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Fast Marching Adaptive Sampling
Nicholas R. J. Lawrance, Jen Jen Chung, and Geoffrey A. Hollinger

Abstract—A challenging problem for autonomous exploration is
estimating the utility of future samples. In this paper, we consider
the problem of placing observations over an initially unknown con-
tinuous cost field to find the least-cost path from a fixed start to a
fixed goal position. We propose the adaptive sequential sampling
algorithm FMEx to successively select observation locations that
maximize the probability of improving the best path. FMEx eval-
uates a set of proposed observation locations using a novel fast
marching update method and selects a location based on the prob-
abilistic likelihood of improving the current best path. Simulated
results show that FMEx finds lower-cost paths with fewer samples
than random, maximum variance and confidence bound sampling.
We also show results for sampling bathymetric data to find the
best route for a submarine cable. In problems where sampling is
expensive, FMEx selects observation locations that minimize the
true path cost.

Index Terms—Motion and path planning, probability and
statistical methods, reactive and sensor-based planning.

I. INTRODUCTION

ROBOTS often require models of their operating environ-
ments to make reasoned mission decisions. In unknown

environments, the world is often sampled in order to gener-
ate predicted models, but in many cases sampling comes at a
cost. This sampling cost must be traded off against the cost of
calculating and executing a suboptimal mission plan based on
an incorrect model. Consider sampling the bathymetry of an
ocean channel to find the best path along which to lay a cable
[1], where each bathymetric sample might require long deploy-
ments of an underwater vehicle. Alternatively, consider planning
a safe evacuation route through a wildfire [2] where sampling
the local fire intensity requires aerial deployment of a single-use
sensor [3]. In such circumstances, incorporating knowledge of
the planning goals into the sampling strategy can allow for more
targeted and effective sampling of the environment with limited
observations.

Previous information gathering sensor placement problems
have primarily focused on selecting samples to maximize
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information (or reduce uncertainty) about the field being stud-
ied, or in finding particular values in the field. These metrics for
driving exploration have been shown to improve the model ac-
curacy over the entire space. However, in this paper we consider
the problem of sampling an (initially unknown) cost field to
find the least-cost path between two points. Thus there is an ad-
ditional layer of abstraction, since although some observations
may be informative about the field, they may also be unlikely
to change the path cost, and hence are relatively poor use of a
limited sampling budget.

This paper describes a novel, efficient path cost update
method paired with a Gaussian Process (GP) regression model
to sequentially select samples that maximize the likelihood of
reducing path cost. The proposed planning and update tech-
nique, FMEx, uses Fast Marching (FM) [4] to approximate the
cost-to-come function of continuous spaces with a discrete
grid. FMEx is based on two novel contributions to solve the
minimum-cost replanning problem. First, we propose biFM, an
adaptive FM search that efficiently computes the least-cost path
based on local map updates. Second, we present an allocation
algorithm that sequentially selects observations with the goal of
minimizing the expected path cost.

Experiments on simulated cost fields demonstrate that FMEx
finds lower-cost paths with fewer samples when compared to
random, maximum variance and confidence bound-based sam-
pling techniques. biFM is also shown to reduce mean replanning
time by 77.9% compared to existing FM-based dynamic replan-
ning graph search techniques.

II. RELATED WORK

This work is at the intersection of three major areas of robot
planning research: adaptive sampling, FM path search and dy-
namic replanning. We draw ideas from informative exploration
to develop a mission-targeted sampling strategy, and we leverage
computationally efficient search properties from FM to perform
efficient replanning.

A. Sampling for Exploration

Exploration sampling problems generally involve attempting
to model an unknown or partially known phenomenon using
a limited budget of discrete samples. There are challenges in
both the modeling and sampling strategies. Probabilistic models
such as GPs are commonly used due to their ability to provide
Bayesian statistics on the model quality (uncertainty) as well as a
current best estimate. Model quality estimates can also be used
to define sampling strategies that attempt to minimize model
error [5]. In information gathering problems relatively simple
strategies such as sequential greedy observation selection can
perform near-optimally [6].
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Fig. 1. FM search from a single source node. Node colors indicate the time
of arrival or cost-to-come of accepted nodes, black arrows indicate inheritance
relationships. The grey arrows and pale blue nodes indicate frontier nodes that
have had their costs updated but not yet accepted. Nodes that are descendants
of a particular node are termed ‘downwind’.

Particularly relevant work focuses on estimating the value of a
sample, in terms of the quality of the model or a mission-specific
metric. Previous work has explored mission criteria such as
maintaining communication [7] and improving model quality
for reinforcement learning [8] in motion planning. Our work
differs from prior work because the only utility is path cost, and
we leverage information to improve the likelihood of reducing
path cost. Previous work [9] has examined selection strategies
based on Bayesian optimization, where sampling based on the
Upper Confidence Bound (UCB), the linear sum of mean and
uncertainty, is used to find the highest value using a GP. Such
techniques are not necessarily well-aligned for finding low-cost
paths as they focus on model uncertainty, not the effect of the
model on path cost.

B. Fast Marching

The FM method was proposed in [4] as a solution to es-
timating level-set problems. This type of problem assumes a
continuous scalar function f(x) : Rn → R+ that represents the
isotropic ‘inverse speed’ that a wavefront passing through point
x ∈ Rn would travel at. The set of points that are the same
minimum time away from a start location are known as a level
set (a circle for constant f in R2). However, solving the con-
tinuous problem analytically is difficult, and FM provides an
approximation to finding level sets using a discrete grid and
approximate solution to the eikonal equation. The result is sim-
ilar to common graph-based planners such as Dijkstra and A*
where nodes are accepted in the order of first possible arrival
using a priority queue. However, in FM the edge costs are cal-
culated using the sampled f values from multiple neighboring
cells.

A typical FM search is shown in Fig. 1. At the end of an FM
search, the first time-of-arrival is stored at each node, and the
whole field represents a discrete approximation to the contin-
uous cost-to-go function from the start nodes. The lowest-cost
path is recovered by interpolating the discrete estimate to recover
cost gradients and following the steepest gradient downwards
from a goal.

It can be readily seen that the problem of finding the lowest-
cost path for a mobile robot in an obstacle field with variable
traversal costs can be considered as a level-set problem. Sethian
[4] showed that FM retains theO(n log n) (in the number of cells
n) computational complexity of Dijkstra’s method, but generates
a smooth approximation to the continuous field. Further work
[10] showed that similar methods, known as ordered upwind
(OU), can also be applied to anisotropic fields (where traversal
cost is direction dependent). Since then, many works in robotics
literature have used FM and OU methods to solve robotic plan-
ning problems with continuous cost spaces [11]–[14].

C. Dynamic Replanning

Our work follows from methods developed for fast graph re-
planning, including Field-D* [15] and E* [16]. Both Field-D*
and E* were developed as discrete grid planners that approx-
imate a continuous space rather than being restricted to fixed
graph edge directions. Field-D* uses linear interpolation to es-
timate the cost at arbitrary positions on cell edges. E* uses the
FM update to produce a discrete estimate of the continuous
cost-to-come.

Field-D* and E* use an inheritance relationship to update the
cost calculations of affected nodes when a change is observed.
In Field-D*, backpointers are used to record a parent node, and
in E* the concept is expanded to an inheritance graph because
nodes can have multiple parents. Only nodes downwind (see
Fig. 1) of a cost change are affected. However, using the inher-
itance graph to find the nodes affected by a cost update can be
nearly as costly as the original search. Further, the number of
nodes expanded is dependent on where in the map the update
occurs. Nodes with lower costs (closer to a start node) generally
have more downwind dependent nodes. We mitigate this issue
using the bi-directional search described in Section IV-E.

III. PROBLEM STATEMENT

Consider a continuous region χ ∈ Rn with an associated
isotropic positive scalar cost field f(x) : Rn → R+ , ∀x ∈ χ,
as in the FM description in Section II-B. We consider the prob-
lem of finding the lowest-cost path P∗, through χ from start
location xs to goal xg . The cost of a continuous curve (path) P
parameterized by s along its length, can be written as the line
integral of f along P , such that

P∗ = arg min
P

∫
P

fds. (1)

This form applies to many continuous planning problems
where the goal is to find a minimum-cost path. From earlier
discussions, we know that FM can be used to approximate P∗
using a grid-based approximation of f .

In this work, we consider the problem of sequentially sam-
pling f to find (the best approximation of) P∗. We assume that
the problem starts with an estimate of the mean of the field f̄ ,
but no observations of the true field. This is a sensor placement
problem in that all x ∈ χ are assumed to be equally costly to
visit. Observations are made by selecting a location xi and sam-
pling from the true cost field using the observation function, zi =
z(xi). We assume a normally distributed observation model with
fixed variance, z(x) ∼ N (f(x), σ2

n ). The set of observations
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Algorithm 1: Shortest path exploration with fast marching.
1: procedure FMEx
2: while Remaining observation budget > 0 do
3: Estimate cost map from GP
4: Select p locations from the cost field
5: At each location, draw q samples from GP and

use BIFM to estimate expected path cost
6: Make observation at best location and update GP
7: Estimate cost map using GP and extract path

up to time t is denoted Zt = {(xi , zi) | i = 1, . . . t)}, and
Z0 = ∅. The goal is to use a limited sampling budget to cal-
culate a path P′ that minimizes the true path cost.

Further, assume we have access to a function C(Z) that esti-
mates the lowest path cost conditioned on a set of observations
Z. Then, at each time t, the goal is to find the location x∗t+1 that
is most likely to find the lowest-cost path. By performing the
expectation over possible observations z, the objective can be
written

x∗t+1 = arg min
x

Ez [C (Zt ∪ {(x, z)})] . (2)

The proposed FMEx method uses a combination of GP esti-
mation and a novel adaptive replanning method based on FM
to sample locations and observations from the field, estimate
the expectation in (2) and select the location that minimizes the
expected path cost.

IV. FMEX METHOD

We structure our proposed algorithm, FMEx, as a sequential
process with four main steps (Algorithm 1). First, a grid-based
estimate of the cost map is generated using a Gaussian Process
(GP) conditioned on the current set of observations. Second, a
set of potential observation locations are selected from the field.
Third, the expectation of the path cost in (2) is estimated using
the proposed biFM algorithm by sampling from the GP at each
location and finding the lowest path cost using FM. The location
with the lowest expected path cost is selected, the robot makes
a (noisy) observation of the true cost at that location, adds the
sample to the GP, and repeats. Once the observation budget is
exhausted, the best path is extracted from the final cost field
estimate.

A. Cost Map Estimation

We propose using GP regression to approximate f(x):

f(x) ∼ GP(f̄ , k(x,x′)) (3)

where f̄ is a known constant (the estimated mean field cost), and
we use the squared exponential covariance for k, a stationary
radial basis function. During execution, the model is conditioned
on the current observation set Zt . A GP was selected because
it generates smooth approximations of the cost field, handles
noisy observations and provides variance estimates. FMEx uses
the GP model conditioned on Zt to construct a posterior estimate
of the cost map f̂Zt

by sampling the mean and variance from the
GP at each grid point. A detailed discussion of GP regression

is beyond the scope of this paper and interested readers are
directed to [17].

B. Observation Locations

FMEx uses a sampling approach to approximate the expecta-
tion in (2) given an observation location x. To generate a set Xp

of possible locations, we use uniform random sampling to select
a fixed number (p) of locations from χ at each iteration of the
main FMEx loop. For computational efficiency, these locations
are currently restricted to the set of (non-obstacle) grid points
used to generate the GP cost map in the previous step. However,
the method could use any set of possible observation locations
and we will consider more directed sampling approaches in
future work.

C. Estimating Expected Path Cost Using biFM

Using the GP to estimate the cost map and then using FM
to find the minimum path cost can effectively be treated as a
function C(Z) that estimates the best path cost given a set of
observations. However, to select a location for making a fu-
ture observation, we would like to reason over the possible
future path costs given a target observation location x′. We
can do this by calculating the expectation of the path cost
Ez [C (Zt ∪ {(x′, z)})], over the possible observations z,

Ez [C (Zt ∪ {(x′, z)})] =
∫
C (Zt ∪ {(x′, z)}) p(z)dz. (4)

This equation poses two major challenges. First, we require
the observation likelihood p(z) for a target observation location.
Fortunately, the GP provides this distribution in the form of the
predictive mean and variance estimates. The second challenge
is solving the integration over the cost function C. We do not
have an analytically tractable C function, but using the GP cost
map estimate and FM we can estimate C(Z) for a given set of
observations. This suggests a sampling-based approximation
by discretely sampling from the p(z) distribution produced by
the GP,

E(Cx ′) ≈
∑q

i=1 C (Zt ∪ {(x′, z)}) p(zi)∑q
i=1 p(zi)

. (5)

Section V demonstrates two proposed methods for sampling
from p(z): a Monte Carlo sampler which directly samples a nor-
mal distribution and a sampler using fixed standard deviation in-
crements above and below the mean. Then, for each xp in the set
of proposed observation locations Xp , we draw q samples from
pxp

(z), the GP posterior at xp , using the chosen sampler. This
yields a set of proposed observations at xp and their associated
probabilities, Zxp

=
{
(zj , pxp

(zj )) | j = 1, . . . q
}

. Then, the
full set of proposed observations for all locations can be written,

Zp =
{
(xp , Zxp

) ∀ xp ∈ Xp

}
. (6)

Equation (5) could be evaluated naı̈vely by incorporating each
observation in Zp into a separate GP model, sampling the GP
over the grid to generate the cost map and finally using FM
to find the new minimum path cost. However, this would be
computationally expensive, and would result in redundant com-
putation because in many cases the best path cost would change
only a little or not at all because the observation had limited
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Fig. 2. The local cost update using the D polynomial estimate (7) only changes
costs in the interior of the circle in 2 b. This allows biFM to update a much
smaller set of costs than would be required by the full GP update. (a) GP field
estimate with 10 samples (×). (b) Field estimate using local cost update D (8).
(c) Field estimate for full GP update.

affect on the costs near the current best path. To mitigate this
excess computation, we propose a solution that uses a novel
FM repair technique called biFM. biFM consists of two major
components: a localized map update and an FM cost-to-come
repair technique that reuses areas of an existing valid search to
speed up cost calculations when there are local changes made
to a cost map.

D. Localized Cost Map Update

To avoid updating the GP over the whole cost map for each
proposed observation, we model the map update as a local cost
modification centered on the observation location. Consider a
proposed observation (xp , zp). We use a second-order poly-
nomial approximation of the squared exponential covariance
function from [17],

D(x) =

{
(1− r)4 (4r + 1) if r < 1,

0 otherwise,
(7)

where r = ‖x− xp‖/R, the distance between x and xp nor-
malized by a distance scale R. In our work we fix R to match
the length scale from the GP covariance function. The D func-
tion has compact support, so that the cost is only varied up to
distance R from xp . By scaling D by the new observation mag-
nitude and summing with the existing cost field estimate from
the GP (f̂Zt

(x)), we create an updated cost field f̂p(x) for each
proposed observation (xp , zp),

f̂p(x) = f̂Zt
(x) +

(
zp − f̂Zt

(x)
)

D(x). (8)

This modifies a compact region to reflect the proposed ob-
servation and leaves a large proportion of the field unchanged.
Fig. 2 shows the difference between the estimated field f̂p us-
ing D (Fig. 2(b)) and the resulting map if the same observation
were added to the GP model (Fig. 2(c)). The local cost update
approximates a full GP update but can be computed in a shorter
and constant time. In our experiments using the f̂p approxima-
tion from D took less than 1% of the time required for the full
GP update, allowing many more proposed observations to be
tested. As shown in the next section, the best path cost C ′ over
the updated cost field f̂p can be efficiently computed if f̂Zt

has
already been searched.

Algorithm 2: biFM - Given a graph G, start and goal nodes
xs and xg , cost function g and proposed observations Zp .

1: procedure biFM (G,xs ,xg , g, Zp)
2: As, Is ← FM (G, g,xs ) � Forward search
3: Ag , Ig ← FM (G, g,xg ) � Backward search
4: CF ← As(xg ) � Current lowest path cost
5: for all xp ∈ Zp do � For each obs. location
6: Cxp

← 0, Pxp
← 0

7: for all (z, p(z)) ∈ Zp at location xp do
8: Δ← (z − g(xp))
9: D ← {(x,ΔD(x)) ∀x | r(x,xp) < 1}

10: Cz ← UPDATE (G,As, Is , Ag , Ig , g,D, CF )
11: Cxp

← Cxp
+ p(z)Cz � Prob. path cost sum

12: Pxp
← Pxp

+ p(z) � Likelihood sum
13: E(Cxp

)← Cxp
/Pxp

� Expected path cost (5)
14: x∗p ← arg minxp

E(Cxp
)

15: return x∗p

E. Bi-directional Fast Marching for Local Map Updates

A local map update can be considered as a replanning prob-
lem, where large parts of an existing cost calculation remain
valid but some areas are invalidated by the cost change. Standard
FM is designed for single-query searches and is not well-suited
to replanning. A naı̈ve implementation for finding the best path
cost after a cost update would require restarting the search from
scratch. This is potentially expensive for large grids. We pro-
pose biFM for computing the best path cost on locally-updated
maps.

1) biFM (Algorithm 2): exploits the inheritance feature of
FM using a two-stage process. Firstly (lines 2–5), the algorithm
performs a complete FM search over the supplied cost function
from both the start and goal nodes. The FMG, g,xs function
is a standard FM search over graph G, cost function g = g(x)
and start cell(s) xs that returns the cost-to-come A(x) and in-
heritance list I(x) for each x ∈ G. Thus, biFM calculates the
lowest cost from the start to every other cell, and from the goal
to every other cell. During each iteration of FMEx, biFM is
called using the cost function g = f̂Zt

from the GP predicted
mean conditioned on observations Zt .

Next, for each proposed observation we generate the set D
of locations where the cost map has been updated, and their
corresponding values using (7) (line 9). Then, UPDATE calculates
the new best path cost Cz , which may remain unchanged. The
path costs of all proposed observations at each xp are used
to estimate the expected path cost (line 13) as in (5), and the
location with the lowest expected path cost is returned. Note that
the jobs invoked by the loops at lines 6 and 8 are independent
and could be computed in parallel.

2) Update (Algorithm 3): is used to calculate the change in
best path cost associated with a map updateD. UPDATE requires
as input: the graph G, the FM costs As & Ag , inheritance re-
lationships Is & Ig , the original cost map g, updated cost set
D and the current best path cost CF . To find the updated best
path cost, UPDATE determines which cells had costs modified,
and then starts a new FM search over that region. However, this
function limits the search by calculating bounds on the change
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Algorithm 3: Bi-directional fast march update.

1: function Update (G,As, Is , Ag , Ig , F,D, CF )
2: Q← ∅ � Frontier priority queue
3: Cmin,s ← min{As [x] : ∀x ∈ D} � Min cost to xs

4: Cmin,g ← min{Ag [x] : ∀x ∈ D} � Min cost to xg

5: if Cmin,s + Cmin,g > CF then
6: return CF � Return if > than existing best
7: if Cmin,s > Cmin,g then � If update closer to xg

8: A′ ← As,CA ← Cmin,s � Search forward
9: B′ ← Ag ,CB ← Cmin,g

10: else � Update closer to xs

11: A′ ← Ag ,CA ← Cmin,g � Search backward
12: B′ ← As,CB ← Cmin,s

13: if D[x] > 0 ∀x ∈ D then � Update increased costs
14: M,A′ ← INVALDOWNWIND (D, Is , A

′)
15: else
16: M ← ∅
17: for all xD ∈ D do
18: M ←M ∪ {x : ∀x ∈ Is.parents[xD ] \ D}
19: for all xm ∈M do � Add interface nodes to queue
20: Q.push(xM : A′[xM ])
21: C ′ ← min{A′[x] + B′[x] : ∀x ∈ A′}
22: Cl ← C ′ − CB � Cost bounds
23: C ′ ← RESEARCH (G,Q,A′, B′, F,D, Cl , CB )
24: return C ′

Fig. 3. Update diagram showing the bounding costs for an update D to an
existing map. The previous best path over the original map has cost CF . The
lowest valid costs from the changed region to the start (Cm in ,s ) and goal
(Cm in ,g ) can be used to bound or reject the subsequent search if the updated
map could not contain a lower-cost path (Cm in ,s + Cm in ,g > CF ).

in path cost. Lines 3, 4 of Algorithm 3 calculate the minimum
cost-to-come from the edge of the changed region to both the
start and the goal, Cmin,s and Cmin,g respectively, as shown in
Fig. 3). These node costs remain valid because they are upwind
of the cost change. They also bound the lowest possible cost for
a path passing through the updated region by Cmin,s + Cmin,g

(because the cost of traversing the updated region is ≥ 0). If
this value is larger than the existing bound CF then the orig-
inal cost (if it remains valid) is retained (line 6) and the al-
gorithm immediately returns. This often happens for updates
that are distant from the best path, where the cost of traveling
to and from the update region is greater than the current best
path.

Next, we use FM to update node costs that were changed by
the cost update. Since existing searches in both directions are
available, we select the search direction which invalidates the
fewest downwind nodes (line 7). If the cost change is an in-
crease (Δ > 0) then the INVALDOWNWIND function invalidates

Algorithm 4: Local fast march update.

1: function RESEARCH (G,Q,A,B, F,D, Cl , CB )
2: while ¬Q.empty() do
3: (x, cx)← Q.pop()
4: if cx > Cl then
5: return Cl + CB � Over budget
6: else if B[x] <= CB then
7: return cx + B[x] � Better path found
8: A[x]← cx
9: for all y ∈ G.neighbors(x) do

10: τ ← F [x] +D[x] � Transition cost
11: cw ← cx + τ + δ � Any δ > 0
12: for all w ∈ G.neighbors(y) ∩A do
13: if (y,w) ⊥ (y,x) then
14: cw ← A[w]
15: if τ > |cx − cw | then
16: cy = 1

2 (cx + cw +√
2τ 2 − (cx − cw )2

)

17: else
18: if cx <= cw then
19: cy ← cx + τ
20: else
21: cy ← cw + τ
22: if y /∈ A or A[y] > cy then
23: Q.push(y : cy) � Lower-cost update

any cost estimates in A′ that are downwind of the updated nodes
using the inheritance graph Is . The downwind cost invalidation
can be seen in the video associated with this paper. INVALDOWN-
WIND also returns a set of interface cells M , that are parents of
invalidated nodes and that are not in D. These are valid costs
in the forward search that can be pushed onto the search queue
(line 20). If the cost update was a decrease (Δ < 0), then all ex-
isting node costs remain valid because they will be overwritten
during the FM RESEARCH by a lower-cost front. In this case, M
only contains parents of nodes in D that are not themselves in
D (line 18).

The interface list is used to populate the frontier queue Q to
continue the FM search from the remaining valid nodes. The
bound C ′ (line 21) is the current lowest valid path cost. Cl is a
local bound on how much the new search can expand before it
would breach the C ′ bound. The frontier list Q, accepted nodes
A′ and bounds C ′ and Cl are then used to run a partial FM
search using the RESEARCH function.

3) ReSearch (Algorithm 4): is a basic FM search that con-
tinues the search from nodes in Q to determine if a new best
path cost could lie in the updated map. The only difference
from a normal FM search is that the search can be terminated
early if either the cost increases above the existing minimum
C ′ (line 4), or by reaching a valid existing node from the other
direction (line 6).

Fig. 4 shows the search time and total number of node ex-
pansions for FM, E*, and biFM for a set of 1000 randomized
updates on the same map (the 100× 100 map shown in Fig. 5).
Each update was at a random location in the map and used
the polynomial cost estimate update (7) with radius 14. Total
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Fig. 4. Total node expansions and computational time for randomized map
updates. Red lines indicate the median, blue boxes indicate data quartiles.

Fig. 5. Cost field and path estimates after t = 30 samples. The true field and
best path are shown top left. Previous observations are shown as×, and the cur-
rent field estimate is the blue-green-brown field (low to high cost, respectively).
The current best path estimate is shown for each method, along with associated
true (top left, white text) and estimated (lower right, red text) path costs.

node expansions includes nodes expanded during the down-
wind search. biFM provides a reduction in the mean number of
node expansions of 91.4% compared to standard FM and 77.9%
compared to E*. Note that biFM has a higher initial search cost
(twice that of FM), but offers strong advantages when there are
more than two updates (such as in the FMEx algorithm). All
methods return near-identical cost maps. E* sometimes takes
longer than FM because if the update occurs near the goal the
entire map is removed in the downwind sweep and must be
recalculated.

F. Computational Complexity

We consider the computational complexity of the FMEx
algorithm for selecting a single observation location (the con-
tents of the while loop in Algorithm 1). Firstly, the GP update
is an O(t3) operation in the number of previous observations t.
Next, a complete FM search is performed on the GP-estimated
cost map, which isO(n log n) in the number of cells in the grid
n. Then, for each of p observation locations FMEx calculates
a discrete estimate of the expectation in 5 with q observation

samples at each location. For each sample, biFM calculates the
updated path cost, an O (m log m) operation in the number of
cells updated (m varies depending on the update size but is
commonly at least an order of magnitude less than n, as shown
in Fig. 4). The total computational complexity per iteration is
O(t3 + n log n + pqm log m). In most cases, n, m, p and q re-
main constant, and t increases as observations are added. Gen-
erally, the third component dominates the complexity, but the
GP term could dominate for large t. Thus the method scales ap-
proximately linearly with p and q which are user-defined. There
is an interesting relationship to decide the values of p and q,
as increasing p allows FMEx to select from more locations in
the field, and increasing q provides better approximations of the
path cost expectation at each location. Some discussion of this is
provided in the results, but we have not yet developed a formal
method for selecting these values given a problem instance.

V. RESULTS

To show that FMEx generates a sampling strategy that min-
imizes path cost given an observation budget, we compared
against three existing methods for selecting sample locations
from a GP. All comparison methods used a GP with the same
covariance function, hyperparameters and mean. Hyperparam-
eters were selected at the start of the problem and were not
retrained during exploration. We compare against random sam-
pling, maximum variance sampling and lower confidence bound
(LCB) sampling. Maximum variance sampling is a common
strategy for minimizing the GP prediction error [18]. However,
this has the effect of tending to sample the area uniformly for a
radial basis covariance function. LCB sampling is used to find
low values of a field, which helps identify low-cost regions but
tends to ignore high-cost regions that strongly affect path cost.

We show results for three variants of FMEx with different
sampling schemes to sample from the (normal) GP posterior at
a target location xp for approximating the discrete expectation in
(5). FMEx1σ samples at one standard deviation above and below
the mean (q = 2), and FMEx3σ samples at±1, 2 and 3σ around
the mean (q = 6). The FMExMC6 sampler draws q = 6 samples
from a normal distribution (the GP posterior). Generally, we
would expect performance to improve with increasing q via the
expectation quality in (5).

A. Randomized Trials

We performed a set of simulated exploration trials, where
each trial consisted of the six sampling strategies sequentially
selecting observation locations and searching for the best path
over a 2D cost field on a 100× 100 square grid (as shown in
Fig. 5). Trials do not have any observations at the start (Z0 = ∅).
Since FMEx scales roughly linearly with p and q, we set the
number of sample locations at p = 50 for both FMEx3σ and
FMExMC6, and p = 150 for FMEx1σ to provide equal compu-
tation time for FMEx variants. Sample locations were selected
randomly from available grid points. The comparison methods
(Max Var and LCB) are low computational cost, because they
only require finding a maximum (O(n)). To account for this,
we allowed both methods to sample densely from the grid (p
= 10000). Although this still results in a lower computation
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time than FMEx, we do not believe that further increasing their
sample density would improve performance.

In each trial, a ‘true’ cost field f was generated by summing
the contributions of a set of randomized circular Gaussian peaks.
Each component was characterized by a peak value hj , radius
rj and center location c = (xj , yj ), as shown in (9). Peak values
and radii were randomly sampled from uniform distributions in
the intervals [−3.0, 8.0] and [5.0, 12.0] respectively, and a base
value c0 = 5.0.

f(x) = c0 +
∑

j

hj exp(−‖x− c‖/rj ) (9)

We ran two sets of experiments, with and without (known)
fixed obstacles, each for 100 randomized trials. In obstacle
trials, we randomly placed 10 rectangular regions with side
lengths drawn from U(2, 10). The start position xs = (3, 3)
and xg = (97, 97). Simulated sensor observations were sam-
pled from N (f(x), 0.01). The GP used a fixed length scale of
10.0 and variance 15.0. Each iteration, FMEx methods took ap-
proximately 4 s each to select an observation location, and Max
Var and LCB took ∼ 0.5 s.

Fig. 5 shows a randomized trial at t = 30. Max variance
samples uniformly to minimize the uncertainty evenly across
the entire field. LCB sampling tends to sample more densely in
low-cost regions and sparsely elsewhere. Although the FMEx3σ
method did not necessarily model the complete cost field well
(see the lower right region), it places samples to maximize the
likelihood of finding the best path, such that promising areas are
sampled more densely than areas that are unlikely to contain a
lower-cost path.

Fig. 6 shows the additional path cost (compared to the op-
timal path) of the path predicted by each method against the
number of observations. The true cost Ct of each predicted
path is calculated by taking the path generated by each method,
Pm , and calculating the cost of that path on the true cost field
f using numerical integration along the path. The true best
path cost is Cbest . The additional path cost is the relative ad-
ditional cost of the predicted path versus the true best path
(Ct(Pm )− Cbest) /Cbest − 1.

Lines for each method represent median scores across
100 randomized trials, and vertical bars show the extent of the
first and third quartiles. We show quartiles rather than standard
deviation because the data is not balanced above and below the
median. In the first 10–15 samples none of the methods have an
adequate map of the environment and hence path costs are
relatively high. As more samples are collected, both FMEx3σ
and 1σ find consistently better paths than LCB or max vari-
ance. However, the MC6 sampler performs relatively poorly. We
think that the balanced sampling using the fixed σ increments re-
sults in more consistent estimation of the path cost expectation,
whereas the random Monte Carlo sampling has too few samples
(q = 6) to produce consistently good estimates. Increasing q for
FMExMC could potentially improve performance at the cost of
computation.

Fig. 7 shows how well each method estimates the true path
cost. The vertical axis shows the normalized RMS error over
all randomized trials between the estimated cost Ce(Pm ) of the
predicted best path from each model, and the true cost of the
path from the actual cost field, Ct(Pm ). With fewer samples

Fig. 6. Additional path cost relative to optimal over 100 randomized trials.
Lines show median values, vertical bars cover first and third data quartiles.
Parentheses in the legend indicate the number of locations each method chooses
from at each iteration. (a) No obstacles. (b) Obstacles.

Fig. 7. Path cost prediction error (RMS) over 100 randomized trials.

FMEx generates more accurate path cost estimates. Random
and maximum variance sampling catch up in path cost and cost
estimation performance as the number of samples becomes suf-
ficient for good coverage of the search space, in which case the
sampling method becomes less important as long as it provides
coverage.

B. Sample Planning From Ocean Bathymetry

To demonstrate the ability of FMEx to model more complex
domains, we provide results for an ocean sampling problem. We
considered the problem of selecting sample locations to find a
path for a submarine cable from Iceland to the United Kingdom.
We used bathymetry from satellite surveys1, subsampled to a
grid resolution of 240× 132, and re-scaled to a range (0.05, 1.0)

1http://coastwatch.pfeg.noaa.gov/erddap/griddap
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Fig. 8. Cost field and path estimates after t = 30 samples on bathymetry data
(blue is shallower). For each sampling method the true path cost is shown in
the bottom left (white text) and estimated path cost in the top right (red text) of
each subfigure.

corresponding to depths (0, 3800) m to generate the ‘true’ cost
field f . The cost of sampling is assumed to be high as it involves
deploying a submersible to survey the sea floor at each location.
Fig. 8 illustrates the cost map estimates, best paths, and path
costs (true and estimated) after t = 30. In this case, we can see
that both LCB and FMEx3σ found relatively good paths after
30 samples, though FMEx provided a better estimate of the
path cost. Max Var sampling performed poorly as it had not yet
sampled densely enough in some important regions.

C. Discussion

FMEx requires user-defined estimates for the grid resolution,
values of p and q, and for the GP mean and hyperparameters.
The fixed 3σ sampling (q = 6) showed the best performance
in our tests. Since FMEx is effectively an anytime algorithm
with respect to sample locations, it could be implemented to
test locations until a computational time budget is filled during
each iteration, and return the current best estimate. FMEx is
also sensitive to the GP hyperparameters. If the model variance
is too low, and the true solution lies outside what the GP prior
expects, then the sampling can become stuck in local minima.
However, we did not find this to be a significant problem in
our tests with reasonable hyperparameter estimates, and FMEx
found a low-cost path in a majority of cases.

VI. CONCLUSION

This paper presented the FMEx algorithm for sequentially
selecting observations to sample a cost map to find the least-
cost path. FMEx is based on a probabilistic model of the cost
field generated using GP regression from previous observations.
Using the probabilistic output of the GP, the FMEx algorithm
generates an approximation of the expected best path cost ac-
quired by sampling a target location. The proposed biFM path
cost update provides efficient calculation of path cost changes
caused by localized map updates, requiring significantly fewer
node expansions than standard FM or E*. Using the biFM path
cost estimate to approximate the path cost expectation over

possible samples, FMEx successively selects observations that
are likely to reduce path cost. Simulation results show that FMEx
generates sample locations that improve path quality by find-
ing lower-cost paths and more accurate estimates of the true
path cost with fewer samples compared to random, maximum
variance or confidence bound sampling.

VII. FUTURE WORK

A feature that we would like to pursue for FMEx is automated
termination using path quality estimates from the GP variance
based on a desired path accuracy. We would also like to inves-
tigate alternative observation selection models and anisotropic
costs to take into account the dynamics and traversal costs of
the exploring vehicle.
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