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Abstract— Mobile manipulation is usually achieved by se-
quentially executing base and manipulator movements. This
simplification, however, leads to a loss in efficiency and in some
cases a reduction of workspace size. Even though different
methods have been proposed to solve Whole-Body Control
(WBC) online, they are either limited by a kinematic model or
do not allow for reactive, online obstacle avoidance. In order
to overcome these drawbacks, in this work, we propose an
end-to-end Reinforcement Learning (RL) approach to WBC.
We compared our learned controller against a state-of-the-
art sampling-based method in simulation and achieved faster
overall mission times. In addition, we validated the learned
policy on our mobile manipulator RoyalPanda in challenging
narrow corridor environments.

I. INTRODUCTION

According to the International Federation of Robotics,
16.3M service robots for personal and domestic use were
sold in 2018, which is a 59% increase compared to the
previous year [1]. The majority of these commercially de-
ployed robots target applications with a focus on mobility
such as autonomous vacuum cleaner robots [2] and indus-
trial transportation systems [3]. However, there exist far
fewer mobile robots that incorporate advanced manipulation
capabilities. Several research platforms [4, 5] have been
developed for mobile manipulation tasks such as opening
doors [6]. These typically decouple the movement of the base
from the movement of the manipulator to simplify the control
problem. However, in doing so, these approaches miss out
on any potential synergies that arise from controlling the
entire robot as a whole. Indeed, Whole-Body Control (WBC)
aims at improving the efficiency and performance of such
mobile manipulation robots by planning for and controlling
all Degrees of Freedom (DoF) of the robot simultaneously.

There are several classes of approaches to whole-body
trajectory planning and control. Sampling-based methods [7–
10] grow a tree of collision-free joint configurations. How-
ever, these methods not only suffer from the curse of dimen-
sionality but also require full knowledge of the environment
at the planning stage. In order to operate in an unknown and
possibly dynamic environment, which is observed only via
sensors mounted to the robot, offline trajectory planning is
often insufficient.

Another approach to tackle WBC is Model Predictive
Control (MPC). In this field, the target is to solve the
planning problem online by finding the sequence of controls
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Fig. 1: RoyalPanda executing a learned WBC policy for
reaching a setpoint in the shelf.

that optimize a given objective function, e.g. minimizing
deviation from a target trajectory. Even though multiple
MPC formulations have been proposed for solving WBC
online, these are either limited in their obstacle avoidance
capabilities [11] or only used a kinematic model [12].

Recent works have shown that learning-based methods can
compete against classical algorithms for local path planning
and manipulation tasks [13–19]. In particular, Reinforcement
Learning (RL) has shown potential in fields where data
collection and labelling for supervised learning is expensive.

In this work, we hypothesize that learning-based methods
may be viewed as an alternative to sampling-based offline
trajectory planning and online MPC. We use RL to train
a controller for a mobile manipulator which observes its
surroundings using two LiDAR scans and steers all DoF
made available to the robot. For that, we created a simula-
tion of our mobile manipulator RoyalPanda (Franka Emika
Panda arm mounted on a Clearpath Ridgeback platform) in
randomized corridor environments and trained a WBC policy
to successfully steer the robot to commanded end-effector
setpoints within it.

We make the following contributions:

• We present a learning-based approach to WBC that runs
online at a rate of at least 100 Hz on an embedded
device (Raspberry Pi 3B).

• We demonstrate the faster overall mission times (plan-
ning plus execution) of our trained controller as com-
pared to a sampling-based method in simulation, and

• We show that the learned policy can be directly trans-
ferred to a real robot and achieve similar performance
as in simulation.
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II. RELATED WORK

A simple yet widely used approach to mobile manipulation
is the sequential execution of base and arm movements as
in [20–22]. However, this approach is slow and, depending
on the robot and workspace configuration, may require
multiple iterations in order to reach a given end-effector goal.

A way to improve execution time and work space size is
WBC, the simultaneous control of both the base and arm on a
mobile manipulator. Classical sampling-based methods such
as those offered by MoveIt! [23] can be modified to account
for a (holonomic) moving base of the manipulator. Yang et al.
[24] adapted the random sampler together with the sampling
space and the interpolation function for common sampling-
based algorithms [7–9, 25–27] to generate collision-free
and balanced whole-body trajectories for humanoid robots.
However, these algorithms generate an offline trajectory and
therefore require a static and known environment.

On the other hand, MPC models the dynamics of a
system together with the state boundaries as constraints
over a fixed horizon and aims to minimize a cost function
which is dependent on the states and inputs of the system.
Examples in robotics include high-level control for fixed-
wing guidance [28] and multi-MAV collision avoidance and
trajectory tracking [29]. For mobile manipulation, several
different approaches have been presented. Minniti et al.
[30] propose an optimal control framework which allows
WBC for end-effector tasks while simultaneously stabilizing
the unstable base of a balancing robot in a single opti-
mization problem. A Sequential Linear Quadratic (SLQ)
method described by Farshidian et al. [11] was used as a
solver for the optimal control problem. However, the final
controller does not incorporate obstacles. Avanzini et al. [12]
formulated an MPC which drives to a reference point while
avoiding obstacles. The controller keeps the arm in a safe
configuration by dynamically varying a weight matrix of the
optimization problem as a function of goal distance. Their
model formulation, however, is limited to a kinematic model.

RL has also been a popular choice for learning manipula-
tion skills as well as navigation policies. Novkovic et al. [16]
proposed an RL approach to object finding in environments
which require physical interaction with the end-effector to
expose the searched object. Breyer et al. [17] use RL with
curriculum learning to train a controller from sparse rewards
for end-effector object grasping. Popov et al. [18] used
a modified variant of Deep Deterministic Policy Gradient
(DDPG) to learn a control policy for grasping and stacking
objects with a manipulator, while Gu et al. [19] developed an
approach to train a controller with asynchronous RL directly
on multiple robot arms.

In terms of learning navigation policies, Tai et al. [13]
trained a mapless motion planner to drive a differential base
to a setpoint given only 10 distance measurements. Pfeiffer
et al. [14] generated data from the ROS navigation stack to
train a controller in a supervised fashion to steer a differential
drive robot from LiDAR scans. Iriondo et al. [15] trained a
controller for the base of a mobile manipulator that drives

the platform to a feasible position for grasping an object on a
table. However, in their paper, the tests were only conducted
in simulation, the absolute position of the robot was given to
the controller and the structure of the environment was fixed
throughout the training.

Recently, progress has been made in the field of MPC in
combination with machine learning, especially RL. Farshid-
ian et al. [31] developed an algorithm called Deep Value
Model Predictive Control (DMPC) that uses an actor-critic
agent whose critic is a neural network modelling a value
function and whose actor is an MPC that uses the value
function as part of its optimization cost. The MPC is then
solved by using SLQ where the Hessian and Jacobian of
the value function network are computed using an automatic
differentiation library. In their work, the controller is trained
for a single static environment.

Our approach is based on the work of Pfeiffer et al. [14]
and Popov et al. [18]. We combine the information of two
LiDAR scans, the system’s internal states and the setpoint in
end-effector frame in a deep neural network. The network is
trained in simulation using RL as a WBC policy to drive the
end-effector to the setpoint while avoiding obstacles.

III. METHOD

In this work, we use RL to discover WBC policies that
can steer a mobile manipulator to target end-effector poses
while avoiding obstacles. To do so, our system uses raw 2D
LiDAR and the target position in end-effector frame as input
to the RL algorithm. The agent (Section III-C) is trained in a
simulated randomized corridor environment (Section III-B).

A. Observation and action space
We model our mobile manipulator as shown in Fig. 2.

The observation of the complete system consists of two
LiDAR scans (Sf , Sr), the joint positions (ϕ), joint and
base velocities (ϕ̇, ẋb, ẏb, θ̇b) and the setpoint position in
end-effector frame (P ). The actions are the (discretized)
accelerations of the base (ẍb, ÿb, θ̈b) and the joints (ϕ̈). The
action discretization factor and the kinematic and dynamic
limits used are listed in Table I.

B. Simulation
Due to the large amounts of data needed to train a (deep)

neural network, an agent is first trained in simulation. For
that, we created a 3D simulation of our mobile manipulator
RoyalPanda (Fig. 1) using PyBullet [32] while offering an
OpenAI Gym interface [33].

In order to train an agent that is able to control the system
in a variety of environments, we randomize the simulation
at each episode. In this work, we focus on scenarios where
a mobile manipulator needs to operate in a corridor-like
environment. We prevent overfitting to a specific setup by
varying the corridor width, number and location of shelves,
walls and doors and their respective dimensions. Similarly,
special care was taken to ensure that the trained agent will
work in a realistic environment with imperfect sensors. We
added Gaussian noise to the LiDAR scans and randomly set
measurements to the maximum distance (5 m).



C. The agent

We have chosen to use Proximal Policy Optimization
(PPO) [34], a policy-based RL algorithm which is often
used in the field of robotics [34–39] due to the ease of
hyperparameter-tuning while retaining the stability and relia-
bility of Trust Region Policy Optimization (TRPO) [40]. PPO
is an actor-critic method which ensures that the policy does
not change dramatically between batch updates, resulting in
smoother, more stable and more robust learning behavior.

The architecture used to train the agent is depicted in
Fig. 3. Data from the two LiDAR scans are compressed in the
same branch composed of convolutional, max pooling and
fully connected layers to 64 floats. These are then combined
and compressed to 64 floats by three fully connected layers.
At this point, the setpoint pose P, base velocities ẋb, ẏb, θ̇b,
joint positions ϕ and joint velocities ϕ̇ are concatenated
and further compressed by eight fully connected layers to
32 floats. The model then separates into an actor and a
critic, which result in the policy (5× 5 floats) and the value
function (1 float), respectively. The actions are then chosen
by evaluating the argmax of each block of 5 floats.

D. Training procedure

PPO is an actor-critic method and can therefore be trained
on data generated from multiple workers that run in parallel.
We used Stable Baselines [41], a collection of RL algorithms
that offers an implementation called PPO2 with multiple
workers as well as GPU and Tensorboard support.

Training was conducted with 32 workers in parallel on an
Intel Xeon E5-2640 v3 (8 Core @ 2.6 GHz) and the network
was updated on an Nvidia GeForce GTX Titan X. The agent
was trained with 60 M steps in simulation which took about
20 h. The learning parameters used in our experiments are
listed in Table I.

In order to speed up the training process and robustly
achieve convergence, we used a simplified variant of Au-
tomatic Domain Randomization (ADR) [42] on the size of
the tolerance sphere around the setpoint (dh).

Fig. 2: Top down view of our mobile manipulator Royal-
Panda. We lock the arm configuration such that the arm
can only move in a 2D plane parallel to the floor with two
actuated joints.
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Fig. 3: The network architecture used in our experiments.
All activations are of type LeakyReLU, except for the last
layers of the actor and critic which are linear.

E. Reward function

We use a handcrafted reward function:

r(∆dpd,∆dpt, ~v, dsm, dg, dh, ~D, Ih) =

wt
τ

Tt
+ wpd∆dpd + wpt

∆dpt
dpt,init

+ wsm ‖~v‖ τL(dsm, dth)

+ (wht + whdL(dg, dh))
τ

Th
+Dc +Dl +Dh − Ih, (1)

where L(x, y) = 1−min(1, x/y). Individual components of
r are described in the following subsections and the weights
used in our experiments are listed in Table I.

1) Time penalty, wt: We introduce a timeout Tt after
which the episode is terminated. We penalize time in each
step to favour actions that lead to reaching the setpoint faster,
summing up to a maximum (negative) value of wt.

2) Goal distance, wpd, wpt: We use a Harmonic Potential
Field (HPT) to generate a collision-free path for the end-
effector to the goal (Fig. 4) at the beginning of each episode.
We then penalize deviation from the path (∆dpd) by wpd and
reward progress made along the path (∆dpt) such that the
maximum total reward is wpt. Compared to a simple metric

TABLE I: Learning and reward function parameters
Learning parameters

noptepochs 30 cliprange 0.2
cliprange vf −1 (off) ent coeff 0.00376
gamma 0.999 lam 0.8
n steps 2048 nminibatches 8
Learning rate Linear drop from 1e−3 to 0.15e−3

Reward function parameters
wt −15 Tt 120
wpd −10 wpt 30
wsm −1 dth 0.3
wht 20 whd 40
Th 1.5 τ 0.04
Dc −60 Dl −20
Dh 10

Observation and action space limits
S 5m naction discr 5

|ϕ̇| 0.5 rad s−1 |ϕ̈| 0.8 rad s−2

|ẋb|, |ẏb| 0.1m s−1 |ẍb|, |ÿb| 0.15m s−2

|θ̇b| 0.2 rad s−1 |θ̈b| 0.3 rad s−2



Fig. 4: A Harmonic Potential Field which was used to
generate a collision-free path for the end-effector to the goal
position.

based on Euclidean distance to goal, our reward formulation
allows the agent to easily learn to drive around obstacles and
avoid getting stuck behind them in a local optima.

3) Safety margin, wsm: We enforce a safety margin from
obstacles for the base, by adding a term that linearly reduces
the reward per driven distance with decreasing smallest
distance to obstacle dsm, starting with value 0 at threshold
distance dth and maximal reduction wsm at distance 0.

4) Holding goal position, wht, whd and Ih: Many tasks
such as grasping an object require the end-effector to keep
still. Thus, instead of ending an episode as soon as the
end-effector reaches the goal, we require it to be within a
tolerance sphere of radius dh (set by ADR, Section III-D)
for a sustained interval Th. The reward is incremented each
time step the end-effector remains in the sphere, summing
up to a total of wht. Additionally, we desire the goal distance
dg to be as small as possible, therefore rewarding a smaller
distance with a maximum total reward of whd in a similar
fashion as for the safety margin. To prevent the agent from
exploiting the situation by repeatedly entering and leaving
the sphere, we store the accumulated holding reward in Ih
and subtract it immediately if the agent leaves the sphere.

5) Episode termination, Dc, Dl and Dh: Collision with
an obstacle is penalized by Dc and reaching the joint limits
is penalized with Dl. Otherwise, the agent is rewarded with
Dh as soon as it achieves a sustained holding time of Th. All
three cases result in the termination of the current episode.

F. Sampling-based motion planning baseline

We compared our implementation to a baseline sampling-
based algorithm. In particular, we used the implementation of
RRTConnect [7] in the MoveIt! motion planning framework.
Since MoveIt! does not natively support planning movements
of a mobile base platform, we introduced two prismatic and
one continuous joint to model the movement of a holonomic
platform in a plane. The trajectory received by the planner
can then be followed with a simple controller. However,
an accurate localization system is required for tracking the
mobile base trajectory.

Due to the fact that MoveIt! is an offline motion planning
library, we generated an octomap of our environment by
using a Gazebo plugin from RotorS [43]. This technique
allows us to plan the trajectory to a setpoint in a single
run but comes with the drawback that all obstacle positions
must be static and known a priori. Further, to ensure reliable
collision avoidance for the prismatic joints modelling the
base platform, we reduced the search resolution of the
kinematics solver to 1e− 5. We set the number of planning
attempts to 20 and limited the planning time to 180 s.

IV. RESULTS

Figure 5 shows the accumulated reward per episode,
the success rate and the ADR values during training. We
conducted our experiments on a Raspberry Pi Model 3B [44]
with an ARM Cortex-A53 (4 Core @ 1.2 GHz) and 1GB
of RAM. Except for active cooling, we did not add any
equipment (such as a Neural Compute Stick) to the device
and therefore run the network directly on the CPU which
required about 160MB of RAM. We achieved a network
prediction rate of 104 Hz.

Fig. 5: Accumulated reward per episode and success rate with
their respective smoothed plots (exponential moving average)
and setpoint tolerance during training.

The trained agent was first evaluated in a Gazebo simula-
tion (run on a separate machine) which modelled various
corridor environments before we deployed it to the real
system. We compared the performance against the RRTCon-
nect planning baseline (Section III-F). The metrics used for
comparing the two approaches are the total mission time,
as a sum of the planning and execution time, and the total
travelled base and joint distances. We additionally highlight
the planning and execution times and the success rate for the
two methods. Note that failure for the RL agent occurs due
to collision or execution timeout (180 s), while RRTConnect
failure occurs when the planner is unable to find a collision-
free path in the given time. The setpoint tolerance was fixed
to a value of 0.07 m.

A. Simulation results

Figure 6 shows four different scenarios in which we
evaluated the RL agent and RRTConnect. The four scenarios
vary in difficulty according to the placement of obstacles
in the environment. We randomly sampled a feasible initial
configuration inside the blue ellipse and a setpoint in the red
shelf and ran both algorithms. Table II shows the averaged
metrics from 100 runs for each task.

Even though RRTConnect achieved a lower execution
time in all tasks, due to the long planning time required,
our approach had a consistently lower total mission time.
In Task 2, our approach not only achieved a lower total



Task 1:
Task 2:

Task 3:
Task 4:

Fig. 6: Collision map of the simulated environments for tasks
1-4 used in our evaluation. The red square denotes the shelf
in which the setpoints are spawned, the blue ellipse marks
the region of initial poses.

mission time but also a higher success rate. In the remaining
tasks, however, the success rate was notably lower. This
might come from the fact that our procedure for environment
randomization during training was more likely to produce
scenes similar to Task 2 compared to the other tasks.

In all tasks, RRTConnect achieved smaller base and joint
distances compared to the RL agent. The learned agent
tended to exhibit small oscillatory behaviors whose presence
may be due simply to the fact that we did not penalize base
and joint distances in our reward function.

Note that even though the evaluations were done on static
scenes, unlike RRTConnect, our approach can also handle
dynamic scenes since we are controlling the system in a
closed-loop fashion.

B. Real-world experiments

We verified the trained RL agent through 20 experimental
runs on our mobile manipulator RoyalPanda. Maplab [45]
was used for the estimation of the setpoint pose P in the
end-effector frame. The agent ran on a laptop with an Intel
i7-8550U (4 Core @ 1.8GHz) with 16GB of RAM. We
deployed the robot in a corridor of our lab and tested the
limitations of the agent with different initial robot configu-
rations and a cardboard box to change the corridor width in
different locations (see Fig. 1).

The experiments showed that the agent—which was solely
trained in simulation—can be transferred to a real system.
For a normal corridor environment similar to Task 2 (Fig. 6),
the agent was consistently reaching the setpoint. However,
for more difficult scenarios such as a tight corridor, the
base platform sometimes collided into our cardboard box.
A possible explanation is that the robot has two blind spots
which are invisible to the LiDAR sensors. As soon as an
obstacle corner is inside these, the agent seemed to cut the
corner in order to reach the goal as quickly as possible, thus
colliding with the box. This issue could be addressed by
adding a memory structure to the network to help retain
information from previous scans. Also, depending on the
angle of the end-effector to the setpoint, the manipulator
sometimes collided with the shelf. This may be due in part
to an inaccurate manipulator-to-base calibration.

The accompanying video, which was also uploaded to

Youtube1, shows some of the real-world experiments.

V. CONCLUSION

In this work, we have shown a method to learn WBC of a
mobile manipulator by training a (deep) neural network with
RL. We used ADR to automatically increase the complexity
of the problem with growing success rate to speed up training
and achieve robust convergence. We compared our agent
against RRTConnect on an embedded device in simulation
and showed that our approach achieves consistently shorter
total mission times. Furthermore, we showed that the trained
agent can be directly transferred to a real robot.

In future work, the success rate of our approach could
be increased by adding a safety controller which separately
limits the action space for the base platform and the manip-
ulator to avoid collisions. Furthermore, the used DoF of the
manipulator could be increased by adding a depth sensor as
observation, potentially in an encoded form generated by an
Auto-Encoder network.
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