60)

We further expand the numerator in the previous expression

∇μk
Eπθ

[Jt] = ∇μk

∫
Jtπθ(Ut) (61)

=

∫
Jt∇μt

πθ(Ut) (62)

=

∫
Jtπθ(Ut)∇μk

log πθ(Ut) (63)

= Eπθ
[Jt∇μk

log πθ(Ut)] (64)

where step (61) follows from the independence of the success
likelihood from the policy parameters. We now look at the
gradient of the policy log-likelihood with respect to the mean
vector

∇μk
log πθ(Ut) (65)

= ∇μk
log

K∏
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1√
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(
−1

2
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(66)
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2
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(67)
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−1

2
||uk′ − μk′ ||Σ−1 (68)

= ∇μk
− 1

2
||uk − μk||Σ−1 (69)

= Σ−1(uk − μk) (70)

= Σ−1εk (71)

with K being the total number of discrete-time steps in the time
horizon. Plugging the previous expression into (64), we obtain

Eμk

[Jt∇μk
log πθ(Ut)

]
= Eπθ

[JtΣ
−1εk

]
(72)

= Σ−1Eπθ
[Jtεk] . (73)

We finally combine (60) and (73) to get the equation that relates
the gradient to the cost and input noise

∇μk
logEπθ

[p(O|Xt, Ut)] = Σ−1 Eπθ
[Jtεk]

Eπθ
[Jt]

(74)

= Σ−1 Eπθ
[exp(−λJt)εk]

Eπθ
[exp(−λJt)]

.

(75)

APPENDIX B
PASSIVITY ANALYSIS

The manipulator energy is defined as

Srobot =
1

2
˙̃qTM(q) ˙̃q +

1

2
q̃TKI q̃. (76)

The energy dynamics can be obtained by computing the time
derivative of the previous expression. We plug the low-level
control law in (53) into (2), and exploiting the fact that M(q)−
2Cr(q, q̇) is skew symmetric, we get

Ṡrobot = ˙̃qTM(q)¨̃q +
1

2
˙̃qTṀ(q) ˙̃q + ˙̃qTKI q̃

= ˙̃qT

[
−Cr(q, q̇) ˙̃q −KD

˙̃q −KI

∫ t

0

˙̃qdτ + τ ext

]

+
1

2
˙̃qTṀ(q) ˙̃q + ˙̃qTKI q̃

= ˙̃qTKI q̃ + ˙̃qT τ ext +
1

2
˙̃qT

[
Ṁ(q)− 2Cr(q, q̇)

]
˙̃q
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− ˙̃qTKD
˙̃q − ˙̃qTKI

∫ t

0

˙̃q dτ

= ˙̃qTKI q̃ + ˙̃qT τ ext − ˙̃qTKD
˙̃q − ˙̃qTKI

∫ t

0

˙̃q dτ.

(77)

As we compute the desired position integrating the desired
velocity over time, it holds that q̃ =

∫ t

0
˙̃q dτ , obtaining

Ṡrobot = ˙̃qT τ ext − ˙̃qTKD
˙̃q ≤ ˙̃qT τ ext. (78)

APPENDIX C
TABLE OF PARAMETERS

TABLE I
METHOD’S MOST RELEVANT PARAMETERS
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