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Abstract— Information gathering algorithms play a key role
in unlocking the potential of robots for efficient data collec-
tion in a wide range of applications. However, most existing
strategies neglect the fundamental problem of the robot pose
uncertainty, which is an implicit requirement for creating
robust, high-quality maps. To address this issue, we introduce
an informative planning framework for active mapping that
explicitly accounts for the pose uncertainty in both the mapping
and planning tasks. Our strategy exploits a Gaussian Process
(GP) model to capture a target environmental field given the
uncertainty on its inputs. For planning, we formulate a new
utility function that couples the localization and field mapping
objectives in GP-based mapping scenarios in a principled way,
without relying on manually-tuned parameters. Extensive simu-
lations show that our approach outperforms existing strategies,
reducing mean pose uncertainty and map error. We present a
proof of concept in an indoor temperature mapping scenario.

I. INTRODUCTION

Rapid technological advancements are inciting the use
of autonomous mobile robots for exploration and data ac-
quisition. In many marine [1, 2], terrestrial [3, 4], and
airborne [5, 6] applications, these systems have the abil-
ity to bridge the spatiotemporal divides limiting traditional
measurement methods in a safer and more cost-effective
manner [7]. However, to fully exploit their potential, algo-
rithms are required for planning efficient informative paths in
complex environments under platform-specific constraints.

This paper examines the problem of active mapping using
a robot, where the aim is to recover a continuous 2-D or 3-D
field, e.g., of temperature, humidity, etc., using measurements
collected by an on-board sensor. In similar setups, most
existing strategies [1, 5, 8] incorrectly assume perfect pose
information, which is an implicit requirement for building
high-quality maps in initially unknown environments. Our
motivation is to improve upon the robustness and accuracy
of field reconstructions by allowing the robot to adaptively
trade-off between gathering new information (exploration)
and maintaining good localization (exploitation).

Despite recent efforts [2, 6, 9, 10], propagating both the
localization and field map uncertainties into the planning
framework in a principled manner remains an open chal-
lenge. A major issue arises due to the different ways in which
the target field and robot pose are modeled. In particular, our
work considers the task of mapping a field using a Gaussian
Process (GP) with the robot pose represented as a multivari-
ate Gaussian distribution. In this setup, uncertainty measures

1Smart Robotics Lab., Imperial College London. 2Centre for Au-
tonomous Systems, University of Technology Sydney. 3Autonomous Sys-
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Fig. 1: Overview of our proposed active mapping strategy. (a)
shows a spiral trajectory traveled by a robot. Squares indicate point
landmarks on the ground used for localization. Spheres represent
sites where measurements of the ground truth field map in (b)
are taken. By accounting for pose estimation uncertainty, our
framework yields an error map (c) with 2.47 times lower total error
compared to a standard mapping approach (d).

in the field and robot pose, e.g., entropy-based criteria [4], are
not directly comparable since they are obtained from their
respective model variances which have different units and
scales, and are therefore difficult to couple in a single utility
function for multi-objective planning. Heuristic methods,
e.g., based on a linear weighting of uncertainties [11], are
commonly applied; however, they require careful manual
tuning and are often scenario-specific.

To address this, we present an approach that accounts
for the pose estimation uncertainty in two places. First, we
consider the additional noise the pose uncertainty induces in
the environmental field model; second, we include it as a
shaping factor in the utility function that defines our infor-
mative planning task. Our mapping strategy uses GPs with
uncertain inputs (UIs) [2] to propagate the pose uncertainty
into the field model, as visualized in Fig. 1. During a mission,
the map built online is used to plan informative trajectories
in continuous space. We develop a new utility formulation
for GP-based mapping scenarios that jointly considers the
uncertainty of the robot and the field models. This enables
us to capture the desired exploitation-exploration trade-off



in a mathematically sound manner, without relying on any
manually-tuned, environment-dependent parameters. In sum-
mary, the contributions of this work are:

1) A utility function based on GP field models that tightly
couples the objectives of robot localization and field
mapping in active mapping problems.

2) An informative planning framework that accounts for
the pose uncertainty in both mapping and the informa-
tion objective for planning.

3) Evaluations of the approach in a 3-D graph Simulta-
neous Localization and Mapping (SLAM) setup and a
proof of concept in a temperature mapping scenario.

We note that our framework can be used in any scalar field
mapping scenario, e.g., spatial occupancy [4, 6, 12], signal
strength [2, 8], aerial surveillance [5, 7], etc., and with any
SLAM or localization-only algorithm supplying the pose
uncertainty. Here, we focus on a general case where the
spatial field data is decoupled from the localization routine.

II. RELATED WORK
Significant recent work has been done on autonomous data

gathering in the context of robotics and related fields. The
discussion here focuses on two main streams: (1) methods
for probabilistic environmental mapping [2, 6, 9, 13], and
(2) algorithms for informative planning [1, 4, 5, 12, 14, 15].

GPs are a popular non-parameteric Bayesian technique
for modeling spatio-temporal phenomena [13]. They have
been applied in various active sensing scenarios [1, 3, 5, 15]
to gather data based on correlations and uncertainty in
continuous maps. However, most of these works assume that
the training data for prediction is inherently noise-free, which
may lead to inaccuracies if measurements are incorporated at
wrong locations and mislead predictive planning algorithms.

Propagating the input uncertainty through dense GP mod-
els is computationally challenging. Analytical [9] and het-
eroscedastic approximation methods [2, 3, 10] have been
proposed, of which our work leverages the expected kernel
technique of Jadidi et al. [2]. Specifically, we apply their
approach to more complex 3-D planning scenarios, and
integrate it with a new uncertainty-aware utility function.
This coupling enables robust, tractable mapping under robot
pose uncertainty for online sensing applications.

An active sensing task can be expressed in a Partially Ob-
servable Markov Decision Process (POMDP) [16] as one of
decision-making under uncertainty. In practice, informative
planning algorithms are typically used to render this problem
computationally tractable with dense belief representations.
We broadly distinguish between planning strategies operating
in (a) discrete [4, 12] and (b) continuous space. This study
focuses on the latter class of methods, which leverage
incremental sampling [6, 8, 17, 18] or splines [1, 5] to offer
greater scalability compared to discrete approaches. As in
our prior work [5, 14, 15], we define smooth polynomial
robot trajectories [19] and optimize them globally for an
information objective in a finite-horizon manner.

Relatively limited research has been invested in active
sensing scenarios where robot localization is uncertain. This

setup has been tackled in the contexts of belief-space plan-
ning [6, 17, 18] and active SLAM [11, 12], where the aim is
to maintain good localization while exploring an unknown
environment. In contrast, and similarly to Papachristos et al.
[6] and Costante et al. [17], our paper considers the map
building and localization problems to be decoupled. The
main distinction is that we aim to reconstruct a continuous
field that is independent of the features used for localization.

An open challenge in this setup is formulating utility
functions to trade off between robot localization and field
mapping in a principled manner. Previous approaches have
examined heuristic parameter tuning [12], e.g., using a linear
weighting of the map and pose uncertainties [11], and multi-
layer [6, 17] planning strategies. In contrast, we follow Car-
rillo et al. [4] in using the concept of Rényi’s entropy to
discount information gain based on predicted localization
uncertainty. Thereby, our utility function shares the benefit
of coupling the two objectives in a mathematically sound
way, without manual tuning requirements. Our formulation is
developed for a continuous mapping scenario based on a GP
field model, instead of an occupancy grid [4]. Moreover, by
mapping with UIs, we present a unified framework where the
robot localization uncertainty is jointly accounted for in both
mapping and planning to achieve robust data acquisition.

III. PROBLEM STATEMENT

The general active mapping problem is formulated as
follows. We seek an optimal trajectory ψ∗ in the space of
all continuous trajectories Ψ to maximize an information-
theoretic measure:

ψ∗ = argmax
ψ∈Ψ

I(MEASURE(ψ)) ,

s.t. COST(ψ) ≤ B .
(1)

The function MEASURE(·) obtains a set of measurements
along trajectory ψ, and COST(·) provides its associated cost,
which cannot exceed a predefined budget B. The operator
I(·) defines the information objective quantifying the utility
of new sensor measurements. In Sec. V-C, we propose a
utility function for active mapping in GP-based scenarios that
incorporates both the robot localization and field mapping
objectives without manual parameter tuning requirements.

IV. MAPPING APPROACH

This section presents our mapping approach as the basis of
our framework. We first describe our method for environmen-
tal field modeling using a GP, then present a strategy which
folds the robot pose uncertainty into the map inference.

A. Gaussian Processes

We use a GP to model the spatial correlations of a
field in a probabilistic and non-parametric manner [13].
The target field variable for mapping is assumed to be a
continuous function: f : E → R. A GP is characterized by
a mean function m(x) , E[f(x)] and covariance function
k(x,x′) , E[(f(x) − m(x))(f(x′) − m(x′)] as f(x) ∼
GP(m(x), k(x,x′)), where E[·] is the expectation operator
and x and x′ are input vectors (spatial coordinates).



For a set of observed (training) locations in the fixed-
size environment with associated target values, we apply the
standard GP regression equations [13] to infer the mean µ
and covariance matrix P at a set of new query locations.
The covariance function k encodes our assumptions about the
field. In this work, we assume that the mapped environmental
phenomena are smooth and isotropic; thus common choices
for k are the squared exponential (SE) and Matérn [13].

B. Mapping Under Pose Uncertainty

To propagate the robot pose uncertainty into our mapping
framework, we apply the expected kernel technique of Jadidi
et al. [2] to planning problems in 3-D setups. The key idea
lies in taking the expectation of k over UIs. Instead of X
being a deterministic location as in Sec. IV-A, let X now be
a random variable probabilistically distributed according to
p(x). The expected covariance function k̃ is computed as:

k̃ = E[k] =

∫
X

kp(x)dx . (2)

Assuming a Gaussian distribution for the robot pose
N (p, Σ), we apply Gauss-Hermite quadrature to efficiently
approximate the integral in Eq. (2) in three dimensions.

V. PLANNING APPROACH

Here we summarize the key steps of the informative
planning algorithm, focusing on our uncertainty-aware utility
function for GP-based active mapping scenarios as the main
contribution of this paper. Interested readers are referred to
our previous publications for more details [5, 14, 15].

A. Trajectories

A polynomial trajectory ψ is represented by N ordered
control waypoints C = [c1, . . . , cN ] connected using N − 1
k-order spline segments. Given a reference velocity and
acceleration, we optimize ψ for smooth minimum-snap dy-
namics [19], clamping c1 as the initial robot position. In
Eq. (1), MEASURE(·) computes the spacing of measurement
sites given a constant sensor frequency and robot speed.

B. Algorithm

We plan using a fixed-horizon approach, alternating re-
planning and execution until the elapsed time t exceeds the
budget B. Our replanning strategy (Alg. 1) consists of two
steps. First, an initial trajectory is obtained through a grid
search (Lines 3-7) based on a coarse set of points L in
the 3-D workspace. We conduct a sequential greedy search
for N control waypoints; selecting the next-best point c∗

(Line 4) by evaluating Eq. (1) over L. As described in Sec. V-
C, our new utility function (Eq. (5)) defines the objective
I(·) in Eq. (1) for planning under pose uncertainty Σ. For
each candidate goal, the evolution of Σ along a trajectory
connecting it to the current pose is predicted (Line 5)
according to Sec. V-D. The result is used to update the GP
covariance matrix (Line 6) based on the new measurement
locations. c∗ is then added to the set of control points C.

The second replanning step (Line 8) refines the coarse
grid search output for C using Eq. (1). This is done by

Algorithm 1 REPLAN PATH procedure
Input: Current covariance matrix of the GP field model P,

number of control waypoints N , grid points L, initial
position c1, robot pose (p, Σ)

Output: Waypoints defining next polynomial plan C
1: P′ ← P; (p′, Σ′)← (p, Σ) // Create local copies.

2: C ← c1 // Initialize control points.

3: while N ≥ |C| do
4: c∗ ← Select viewpoint in L using Eq. (1)
5: (p′, Σ′) ← PREDICT MOTION(p′, Σ′, c∗)
6: P′ ← PREDICT MEASUREMENT(P′, p′, Σ′)
7: C ← C ∪ c∗

8: C ← CMAES(C, P, p, Σ) // Optimize control points using Eq. (1).

computing I(·) for a sequence of measurements taken along
a trajectory. For prediction, we apply the same principles
as in Lines 5 and 6 above. A key benefit of our two-
step approach is that the informed initialization speeds up
the optimization convergence, making it suitable for finding
solutions on computationally limited systems.

The optimization step is agnostic to the actual method con-
sidered; here, we employ the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [20], a global derivative-free
optimizer based on evolutionary algorithms that has been
used to solve high-dimensional, nonlinear, non-convex prob-
lems in continuous domains [1, 14, 15, 20]. Our choice of
this routine is motivated by the nonlinearity of the objective
in Eq. (1). Readers are referred to Hansen [20] for details.

C. Utility Definition

We introduce a new utility, or information gain, function
I(·) in Eq. (1) which directly relates the uncertainty of
both the robot pose and the field map without the need
for additional hand-tuned scaling parameters. Our utility
function is derived from the Rényi entropy, which for a
multivariate Gaussian distribution is given by [21]:

Hα(X) =
1

2
log
(∣∣∣(2πα

1
α−1

)
P
∣∣∣) , (3)

where α ∈ [0, 1) ∪ (1,∞) is a free parameter. Note that the
Rényi entropy converges to the Shannon entropy as α→ 1.

To improve computational tractability, we approximate the
determinant in Eq. (3) using the covariance matrix trace.
Dropping the constant terms then gives:

Hα(X) ∝∼ Ĥα(X) = log
(

Tr (P)α
1

α−1

)
, (4)

where Tr(·) is the matrix trace, and the covariance matrix P
is obtained using Eq. (2) for mapping under uncertainty.

Our key insight is to relate the free parameter α to the
predicted pose uncertainty Σ along a candidate trajectory
such that the expected information gain reduces when local-
ization uncertainty is high. Noting that Hα is strictly non-
increasing in α, this intuition can be captured by setting α
to α(Σ) = 1 + 1

Tr(Σ) , and computing information gain as:

Iα(Σ)(p) = Ĥ(P−)− Ĥα(Σ)(P
+) . (5)

The superscripts − and + denote the prior and posterior GP
covariance matrix P. Similar to our approximation in Eq. (4),
the first term on the right side in Eq. (5) is computed using



the GP covariance trace. This approximates the Shannon
entropy of the model before executing a candidate trajectory.
The second term approximates the Rényi entropy of the
model given the predicted measurements, which is shaped
according to the associated pose uncertainties by α(Σ).
Thus, Eq. (5) is similar to the mutual information, with the
key difference that we explicitly discount information gain
according to the predicted localization uncertainty.

Note that other functions can used to relate α to the
localization uncertainty in α(Σ). Carrillo et al. [4] also
suggest using the determinant or the maximum eigenvalue of
Σ instead of the trace. Nevertheless, modulating the Rényi
entropy provides a formal way in which to incorporate the
localization uncertainty while maintaining a utility function
that is primarily computed over the GP field uncertainty.

D. Uncertainty Prediction
A key requirement for predictive planning is propagating

the robot localization uncertainty for a candidate action
(Line 5 of Alg. 1). We consider this problem for active
sensing in initially unknown and known environments.

1) Unknown Environments: We consider a solution as-
suming graph SLAM using odometry and point landmark
observations [22]. Fig. 2 schematizes a 2-D example. To
predict the localization uncertainty along a possible path
(dashed line), the graph is simply extended from the cur-
rent pose N (p1, Σ1). The trajectory is interpolated at a
fixed frequency to add K − 1 odometry constraints (hollow
circles) in the extended graph, giving rise to the sequence
{N (p1, Σ1), . . . ,N (pK , ΣK)}. For each consecutive node
pair, we apply Gaussian noise with a variance proportional to
the control input magnitude. This reflects the fact that longer
steps are likely associated with higher actuation errors.

N (p1, Σ1)

N (pK , ΣK)

Fig. 2: Uncertainty prediction using graph SLAM with point land-
marks. The final robot pose N (pK , ΣK) is estimated for planning.

To address potential loop closures, we simulate re-
observations to the known landmarks (green triangles) main-
tained in the current graph given the predicted robot pose and
sensor field of view (FoV). In unknown space, we assume no
new landmark detections, so that the pose uncertainty grows
due to control noise. The resulting graph is then solved using
QR factorization to obtain ΣK [23].

2) Known Environments: Similarly, uncertainty can be
predicted assuming Monte Carlo Localization (MCL) in a
known environment. This method uses a motion model and
the expected sensor measurements to estimate the robot state
by propagating the distribution of particles in a particle filter.
It is applied in Sec. VI-C.

VI. EXPERIMENTAL RESULTS

A. Comparison of Planning Methods

First, the aim is to evaluate our new utility function
by comparing it against existing strategies. To focus on
examining our utility function and planning performance
in particular, all methods in this sub-section use the GP-
based approach with UIs for mapping under pose uncertainty
(Sec. IV-B). The experiments are executed in MATLAB
running on an Intel 1.8 GHz computer with 16 GB of RAM.

Our setup considers 5 different 5 m× 5 m× 4 m Gaussian
Random Field environments for mapping, assumed to be
initially unknown. We use a 0.25 m× 0.25 m× 1 m resolution
grid and apply the isotropic SE kernel with hyperparameters
trained by minimizing log marginal likelihood in each en-
vironment [13]. For mapping with UIs, the modified kernel
in Eq. (2) is estimated using Gauss-Hermite quadrature with
5 points. During a mission, field measurements are taken at
0.25 Hz using a point-based sensor centered on a 3 degrees
of freedom robot moving as a point mass along the (x, y, z)
axes, and are added to our GP model as input training points
to achieve uncertainty reduction as exploration takes place.

To emulate an aerial robot setup, 10 visual 3-D point land-
marks are placed on the ground 1 m below the target field and
distributed over one side of the space, as shown in Figs. 1a
and 5. For SLAM, the robot is equipped with a downward-
facing camera with (47.9◦, 36.9◦) FoV. Landmark detection
is based on a pinhole projection camera model with standard
deviations of 1.0 px and 0.1 m for errors in pixel and depth.
Our framework uses graph SLAM [22] with the approach
in Sec. V-D.1 to predict localization uncertainty. We sample
trajectories at 0.5 Hz to simulate control actions using an
odometry motion model, applying a coefficient of 0.01 in all
three dimensions to scale the noise variance.

Our two-step CMA-ES-based replanning framework
(Sec. V-B) with the Rényi-based utility function (Sec. V-C)
is compared against itself using different objectives: (a) field
map uncertainty reduction only (Eq. (5) using the Shannon
entropy in the posterior); (b) field map uncertainty reduction
over time (rate), as in our previous works [5, 14, 15]; and (c)
a linear composite weighting the map and pose uncertain-
ties equally based on their upper bounds, tuned according
to Bourgault et al. [11]. As benchmarks, we also study:
the rapidly exploring information gathering tree (RIG-tree)
[8], a state-of-the-art sampling-based informative planner,
using objectives of (d) uncertainty reduction only and (e)
our Rényi-based utility, as well as (f) random planning.
We evaluate against the RIG-tree to assess our two-step
replanning routine and, in (e), show the applicability of our
generic concepts in uncertainty-aware active mapping with
different planners. A 150 s budget B is fixed for all methods.
We evaluate mapping uncertainty with the GP covariance
trace Tr(P) and accuracy with Root Mean Squared Error
(RMSE) compared to the ground truth map. Similarly, for
planning, our measures are the robot covariance trace Tr(Σ)
and the pose RMSE compared to the ground truth trajectory.
Lower values using all metrics signify better performance.



The robot starts at (2 m, 2 m, 1 m) with no prior localiza-
tion nor field map information. For trajectory optimization,
the reference velocity and acceleration are 1.5 m/s and
3 m/s2 using polynomials of order k = 12. In our planner,
we define polynomials with N = 4 waypoints and use a
uniformly spaced 27-point lattice for the 3-D grid search.
In the RIG-tree, we associate waypoints with vertices and
form polynomials by tracing their parents. The finite-horizon
replanning procedure follows the approach of Popović et al.
[5] and a branch step-size of 5 m is set for best performance
based on a search over a discrete value range. We set 60
sampling iterations to obtain the same ∼ 76 s replanning time
as required by our routine. In the random planner, random
destinations are sampled in the workspace and a trajectory
is generated by connecting them sequentially to the current
position. We consider 4 waypoints per plan to ensure that
trajectory lengths are fairly comparable to our method.

We conduct 50 trials in each environment. Fig. 3 shows
how the metrics evolve for each method. As expected, in
Fig. 3b, informed strategies perform better than the random
benchmark (blue). In Fig. 3a, the uncertainty-based (black,
green) and weighted (cyan) utility functions yield map un-
certainty and error reduction rates similar to our Rényi-based
objective (red). However, our method significantly improves
upon the pose estimation; effectively trading off between
gathering information and maintaining good localization.
This cannot be done using manually-tuned parameters (cyan)
as the variability of the pose uncertainty is much lower
compared to that of the map. In terms of localization, the
uncertainty-only function (black) is the worst as it does not
exploit any knowledge of the trajectory dynamics.

In Fig. 3b, the RIG-tree using our Rényi-based (purple)
objective provides better localization compared to planning
for map uncertainty reduction only (yellow). This further
validates the behaviour of our utility function. Interestingly,
the RIG-tree scores comparatively well on the localization

metrics while the map improves at a limited rate. This likely
relates to the step-size parameter the algorithm requires. By
traveling in shorter steps, the robot re-observes landmarks
more frequently at the cost of restricted exploration.
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Fig. 5: Example result using our CMA-ES-based framework and
Rényi-based utility. The left plot shows the traveled trajectory.
Squares indicate point landmarks on the ground used for local-
ization. Spheres represent sites where measurements are taken to
produce the field map on the right. Our planner effectively balances
between exploring new areas and keeping landmarks in view.

Fig. 5 exemplifies a result using our proposed approach.
The left plot confirms that the robot explores the space
while re-visiting landmarks to stay well-localized. With a
total RMSE of 1.11, our final map (right) is 1.86 times more
accurate than the one output by the naı̈ve spiral path in Fig. 1.

B. Evaluation of Field Mapping Under Uncertainty

Next, the aim is to assess the benefits of mapping under
pose uncertainty by evaluating the effects of incorporating
UIs in the GP field model. We consider the same simu-
lation setup as above using our CMA-ES-based replanning
framework and Rényi-based utility function. We conduct 50
trials in each of the 5 environments (a) with and (b) without
applying the modified kernel in Sec. IV-B. The benchmark
(b) corresponds to standard GP mapping without UIs.

Fig. 6 depicts our results. Note that we omit the map un-
certainty metric as the variance scales using the two methods
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Fig. 3: Comparison of our two-step CMA-ES-based replanning framework using our Rényi-based utility against (a) our framework using
different information objectives and (b) different planning benchmarks. All methods are given a 150 s budget and use GP-based field
mapping with UIs. Solid lines represent means over 250 trials. Shaded regions show 95% confidence bounds. By considering both the
robot pose and field map uncertainties, our utility function more quickly achieves higher-quality mapping (top) with improved localization
(bottom). Note that the Tr(P) axis is logarithmic and that it has high variance due to different field environments studied in the trials.
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Rényi-based utility for a 150 s budget. Solid lines represent means
over 250 trials. Shaded regions show 95% confidence bounds.
By accounting for pose uncertainty, our approach achieves more
conservative mapping (middle, right) with higher accuracy (left).

are not comparable. The plots confirm that our approach with
UIs (red) presents more conservative exploratory behavior
than the benchmark (blue) while also yielding more accurate
field reconstructions. This is because the modified kernel can
handle localization errors to build more consistent maps for
planning. Fig. 1 shows a visualization supporting this result.

C. Proof of Concept

We show our framework mapping in real-time on a Turtle-
Bot3 Waffle with an Intel Joule 570x running Ubuntu Linux
16.04 and the Robot Operating System. The experiments
transpire in a known indoor environment using Adaptive
Monte Carlo Localization (AMCL) receiving data from a
LDS-01 laser scanner. As shown in Fig. 7, a temperature dis-
tribution in an empty 2.8 m× 2.8 m area is generated using
a 2400 W radiant heater placed at one corner. Measurements
are taken using a LM35 linear temperature sensor with a
sensitivity of 10 mV/◦C.

A 0.4 m resolution grid is set for mapping with UIs. To
train the GP, we follow the method in Sec. VI-B using
manually gathered data to obtain the hyperparameters for
the SE kernel. The integral in Eq. (2) is estimated using
5 Gauss-Hermite points. Uncertainty prediction is based on
localization in a known environment using AMCL (Sec. V-
D). We sub-sample each candidate plan at 2 Hz and estimate
pose using a differential drive odometry model and laser
scans simulated in the known occupancy map. The control
noise variance is 0.2 m2 for both rotation and translation.

Fig 7: Thermal imagery of
our experimental setup show-
ing the robot and radiator
from an aerial view. Yellower
shades correspond to heated
areas mapped using the on-
board temperature sensor.

The aim is to show our framework mapping a realistic con-
tinuous field. The initial measurement point is (0.2 m, 0.2 m)
within the corner opposite the radiator. We allocate a budget
B of 600 s. Following the differential drive model, each plan
is piecewise linear as defined by N = 3 waypoints with a
constant velocity of 0.26 m/s and temperature measurements
sampled at 0.25 Hz. The planning objective is our Rényi-
based utility function (Eq. (5)). Note that field map updates
are triggered upon allowing the sensor readings to stabilize.

Fig. 4 summarizes our experiments. As expected, the map
becomes more complete and uncertainty decreases as the
yellower heated region is discovered. Note that the values
of the measurements are higher than that at which the field
is initialized (23.64◦). This is due to the effects of heating
and diffusion over time, after the training data was collected.

VII. CONCLUSIONS AND FUTURE WORK

This work introduced an informative planning framework
for active mapping that accounts for the robot pose uncer-
tainty in both the mapping and planning stages. Our method
uses GPs with UIs to propagate pose uncertainty into the
model of an environmental field. For planning, we proposed
a new utility function that tightly couples the uncertainties
in the robot pose and field map by applying the concept
of Rényi’s entropy in GP-based mapping scenarios. Our
formulation addresses the exploration-exploitation trade-off
in a principled way, without manually-tuned parameters.

Our framework was evaluated extensively in simulation.
We showed that it achieves more conservative exploratory
behavior compared to different strategies while producing
more accurate maps. Experimental validation was performed
through a proof of concept deployment. Future work will
examine temporal field models and efficiency improvements
towards more complex environments. Other interesting re-
search directions involve refining the uncertainty prediction
method and its relationship to α for more reliable planning.
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Fig. 4: Results of using our framework to map the temperature distribution (Fig. 7) in a 600 s mission. The three left plots depict the
trajectories (white lines) and temperature field maps (colored gradients) at t = 100 s, 350 s, and 600 s. White circles represent measurement
sites, with the large solid one indicating the initial robot position. The sequence shows that our planner quickly explores the area; detecting
the corner heated by the radiator (bottom-left). The right curve validates map uncertainty reducing over time. Planning time is included.
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