
D++: Structural Credit Assignment in Tightly Coupled Multiagent
Domains

Aida Rahmattalabi, Jen Jen Chung, Kagan Tumer

Abstract— Autonomous multi-robot teams can be used in
complex coordinated exploration tasks to improve exploration
performance in terms of both speed and effectiveness. How-
ever, use of multi-robot systems presents additional challenges.
Specifically, in domains where the robots’ actions are tightly
coupled, coordinating multiple robots to achieve cooperative
behavior at the group level is difficult. In this paper, we
demonstrate that reward shaping can greatly benefit learning
in multi-robot explorations tasks. We propose a novel reward
framework based on the idea of counterfactuals to tackle the
coordination problem in tightly coupled domains. We show that
the proposed algorithm provides superior performance (166%
performance improvement and a quadruple convergence speed
up) compared to policies learned using either the global reward
or the difference reward [1].

I. INTRODUCTION

Autonomous multi-robot teams can be used in complex
exploration tasks for improved information gathering perfor-
mance over single robot systems, in terms of both speed
and effectiveness. However, multi-robot coordination is a
complex control problem, especially in tightly-coupled tasks
which involve a mutual dependence of the robots on each
other’s performance [2]. In such cases, the performance
of a multi-robot system is highly sensitive to the level of
coordination among the individual robots’ policies.

In many multi-robot problems, such as space exploration,
environmental monitoring, and search and rescue tasks, only
a high level description of the mission is at hand, and agents
only have access to local sensor information to decide their
actions. Communication, which is a tool to improve the
performance of cooperative agents is also often expensive
or limited. Effective team performance becomes even more
challenging when robots’ actions are tightly coupled requir-
ing agents to extensively coordinate their actions in order
fulfill their mission. In such cases, coordinated policies can
be difficult to define a priori and distributed policy learning
is often employed to optimize team strategies.

Distributed policy learning has been demonstrated to pro-
duce effective team performance for loosely coupled tasks
[3]–[6]. In particular, reward-shaping techniques [7]–[9] have
been used to address the structural credit assignment problem
for implicit coordination solutions where inter-robot commu-
nication is unavailable. The difference evaluation function
[1], [10] is a shaped reward that makes use of counterfactuals
to query the direct effect of an individual’s contribution to

Aida Rahmattalabi, Jen Jen Chung, Kagan Tumer are with the
Autonomous Agents and Distributed Intelligence Lab, School of
Mechanical, Industrial and Manufacturing Engineering, Oregon State
University, OR, 97330, USA {rahmatta, jenjen.chung,
kagan.tumer}@oregonstate.edu

http://www.teciber.com/wp-content/uploads/2015/03/marte.jpg

Fig. 1: Rover domain representation with sample robot paths. Multiple
simultaneous observations (in this case two) must be made of a particular
POI to have any value to the system. Starting from different locations, well-
coordinated robots navigate to the POIs and make observations.

the team performance. This reward signal can be computed
from locally available information [11], it is both aligned to
the system evaluation and sensitive to the individual robot’s
action, and provides an effective training signal when the
system reward function is smooth.

Missions that require tightly coupled actions introduce
reward functions that are inherently non-smooth and often
involve step changes that represent the specific multi-robot
coupling requirements of the tasks. Thus, existing reward-
shaping techniques do provide an adequate evaluation signal
for learning joint policies that are necessary for achieving
such tightly coupled tasks.

In order to improve policy learning for these problems,
we extend the idea of the difference reward and explore
the manipulation of counterfactuals to provide robots with
a stronger feedback signal on potential joint actions. The
counterfactual that we propose computes the effect of intro-
ducing multiple identical robots to the system. Executing this
targeted sweep over the number of available robots provides
a rapid estimate of the joint action required to achieve a task.
The proposed reward framework, D++, is used to compute
the evaluation signal in a cooperative coevolutionary algo-
rithm for training the neural network control policies of each
robot.

We demonstrate our proposed reward framework on an
environmental monitoring scenario that requires robots to
perform multiple simultaneous observations of points of in-
terest (POIs) to successfully gather information. We evaluate
our method in two different monitoring tasks, one which is
agnostic to the types of robots that form an observation team
(homogeneous case), and one which requires a specific set of



heterogeneous robot types to successfully perform the task.
We show that with D++, the team of robots is able to

greatly improve policy learning rates over existing shaped
rewards in terms of the overall team information gathering
performance. Furthermore, in cases where learning via the
the global system evaluation or difference reward completely
fail to achieve an effective policy, the team policies learned
using D++ are able to successfully achieve the mission
objectives.

II. PROBLEM FORMULATION

The problem that we investigate in this paper is multi-robot
coordination in a tightly coupled environmental monitoring
task. It consists of a set of homogeneous rovers on a
two dimensional plane that must observe a set of POIs
within a given time window [1], [5]. It is of note that the
problem domain as described in this section, only consists
of homogeneous agents. In Section VII, the problem domain
will be redefined for the heterogeneous case. Prior knowledge
of POIs, such as their locations, the number of POIs and the
utility of observing any particular POI is not known and
robots must learn to coordinate such that the team’s utility
function is maximized.

The key difficulty of this domain is that multiple simulta-
neous observations of a POI are required otherwise no reward
is received by the team for those observations. Figure 1
illustrates the basic problem setup. A POI is considered
observed only if m > 0 robots observe that POI from within
a specified but unknown sensing distance. This problem
formulation ensures that team coordination is essential to
the completion of the task.

To formalize the problem, we first focus on the simple
case where m = 2 observations are required in order to
observe a POI. In this case, if more than two robots observe
a POI, only the observations of the closest two robots are
considered and their observation distances are averaged in
the computation of the global system evaluation G, which is
formulated as:

G (z) =
∑
i

∑
j

∑
k

ViN
1
i,jN

2
i,k

1
2 (δi,j + δi,k)

, (1)

where z is the joint state-action of the team, Vi is the value of
observing the i-th POI, and δi,j is the distance between the
j-th robot, and the i-th POI. The variables N1

i,j and N2
i,k

indicate whether robots j, k were within the observation
distance δ0 and were the closest two robots to the i-th POI.
That is,

N1
i,j =

{
1, if δi,j < δ0 and δi,j < δi,l, ∀l 6= j,

0, otherwise,
(2)

N2
i,k =

{
1, if δi,k < δ0 and δi,k < δi,l, ∀l 6= j, k,

0, otherwise.
(3)

The overall team objective is to maximize the global system
evaluation (1).

Fig. 2: Diagram of the rover domain. The world is broken up into four
quadrants relative to the robots position and orientation. POIs and fellow
robots that are observed in each quadrant are summed resulting in 8 state
input variables. At each timestep, the robot’s neural network controller yields
two continuous outputs [dx, dy ], which determine the robot’s motion in the
next timestep. Each POI has an observation radius such that only robots
within that radius are able to observe that POI.

Sensor detections of POIs and other robots are dis-
cretized into four quadrants, (north-east, north-west, south-
west, south-east), with respect to the robot body frame (see
Fig. 2). The detections within each quadrant are used to
compute the state input vector of the learned neural network
controller. More specifically, the state variable representing
robot detections in quadrant q for robot j is defined as:

sROBj,q
=
∑
j′∈Jq

1

Lj′
, (4)

where Jq is the set of the observed and estimated robots in
quadrant q, and Lj′ is the relative distance from robot j to
robot j

′
. The state variable representing POI detections in

quadrant q of robot j is defined as:

sPOIj,q =
∑
i∈Iq

Vi
Li
, (5)

where Iq is the set of observed POIs in quadrant q, and Li is
the relative distance between robot j and POI i. These state
variables give an approximate representation of the world,
reducing the location and number of robots and POIs in each
quadrant to a representative value.

Each member of the team of robots executes a policy
described by a neural network. Known as universal ap-
proximators [12], neural networks have the ability to model
continuous state-action control policies given only a coarse
representation of the system state [10]. To train a neural
network, the weights will be adjusted in such a way that
given the current state as an input, the network returns
an action that maximizes a particular utility function. The
performance of the learned policy is strongly dependent on
the utility function used to evaluate policies.

In this work, we train neural network controllers with
cooperative coevolutionary algorithms (CCEA) while we use
the D++ evaluation function as the fitness function and we



compare the results against those trained on the difference
(D) and global (G) evaluation functions.

III. BACKGROUND

A. Fitness Function Shaping

In many multi-robot coordination domains there is a differ-
ence between maximizing the system-level fitness function
and maximizing a single agent’s fitness value. This can be
referred to as reward shaping and is aimed at enhancing
learning by providing agents with a reward signal that is
more sensitive to their own actions while still reflecting
the system’s global objective. In this context, Hoen and De
Jong shaped the utilities of the agents such that an agent
maximizing its individual utility would act to also increase
the system evaluation function [13]. This work is similar to
that of Agogino and Tumer, and Knudson and Tumer, who
utilized difference evaluations as fitness functions to improve
coordination in multiagent systems. [1], [14]. Difference
evaluation function is a shaped reward that uses counterfac-
tual agents to provide agent-specific rewards. Section below
will elaborate on the definition and properties of difference
evaluation function which provides the necessary background
for the present proposed reward framework, D++.

B. Difference Evaluation Function

The difference evaluation function [1] is a shaped reward
signal that provides agent-specific evaluation by removing a
large amount of the noise created by the actions of other
agents in the system [15]. It is defined as:

Di = G (z)−G (z−i ∪ ci) , (6)

where z is the joint state, G(z) is the global system per-
formance, z−i are all the state-actions on which agent i
has no effect and ci is the counterfactual term, which is
a fixed vector used to replace the effects of agent i. Thus,
G(z−i∪ci) is the evaluation of a theoretical system without
the contribution of agent i. Any action taken by agent i
to increase Di simultaneously increases G. This property
is termed alignment, and is a key property of any shaped
reward. Further, the second term in (6) removes portions
of G(z) that are not related to agent i, resulting in an
improved signal-to-noise ratio. In other terms, agent i’s
impact on Di is much higher than its relative impact on
G (z) [16]. This property is termed sensitivity. Both [10],
[17] have previously shown that the alignment and sensitivity
properties of the difference evaluation function results in
agent-specific feedback, which leads to superior learning
performance.

IV. APPROACH

In this section, we elaborate on the coordination algorithm.
Since the major contribution of this paper is on shaping
reward in tightly coupled multiagent domains, we start by
introducing our proposed reward function, D++.

A. D++: An Extension to the Difference Reward in Tightly
Coupled Multiagent Domains

One of the challenges in distributed learning is that with
no prior knowledge of the task and limited communication
capabilities, agents must randomly search the state-action
space until they accomplish the system objective and receive
a reward signal to evaluate their policy. In highly coupled
domains, however, the task cannot be accomplished unless
tight coordination among the agents is established and main-
tained. This poses a great challenge to learning agents since
the probability of agents simultaneously executing the right
action is very low. Thus, agents receive no feedback on their
policies in large portions of the joint space. To illustrate,
in the case of the exploration problem discussed in this
paper, consider a scenario where three robots are required to
simultaneously observe a POI. The robots start from random
locations and should synchronize their policies to reach the
POIs simultaneously. However, it is unlikely that randomly
moving robots are able to learn this task within a reasonable
amount of time since only after all three robots successfully
observe a POI do they receive a reward. In the absence
of system feedback they are not capable of evaluating any
potential improvement in their policies.

It is clear that the key problem is to be able to distinguish
between a case where two robots are within the observable
region of a POI and they only need one more robot to
complete their subteam, and a case where all three of them
are wandering without purpose in the environment.

Any reward function should enable agents to evaluate their
actions in the absence of their teammates. This can lead to
a huge reduction in the search space and an increase in the
probability of success. Building upon the above argument, we
extend the idea of counterfactuals in the difference reward
and we propose a reward function, referred to as D++, to
address this problem. The counterfactual that we propose
computes the effect of introducing multiple identical agents
to the system and compares it to the current state of the
system. The mathematical formulation of D++ is,

Dn
++ (i) =

G
(
z+(∪i=1,...,n)i

)
−G (z)

n
, (7)

In the above equation, z+(∪i=1,...,n)i indicates all the states
on which agent i has added n identical agents. Furthermore,
the division by n is for the purpose of normalization. Since
we assume no prior knowledge on the number of agents
required to fulfill a task, the agents should iteratively increase
the value of n.

Notably, in the above formulation of D++, if the value of
n is set to -1, D++ will yield the definition of D as described
in (6) since the counterfactual term ci is an arbitrary vector
which can indeed be set to ~0.

As in the difference reward, agents optimize the global
system objective by calculating each agents’ contribution to
the system performance. This is calculated based on the
difference an agent makes by executing a certain action.
This idea is further extended in D++, which evaluates
how the introduction of multiple identical agents benefit



the system. It is noteworthy that in tightly coupled tasks,
D does not provide any feedback unless tight coordination
among the agents is established and maintained. On the
other hand, D++ fails to provide this gradient information
where sufficient number of agents have coordinated. So it is
reasonable to leverage both D and D++ to the benefit of the
system. This leads us to the final definition of our reward
framework which is based on the idea of both removing and
adding agents, described by D and D++, respectively.

At this stage, the reward shaping will be combined with
a search problem on different numbers of counterfactual
agent additions. In order to guide the search and improve the
computation, we use the basic assumption that in any state
of the robot, the entire multiagent system must be able to
accomplish the task. In other words, in the present problem
domain, if a robot is within the observable region of a POI,
by adding the entire team of robots as counterfactual agents,
the system can make an observation of that POI. This simple
assumption allows us to evaluate whether there exists a
solution before we begin incrementing counterfactual agents
in D++ algorithm. Algorithm 1 summarizes our approach.

Algorithm 1 D++

1: calculate D−1++ using (7)
2: calculate DtotalAgents−1

++ using (7)
3: if DtotalAgents−1

++ == 0 then
4: Return D−1++

5: else
6: n← 0
7: repeat
8: n = n+ 1
9: Calculate Dn

++ using (7)
10: if Dn

++ > Dn−1
++ then

11: Return Dn
++

12: until (n ≤ totalAgents − 1)
13: Return D−1++

Algorithm 1 begins with the calculation of D = D−1++

and DtotalAgents−1
++ . It is noteworthy that totalAgents − 1

plus the agent itself make up the entire team of agents. If
DtotalAgents−1

++ is equal 0, it means that there is no possible
combination of existing robots that can make an observation
and receive a reward from the system. This corresponds to a
case where an agent is outside the observable region of all the
POIs and thus it is not possible to observe any of the POIs.
It can easily be seen that by using this knowledge, we can
greatly reduce the computation, eliminating the need to loop
over all the values of n before realizing all this computation
is in vain.

Given the above definition of the D++, we will ded-
icate the following two sections to describe the learning
framework adopted in this work and and how the D++ is
incorporated in the learning procedure.

B. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of stochastic
search algorithms that often outperform classical optimiza-
tion algorithms [18]. Typically, EAs contain three basic
mechanisms: solution generation, mutation, and selection.
Starting with an initial set of candidate solutions (the popu-
lation), these mechanisms are used to generate new solutions
and retain existing solutions that show improvement based
on a system utility. Simple EAs can be applied to a variety of
single-agent learning tasks, however, when dealing with large
cooperative multi-robot problems, modifications are required
for an effective performance. One such modification is co-
evolution, where multiple populations evolve simultaneously
in order to develop policies for interacting agents.

C. Cooperative Coevolutionary Algorithms

The standard Cooperative Coevolutionary Algorithm
(CCEA) [19] has been used in this study as a base algorithm
for learning control policies [15]. CCEAs are an extension
of EAs for multiagent systems and have been shown to
perform well in cooperative multiagent domains [20]. The
standard CCEA is detailed in Algorithm 2. In CCEA, N co-
evolving populations of neural networks (neuro-controllers)
are utilized to form teams comprised of N agents. One
member of each population is extracted for each agent to
form a team which then operates in the problem domain.
At each generation, k mutated networks are generated in
each population by mutating the parent networks. Then, 2k
teams of agents are formed and simulated. The performance
of each simulated team is subsequently evaluated using a
fitness function, F (z) and assigned to every agent in the
team. In this paper, we propose D++ as the fitness function,
and we compare it to using G and D. Finally, k networks
from each population are selected based on greedy selection
to proceed to the next generation. This process is repeated
for a set number of generations.

Algorithm 2 Standard CCEA

1: Initialize N populations of k neural networks
2: for Generation do
3: for Population do
4: produce k successor solutions
5: mutate successor solutions
6: for i = 1→ 2k do
7: randomly select one agent from each population

without replacing it into population pool
8: add agents to team Ti
9: simulate Ti in domain

10: assign fitness to each agent in Ti using F (z)
11: for Population do
12: select k solutions using e-greedy selection

D. Computational Complexity

Computing the difference reward requires two calculations
of the global evaluation function. Robots learning using the



global reward only call G (·) once for each policy evaluation.
For D++ however, this number is increased since agents
must continue adding counterfactual agents until they reach
a non-zero value, and each iteration requires additional calls
to G (·). This adds to the computational time of the learning
algorithm. Table I compares the computational complexity of
each evaluation as the number of calls to G (·) for evaluating
a single policy.

TABLE I: COMPARISON OF NUMBER OF CALLS TO G FOR
THREE DIFFERENT REWARD FUNCTIONS

Evaluation function G D D++

Calls to G 1 2 ci + 3

In Table I, ci is the the minimum number of counter-
factual agents needed to be added by agent i in order to
receive a nonzero value. This term is bounded between
[0, total number of agents− 1] since we assume the entire
team of robots should be able to accomplish the task.
In cases where sufficient number of agents are present to
complete a coupled task, ci is equal to 0 (i.e. D provides
a sufficient learning signal). In cases where adding any
number of agents cannot increase the system performance,
ci is also 0. This is because, when calculating D++ reward,
first (total number of agents− 1) agents are added and if the
returning reward is zero, it can be understood that iterating
over fewer counterfactual agents will similarly not yield a
nonzero reward. An example of this situation in the present
exploration domain is when a robot is outside the observable
range of a POI, where adding any number of agents cannot
fulfill the observation task. Lastly, if not enough robots are
within the observable radius of a POI, ci takes a value
between [1, required number of observations− 1]. We will
revisit this problem in the results section where we show
that the average value of ci decreases for the team of robots
throughout learning, making it increasingly more efficient to
use D++ as the learning signal.

V. EXPERIMENT SETUP

To investigate the performance of the proposed shaped
reward, different sets of experiments will be presented. We
compare the performance of D++ learners against those
using the difference evaluation function signal and global
evaluation signal. The experiments are performed in sim-
ulation and the robot policies are evaluated and learned
offline.Generally, at every timestep, each robot uses the
policy encoded by the neural network controller to determine
two controls in the (x, y) directions. Each controller is an 8-
input, 9-hidden unit, 2-output fully connected feedforward
neural network. These neural network controllers are ran-
domly initialized.The weights are adjusted via the (CCEA)
algorithm, explained in algorithm 2. The eight inputs are the
state variables as defined in (4) and (5). The neural network
output provides two values that lie in [0, 1] and each of
these are mapped to one of the two controls. Each agent

has a population of 15 policies, initialized using a normal
distribution N (0, 1).

In the following experiments, we first focus on the ho-
mogeneous multi-robot system for which the survey region
is 30 × 30 units in size, containing a fixed number of
randomly distributed POIs. Each POI requires a fixed number
of simultaneous observations within its observation range,
which is defined as rPOI = 4.0. The maximum allowable
robot movement is defined as dmax = 1 unit/timestep. In this
problem, we assume full observability for the robot sensors.
In future work, we will address partial observability and its
effect on the performance of the proposed learning algorithm.

VI. RESULTS: HOMOGENEOUS TEAMS

Two sets of experiments are conducted. In both experi-
ments, a team of 12 robots explore the region to observe
10 POIs. In the first experiment, each POI requires 3 si-
multaneous observations. In the second experiment, in order
to analyze how the learning algorithm performs with tighter
agent coupling, the number of required observations for each
POI was doubled.

A. 12 Robots, 10 POIs, 3 Required Simultaneous Observa-
tions

Averaged learning results associated with all three reward
functions, G, D, D++ with error bars reporting the standard
error in the mean are given in Fig. 3. These results show that
agents learning with the D++ evaluation signal outperform
agents using global evaluations or the difference evaluation
function alone. In fact, D++ produces policies that perform
up to 100% better that those of D and at a quadruple speedup
in the learning rate.

Figure 4 shows the paths of the team of robots after being
trained with the D++ reward function. The dots in magenta
are the POIs, and they vary in size based on their value
to the system. The POIs are spread across the exploration
region. Robots are initially located in the center and should
spread and explore the area of interest. As seen in Fig. 4,
robots have successfully formed teams of three robots and
have coordinated to observe multiple POIs in their proximity.
The significance of these results is that team formation
has been performed in an implicit manner, requiring no
communication among agents or any prior information about
other agents’ intended behavior. This approach is particularly
useful in cases where communication is limited or expensive
since it can provide more reliable and robust results.

B. 12 Robots, 10 POIs, 6 Required Simultaneous Observa-
tions

To investigate the ability of the proposed algorithm in
dealing with tighter agent couplings, we doubled the number
of required simultaneous observations. Averaged results over
20 trials are shown in Fig. 5. These results indicate that as
the coupling of the system increases, both G and D lose
applicability since learning algorithms using either of these
reward functions relies heavily on multiple agents simulta-
neously selecting the right actions, which is highly unlikely



Calls to G
0 1000 2000 3000 4000 5000 6000 7000 8000

G
(z

)

0

5

10

15

20

25

30

35

40

45

G

D

D++

Fig. 3: Observation performance of policies trained on G, D, D++ for 12
robots, 10 POIs each requiring 3 simultaneous observations.

X
5 10 15 20 25 30 35

Y

-5

0

5

10

15

20

25

30

Fig. 4: Robots paths executed by policies learned using the D++ reward
function. POIs are represented as pink circles; larger circles indicate that
the POI has a higher observation value.

in tightly coupled domains. However, D++ overcomes this
issue by using counterfactual agents. In particular in the
rover domain, D++ rewards a policy that leads an agent to
the observable region of a POI. Even if insufficient number
of robots are available to accomplish the observation task; it
promotes coordination by rewarding the stepping stones that
ultimately lead to achieving the system objective.

Calls to G
0 1000 2000 3000 4000 5000 6000 7000 8000

G
(z

)

0

2

4

6

8

10

12

14

G
D
D++

Fig. 5: Observation performance of policies trained on G, D, D++ for 12
robots, 10 POIs each requiring 6 simultaneous observations.

C. Computation Time Analysis

Recall from Section IV-D that while calculating D++ one
must continue introducing counterfactual agents until the
resulting reward provides a gradient that can be used as the

Generations
0 500 1000 1500 2000 2500 3000

C
al

ls
 to

 G

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Required Observations = 3 
Required Observations = 6

Fig. 6: Average calls to G across progressive learning generations in the
D++ calculation for two cases where POIs require 3 and 6 simultaneous
observations, respectively. Averages over 20 trial runs are plotted along with
95% confidence intervals.

reward. However, as previous results on the performance of
policies trained using D++ show, agents learn to coordinate
relatively quickly compared to the results from using either
G or D. This results in a decrease in the number of required
counterfactual agents and also a decrease in the computation
effort needed. Figure 6 supports the above argument by
indicating the average required number of simulated coun-
terfactual agents in D++ calculations during training. As
shown in Fig. 6, there is a sharp decrease in the calculations
required in D++ within the first 500 generations.

VII. HETEROGENEOUS TEAM FORMATION

So far, we have only considered robots that are homo-
geneous. However, some tasks may require multiple agents
of differing construction and capabilities to cooperate and
perform a task. Considering heterogeneous robots in a mul-
tiagent domain adds a great deal of potential and power
at the price of added complexity. In such domains, team
formation is indeed more challenging since each agent must
both identify the subset of agents that it needs to collaborate
with and to synchronize its action with its teammates in order
to fulfill the task.

A. D++ for Heterogeneous Agents

In this section, we extend the D++ algorithm to handle
coordination of heterogeneous agents. We revisit the rover
exploration domain described in Section II, and this time
we assume there are t types of robots. We also assume that
each robot is able to determine that there are t types of robots
in the environment and also the number of robots of each
type. Finally, in order for an observation to be counted as
successful, ni agents of each type i should simultaneously
observe the POI within its observation radius, that is, a
total of

∑t
i=1 ni agents must be present in the observable

region surrounding each POI. Comparing to the homoge-
neous case described before, it is clear that coordination
is more challenging since the probability that the sufficient
number of agents of the exact required types select the right
actions to make a successful observation is even further
reduced. Thus we need a coordination mechanism that is
able to provide the useful incentive for each agent and to



guide them toward the more promising policies even in the
absence of their teammates. In order for D++ to account for
such heterogeneity, we need to slightly modify the search
procedure. This time, we start by assigning ~n = ~0, where ~n
is a vector of size t, equal to the number of types of robots.
~n holds the number of counterfactual agents needed to be
added for each type in order to receive a non-zero reward.
In order to find ~n, we add one agent of each type at each
step, and we continue incrementing the number of agents
of all types until we reach a non-zero value for the reward.
Algorithm 3 summarizes the approach.

Algorithm 3 D++ (Heterogeneous Agents)

1: calculate D−1++ using (7)
2: calculate DtotalAgents−1

++ using (7)
3: ~n← ~0
4: if DtotalAgents−1

++ == 0 then
5: Return D−1++

6: else
7: repeat
8: for t = 1 : totalTypes do
9: nt = nt + 1

10: Calculate Dn
++ using (7)

11: if Dn
++ > Dn−1

++ then
12: Return Dn

++

13: until (n ≤ totalAgents − 1)
14: Return D−1++

VIII. RESULTS: HETEROGENEOUS TEAMS

In this section, two sets of results on the heterogeneous
exploration domain are presented. In both experiments, t = 3
types of robots are considered. In the first experiment, each
POI requires at least one robot of each type for a successful
observation. In the second experiment, we increase the level
of heterogeneity by requiring one robot of the first two types,
t = 1, 2 and 3 robots of type three, t = 3, to simultaneously
observe a POI. This will indicate the power of our algorithm
in dealing with different levels of system heterogeneity.
Similar to the homogeneous case, the survey region is 30×30
units in size and each POI has a fixed observation radius of
rPOI = 4.0. Also, the maximum allowable robot movement
is dmax = 1 unit/timestep as defined before. The following
results are generated from 20 statistical trials.

A. 9 Robots, 15 POIs, Simultaneous Observations of 3
Agents of 3 Different Types Required

In this experiment, we assume that there are 3 different
types of robots, each having a particular capability required
for the successful observation of the POIs. A POI is counted
as observed only if it is simultaneously observed by at least
one robot of each type. Figure 7 indicates the learning curves
comparing performance of policies learned by three different
functions, G, D and D++. The learning curves are plotted
against number of calls to G to account for the required
computation of each reward function. As seen, with the same

Calls to G
0 1000 2000 3000 4000 5000 6000 7000 8000

G
(z

)

0

10

20

30

40

50

G
D
D++

Fig. 7: Observation performance of policies trained on G, D, D++ for 9
robots, 15 POIs each requiring simultaneous observations of the robots, one
of each type t.

X
-5 0 5 10 15 20 25 30 35 40

Y

0

5

10

15

20

25

30

35

40

Fig. 8: Robots paths executed by policies learned using the D++ reward
function. Different colors of blue, green and red are used to represent
different types of robots in the system. As seen, two groups of robots,
bounded in the dashed box, consist of all the three required types and have
successfully formed teams to explore the POIs in that region. However, the
remaining robots are still optimizing their policies trying to observe the
remaining POIs.

number of calls to G, policies learned using G and D perform
similarly while D++ yields policies that perform about 1.5
times better and up to four times faster compared to the
results of G and D.

Figure 8 is a snapshot of the exploration domain which
depicts the actual robot paths executed by policies learned
using the D++ reward function. The path are colored in
blue, green and red, each representing a different type of
robot in the system. The POIs are marked with magenta
dots with varying sizes, indicating their importance to the
system. As seen, the robots, starting from the center of the
domain, have formed two distinctive teams consisting of one
robot of each type which have successfully coordinated to
make observations of the POIs along their paths. Meanwhile,
three robots, shown outside of the dashed box, have not fully
coordinated.

B. 9 Robots, 15 POIs, Simultaneous Observations of [1, 1, 3]
Agents of 3 Different Types Required

This experiment measures the performance of the D++

algorithm when the level of the system heterogeneity in-
creases. For this purpose, we assume that each POI must be



Calls to G
0 1000 2000 3000 4000 5000 6000 7000 8000

G
(z

)

0

2

4

6

8

10

12

14

G
D
D++

Fig. 9: Observation performance of policies trained on G, D, D++ for 9
robots, 15 POIs each requiring simultaneous observations of a total of 5
robots, including one of each types of t = 1 and t = 2, and three robots
of type t = 3.

simultaneously observed by at least five distinctive robots,
one from each of the first two types, and three of the third
type. An equivalent problem in a real world scenario can
be where we have different robot types each equipped with
different sensors and tools to explore an unknown area. In
such a case, three robots can assist in robots localization,
and the second and third type may provide the tools to
perform excavation and data collection. Figure 9, indicates
the performance of the learned policies in a stimulated
scenario. It is clear from these results that training using
either G or D fails to yield a high-reward policy. This can
be explained by the fact that both of these reward functions
rely on multiple agents simultaneously selecting the right
actions, which is highly unlikely in such a tightly coupled
problem. The problem is even more severe compared to the
homogeneous domain since the robot types also matter and
any coordination algorithm must account for that as well. In
contrast to G and D, D++ manages to reward policies that
are stepping stones to the ultimate system objective even in
the case of agent heterogeneity.

IX. CONCLUSION

In this paper, we developed control policies for a team of
robots in a tightly coupled environmental monitoring task.
We explored this problem along two dimensions, the degree
of coupling and the heterogeneity of the multiagent system.
We first proposed D++, a novel reward framework which
builds on the idea of counterfactuals. D++ was successfully
tested in the homogeneous domain. Additionally, to account
for system heterogeneity, the D++ reward function was
extended to a domain with different types of robots, all
required for the completion of the task.

Unlike the global evaluation function G and the differ-
ence evaluation function D, D++ promotes coordination
by rewarding policies that are the stepping stones to ac-
complishing the system objective. Notably, as the coupling
of the system increases, both G and D lose applicability
since they rely heavily on multiple agents simultaneously
selecting the appropriate actions, which is highly unlikely
in tightly coupled domains. We also investigated the impact
of system heterogeneity on the learned policies and We

showed that policies trained on the D++ resulted in superior
performance compared to those trained on global evaluations
and difference rewards in terms of both convergence speed
and performance.

REFERENCES

[1] A. Agogino and K. Tumer, “Efficient evaluation functions for multi-
rover systems,” in Genetic and Evolutionary Computation–GECCO
2004. Springer, 2004, pp. 1–11.

[2] B. P. Gerkey and M. J. Matarić, “Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination,” in Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Conference on,
vol. 1. IEEE, 2002, pp. 464–469.

[3] P. Stone and M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.
345–383, 2000.

[4] M. Bowling and M. Veloso, “Simultaneous adversarial multi-robot
learning,” in Proceedings of the 18th International Joint Conference
on Artificial Intelligence, vol. 3, 2003, pp. 699–704.

[5] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, 2005.

[6] K. Tuyls, P. J. T. Hoen, and B. Vanschoenwinkel, “An evolutionary
dynamical analysis of multi-agent learning in iterated games,” Au-
tonomous Agents and Multi-Agent Systems, vol. 12, no. 1, pp. 115–
153, 2006.

[7] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,” in
International Conference on Machine Learning, 1999, pp. 278–287.

[8] S. Devlin and D. Kudenko, “Theoretical considerations of potential-
based reward shaping for multi-agent systems,” in The 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent
Systems, 2011, pp. 225–232.

[9] ——, “Dynamic potential-based reward shaping,” in Proceedings
of the 11th International Conference on Autonomous Agents and
Multiagent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 2012, pp. 433–440.

[10] A. Agogino and K. Tumer, “Efficient evaluation functions for evolving
coordination,” Evolutionary Computation, vol. 16, no. 2, pp. 257–288,
2008.

[11] M. Colby, J. J. Chung, and K. Tumer, “Implicit adaptive multi-robot
coordination in dynamic environments,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 5168–5173.

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[13] J. Pieter and E. D. de Jong, “Evolutionary multi-agent systems,” in
Parallel Problem Solving from Nature-PPSN VIII. Springer, 2004,
pp. 872–881.

[14] M. Knudson and K. Tumer, “Coevolution of heterogeneous multi-robot
teams,” in Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM, 2010, pp. 127–134.

[15] M. Colby and K. Tumer, “Shaping fitness functions for coevolving co-
operative multiagent systems,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume
1. International Foundation for Autonomous Agents and Multiagent
Systems, 2012, pp. 425–432.

[16] D. H. Wolpert and K. Tumer, “Optimal payoff functions for members
of collectives,” Advances in Complex Systems, vol. 4, no. 02n03, pp.
265–279, 2001.

[17] M. Colby and K. Tumer, “Fitness function shaping in multiagent co-
operative coevolutionary algorithms,” Autonomous Agents and Multi-
Agent Systems, pp. 1–28, 2015.

[18] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
Neural Networks, IEEE Transactions on, vol. 5, no. 1, pp. 3–14, 1994.

[19] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary
approach to function optimization,” in Parallel problem solving from
naturePPSN III. Springer, 1994, pp. 249–257.

[20] S. G. Ficici, O. Melnik, and J. B. Pollack, “A game-theoretic and
dynamical-systems analysis of selection methods in coevolution,”
Evolutionary Computation, IEEE Transactions on, vol. 9, no. 6, pp.
580–602, 2005.


