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Abstract

We present Modular Memory Units (MMUs), a new class of memory-augmented neu-
ral network. MMU builds on the gated neural architecture of Gated Recurrent Units
(GRUs) and Long Short Term Memory (LSTMs), to incorporate an external memory
block, similar to a Neural Turing Machine (NTM). MMU interacts with the memory
block using independent read and write gates that serve to decouple the memory from
the central feedforward operation. This allows for regimented memory access and
update, administering our network the ability to choose when to read from memory,
update it, or simply ignore it. This capacity to act in detachment allows the network
to shield the memory from noise and other distractions, while simultaneously using it
to effectively retain and propagate information over an extended period of time. We
train MMU using both neuroevolution and gradient descent, and perform experiments
on two deep memory benchmarks. Results demonstrate that MMU performs signifi-
cantly faster and more accurately than traditional LSTM-based methods, and is robust
to dramatic increases in the sequence depth of these memory benchmarks.
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1 INTRODUCTION

Remembering key features from information observed in the past, and using it towards
future decision making is a crucial part of most living organisms that exhibit intelligent
adaptive behavior. Agents that can use memory to identify and retain variable-scale
temporal patterns dynamically, and retrieve them in the future have a distinct advan-
tage in most real world scenarios where observations in the past affect future decision
making (Baddeley and Hitch, 1974; Grabowski et al., 2010). The neuroscience literature
has increasingly emphasized the importance of explicit working memory as a pillar for
intelligent behavior (Hassabis et al., 2017; Tulving, 2002).

The most prominent method of incorporating memory into a neural network is
through Recurrent Neural Networks (RNNs), a class of neural networks that store in-
formation from the past within hidden states of the network. Long short term mem-
ory (LSTM) (Hochreiter and Schmidhuber (1997)) is a type of RNN that uses gated
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connections to stabilize the back-flow of error during training, enabling application to
long temporal sequences. The gated recurrent unit (GRU) (Cho et al. (2014)) is a con-
sequently proposed simplification of the LSTM architecture which uses fewer gated
connections enabling easier training. Both GRU and LSTM have been widely applied
to a range of domains and represent the state-of-the-art in many sequence processing
tasks (Graves et al. (2013b); Sundermeyer et al. (2014)).

However, a common structure across all existing RNN methods is the intertwining
of the central feedforward computation of the network and its memory content. This is
because the memory is stored directly within the hidden states (GRU) or the cell state
(LSTM). Since the output is a direct function of these hidden states/cell state, the mem-
ory content is tied to be updated alongside its output. An alternative approach is to
record information in an external memory block, which is the basic idea behind Neural
Turing Machines (NTMs) (Graves et al. (2014)) and Differentiable Neural Computers
(DNCs) (Graves et al. (2016)). Although they have been successfully applied to solve
some complex structured tasks (Greve et al., 2016), these networks are typically quite
complex and unwieldy to train (Jaeger (2016)). NTMs and DNCs use “attention mech-
anisms” to handle the auxiliary tasks associated with memory management, and these
mechanisms introduce their own set of parameters further exacerbating this difficulty.

The key contribution of our work is to introduce a new memory-augmented net-
work architecture called Modular Memory Unit (MMU), which unravels the memory
and central computation operations but does not require the costly memory manage-
ment mechanisms of NTMs and DNCs. MMU borrows closely from the GRU, LSTM
and NTM architectures, inheriting the relative simplicity of a GRU/LSTM structure
while integrating a memory block which is selectively read from and written to in a
fashion similar to an NTM. MMU adds a write gate that filters the interactions between
the network’s hidden state and the updates to its memory content. The effect of this
is to decouple the memory content from the central feedforward operation within the
network. The write gate enables refined control over the contents of the memory, since
reading and writing are now handled by two independent operations, while avoid-
ing the computational overhead incurred by the more complex memory management
mechanisms of an NTM.

The MMU topology does not place any constraints on the network training proce-
dure. Furthermore, the modular decomposition of the sub-structures within the MMU
architecture makes it an ideal candidate for training via neuroevolutionary methods. In
our experiments, we compared the learning performance of the MMU with the current
state-of-the-art LSTM-based architecture on two deep memory benchmark domains, a
sequence classification task and a sequence recall task (Rawal and Miikkulainen (2016)).
In both domains, MMU demonstrated superior performance with fewer training gen-
erations, and was robust to dramatic increases in the depth of these tasks. Additionally,
results also demonstrate that MMU is not only limited to learning input-output map-
pings, but is able to learn general methods in solving these benchmarks.

This paper builds on (Khadka et al., 2017) which introduces the Gated Recurrent
Unit with Memory Block (GRU-MB) architecture. MMUs, introduced in this paper is a
generalization of the GRU-MB architecture, that detaches the size of memory from the
size of hidden nodes. Additionally, in this paper we implement a fully differentiable
version of the MMU. We the compare and contrast the training performance of MMU
with gradient descent and neuroevolution. Results demonstrate that gradient descent
has comparative advantage over neuroevolution for lower depths, while neuroevolu-
tion significantly outperforms gradient descent as the depth of the temporal sequence
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(a) LSTM(Chung et al., 2014) (b) GRU(Chung et al., 2014) (c) MMU

Figure 1: Comparative illustration of information flow in LSTM, GRU and MMU. (a) i,
f and o are the input, forget and output gates, respectively while c and c̃ represents the
current memory cell and candidate memory cell content. (b) r and z are the reset and
update gates, while h and h̃ are the activation and the candidate activations (Chung
et al., 2014). (c) i, r and w are the input, read and write gates, respectively while h and
M denote the hidden activation and memory content. Note that for LSTM and GRU,
the information passage from input to output is constrained to go through memory:
hidden activation h in GRU and memory cell c in LSTM. However, this is not the case
for MMU as its decoupled topology enables selective memory access: choice of reading
from it, writing to it, or simply ignoring it.

grows. Additionally, neuroevolution is more repeatable and generalizable across both
tasks. Further, a detailed case study probing the operation of various gates within the
MMU’s architecture is performed to elucidate the inner workings of MMU’s memory
handling protocols. We probe the limits of the MMU’s memory representations and
derive an approximate pseudo-algorithm that it uses to solve the tasks.

2 BACKGROUND AND RELATED WORK

RNNs can roughly be divided into two groups: those that store memory internally
within the hidden nodes of the network, and those that use an external memory block
with auxiliary structures to manage the associated housekeeping tasks. As described
previously, current examples of networks classified in the latter are normally trained
using a strong learning signal and have also relied on the differentiability of each com-
ponent in the network in order to efficiently perform backpropagation (Graves et al.
(2014, 2016)). In this work, we are interested in solving problems where only a weak
learning signal is available, thus neuroevolutionary methods are more suitable to solv-
ing these types of problems. While it is possible to learn NTMs and DNCs via evolu-
tionary methods (Merrild et al., 2018; Greve et al., 2016; Lüders et al., 2017), they are
difficult to train reliably and efficiently, in part due to the large number of parameters
characterizing their computational framework.

A standard RNN operates by recursively applying a transition function to its inter-
nal hidden states at each computation over a sequence of inputs. Although this struc-
ture can theoretically capture any temporal dependencies in the input data, in practice,
the error propagation over time can become problematic over long sequences. This
becomes apparent when training via gradient-based methods, where the back-flow of
error can cause the gradient to either vanish or explode (Hochreiter (1998); Goodfel-
low et al. (2016)). The introduction of gated connections in an LSTM (Hochreiter and
Schmidhuber (1997)) was aimed at directly addressing this issue.
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2.1 LONG SHORT TERM MEMORY

The general concept of using gated connections is to control the flow of information
through the hidden states of an RNN. Gates are neural structures that selectively filter
information that passes through them. They use a sigmoidal activation and output
within the range [0, 1]. They then operate element wise multiplicatively on information
that passes through them, enabling selective filtering of information. Since its inception
two decades ago, a number of gated RNN architectures have been proposed and most
of these have been variants on the LSTM structure (Greff et al. (2016)). A typical LSTM
unit consists of a memory cell and the associated input, forget, and output gates. The
rate of change to the memory content stored in the cell is regulated by the input and
forget gates, while the output gate controls the level of exposure.

LSTMs have been very successful at solving sequence-based problems such as
analysis of audio (Graves and Schmidhuber (2005)) and video (Srivastava et al. (2015))
data, language modeling Sundermeyer et al. (2012) and speech recognition (Graves
et al. (2013a)). Traditionally LSTMs have been trained via backpropagation through
time (Werbos (1990)), however more recent applications of LSTMs have demonstrated
that they can be trained via evolutionary methods (Bayer et al. (2009)).

Most recently, Rawal and Miikkulainen (2016) proposed a method combining
NEAT (Neuroevolution of Augmenting Topologies) (Stanley and Miikkulainen (2002))
with LSTM units. NEAT-LSTM allows the NEAT algorithm to discover the required
number of memory units to best represent the sequence-based task. In order to over-
come scalability issues as the memory requirements of the task increased, the authors
also proposed using two training phases. The “pre-training” phase evolves the LSTM
networks using an information objective, the goal of which is to discover the network
topology that would encapsulate the maximally independent features of the task. Fol-
lowing this, the stored features could then be used to solve the memory task itself. The
results in Rawal and Miikkulainen (2016) showed that NEAT-LSTM can be trained to
solve memory tasks using only a weak signal with a graceful decay in performance
over increased temporal dependencies.

2.2 GATED RECURRENT UNIT

The GRU was first proposed in Cho et al. (2014) as an alternative to the LSTM unit with
a simpler gating architecture. Compared to the multiple gate connections in an LSTM,
the GRU only contains reset and update gates to modulate the data stored in the hidden
unit. It has been empirically shown to improve upon the performance of LSTMs in
various time-sequence domains (Jozefowicz et al. (2015); Chung et al. (2014)) and can
also be incorporated into hierarchical RNN structures (El Hihi and Bengio (1995)) to
simultaneously capture time-sequence memory of varying window sizes (Chung et al.
(2015)).

The reset gate r and update gate z are computed by

r = σ
(
Wrx+Urh

〈t−1〉
)
, (1)

z = σ
(
Wzx+Uzh

〈t−1〉
)
, (2)

where σ is the logistic sigmoid function, W and U are the learned weight matrices, and
x and h〈t−1〉 are the input and the previous hidden state, respectively. The activation
of an individual hidden unit hj is then computed by

h
〈t〉
j = zjh

〈t−1〉
j + (1− zj) h̃〈t〉j , (3)
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(a) (b) (c)

(d) (e) (f)

Figure 2: Illustration of a bottom up construction of a MMU: (a) We start with a simple
feedforward neural network, whose hidden activations are marked as h. (b) We add a
disconnected memory block, which now contributes information to the hidden activa-
tion. (c) We close the loop, and allow the hidden activation to modulate the memory
block. (d) We add the input gate, which acts as a filter on information flow into the
network. (e) We add a read gate, which filters the amount of information read from
memory at each step. (f) Finally, we introduce a write gate, which controls the informa-
tion flow that modulates the content within the memory block.

where

h̃
〈t〉
j = tanh

(
[Wx]j +

[
U
(
r� h〈t−1〉

)]
j

)
. (4)

The function of the reset gate is to allow the hidden unit to flush information that is
no longer relevant, while the update gate controls the amount of information that will
carry over from the previous hidden state.

With this gating structure, the reset and update operations of the GRU are activated
during each feedforward computation of the network. Moreover, this means that ac-
cessing and editing the hidden unit become inherently tied into a single operation. In
our work, we propose an architecture that builds upon the GRU by introducing sep-
arate read and write gates to filter the information flow between the memory storage
and feedforward components of the network. This network structure enables greater
control over memory access and update which can ultimately improve learning perfor-
mance on tasks with long term dependencies. Figure 1 illustrates the core difference in
neural architecture between LSTM, GRU and MMU.

3 MODULAR MEMORY UNIT

We introduce a new memory-augmented neural network architecture called Modular
Memory Unit (MMU), which is designed to tackle the problem of solving deep memory
tasks using only a weak signal. MMU uses input, read and write gates, each of which
contribute to filtering and directing information flow within the network. The read
and write gates control the flow of information into and out of the memory block, and
effectively modulate its interaction with the hidden state of the central feedforward
operation. This feature allows the network to have finer control over the contents of the
memory block, reading and writing via two independent operations. Figure 2 details
the bottom-up construction of the MMU neural architecture.

Each of the gates in the MMU neural architecture uses a sigmoid activation whose
output ranges between 0 and 1. This can roughly be thought of as a filter that modulates
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the part of the information that can pass through. Given the current input xt, memory
cell’s content mt−1 and last output yt−1, the input gate it and intermediate block input
pt is computed as

it = σ
(
Kix

t +Riy
t−1 +Nim

t−1 + bi
)

Input gate

pt = φ
(
Kpx

t +Npm
t−1 + bp

)
Block input

(5)

Here, K, R, N , Z represent trainable weight matrices while b represents the train-
able bias weights. σ represents the sigmoidal activation function while φ and θ repre-
sents any non-linear activation function. Next, the read gate rt and decoded memory
dt is computed as:

rt = σ
(
Krx

t +Rry
t−1 +Nrm

t−1 + br
)

Read gate

dt = θ
(
Ndm

t−1 + bd
)

Memory decoder
(6)

The hidden activation is then computed by combing the information from the en-
vironment filtered by the input gate and information stored in memory filtered by the
read gate.

ht = rt � dt + pt � it Hidden activation (7)

The hidden activation is then encoded to the dimensionality of the memory cell
using the memory encoder f t, filtered using the write gate wt and is then used to up-
date the memory cell content mt. α is a hyperparameter that controls the nature of the
memory update: ranging from a strictly cumulative update (α = 0) to an interpolative
update (α = 1). wt is used to interpolate between the last memory content and the new
candidate content given by f t.

wt = σ
(
Kwx

t +Rwy
t−1 +Nwm

t−1 + bw
)

Write gate

f t = θ
(
Zfh

t + bf
)

Memory encoder

mt = (1− α)
(
mt−1 + wt � f t

)
+ α

(
wt � f t +

(
1− wt

)
�mt−1) Memory update

(8)
The new output yt is then computed as

yt = φ
(
Zyh

t + by
)

New output (9)

Equations (5)-(9) specify the computational framework that constitute the MMU
neural architecture. Qualitatively, a MMU can be thought of as a standard feedforward
neural network with five major additions.

1. Input Gate: The input gate filters the flow of information from the environment to
the network. This serves to shield the network from the noisy portions of each in-
coming observation and allows it to focus its attention on relevant features within
its observation set.

2. Memory Decoder: The memory decoder serves to decode the contents of memory
to be interpreted by the network’s central computation. Specifically, the decoder
transcribes the memory’s contents to a projection amenable to incorporation with
the network’s hidden activations. This decouples the size of the network’s hidden
activations to the size of the external memory.
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3. Selective Memory Read: The network’s input is augmented with content that the
network selectively reads from the decoded external memory. The network has
an independent read gate which filters the content decoded from external mem-
ory. This serves to shape the contents of memory as per the needs of the network,
protecting it from being overwhelmed with noisy information which might not be
relevant for the timestep.

4. Memory Encoder: The memory encoder serves to encode the contents of the net-
work’s central computation so that it can be used to update the external memory.
Specifically, the encoder transcribes the network’s hidden activations to a projec-
tion amenable to updating the external memory.

5. Selective Memory Write: The network engages a write gate to selectively update
the contents of the external memory. This gate allows the network to report salient
features from its observations to the external memory at any given time step. The
write gate that filters this channel of information flow serves to shield the external
memory from being overwhelmed by updates from the network.

A crucial feature of the MMU neural architecture is its separation of the memory
content from the central feedforward operation (Fig. 2). This allows for regimented
memory access and update, which serves to stabilize the memory block’s content over
long network activations. The network has the ability to effectively choose when to
read from memory, update it, or simply ignore it. This ability to act in detachment
allows the network to shield the memory from distractions, noise or faulty inputs;
while interacting with it when required, to remember and process useful signals.
This decoupling of the memory block from the feedforward operation fosters reliable
long term information retention and retrieval.

The memory encoder and decoder collectively serve to decouple the information
representations held within the external memory, and the representations within the
hidden activations of the MMU network. This allows separation between the volume
of computation required for reactive decision making (processing the current input)
and the volume of information that needs to be retained in memory for future use.

For example, consider a recurrent convolutional network processing video input
to count the number of frames where a dog appeared. For each frame (element in
sequence), a vast number of features have to be extracted and processed to classify
whether a dog appeared or not. This requires a large number of hidden activations,
often in the scale of thousands. However, the volume of information that has to be
retained in memory for future use in this task is simply the current running count of
the number of frames where the dog appeared. This is significantly smaller when com-
pared to the volume of information that has to be fed forward through the network’s
hidden activations for instance classification. Additionally, the representation of infor-
mation between computing image features, and keeping a running count can be very
different. Constraining the size and representation of these two modes of information
is undesirable. The memory encoder and decoder collectively address this issue by
decoupling the size and representation between memory and hidden activations.

In this work, we test the MMU’s efficacy in retaining useful information across
long temporal activations, while simultaneously shielding it from noise. Our focus here
is to test the MMU’s capability in dealing with the difficulties defined by the depth of
the temporal sequence (number of timesteps the information has to selectively retained
for), rather than the volume of the information that has to be propagated in memory.
The tasks we use to test our MMU network is designed to challenge this axis of diffi-
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Figure 3: MMU neural architecture detailing the weighted connections and activations
used in this paper. Last Output represents the recurrent connection from the previous
network output. Memory represents the peephole connection from the memory block.

culty. The MMU network is designed to be a highly reconfigurable and modular frame-
work for memory-based learning. We exploit this reconfigurability and set a prior for
our network to expedite training. We set α to 0 while setting the memory encoder (f t)
and memory decoder (dt) from Equation 6 and Equation 8 as identity matrices, and
freeze their weights from training. This virtually eliminates the decoding and encod-
ing operation from our MMU network which we deem surplus to requirements for the
depth-centered experimentation in this paper. Figure 3 shows the detailed schematic
of the MMU instance.

Initialize a population of k neural networks
Define a random number generator r() with output ∈ [0, 1)
foreach Generation do

foreach Network do
Compute fitness

Rank the population based on fitness scores
Select the first e networks as elites where e = int(ψ*k)
Select (k − e) networks from population, to form Set S using tournament

selection
foreach Network N ∈ Set S do

foreach weight matrix W ∈ N do
if r() < mutprob then

Randomly sample and perturb weights in W with 10% Gaussian
noise

Algorithm 1: Neuroevolutionary algorithm used to evolve the MMU network

Training We use neuroevolution to train our MMU network. However, memory-
augmented architectures like the MMU, can be a challenge to evolve, particularly due
to the highly non-linear and correlated operations parameterized by its weights. To
address this problem, we decompose the MMU architecture into its component weight
matrices and implement mutational operations in batches within them. Algorithm 1
details the neurovolutionary algorithm used to evolve our MMU architecture. The size
the population k was set to 100, and the fraction of elites ψ to 0.1.
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4 EXPERIMENT 1: SEQUENCE CLASSIFICATION

Our first experiment tests the MMU architecture in a Sequence Classification task,
which has been used as a benchmark task in previous works (Rawal and Miikkulainen
(2016)). Sequence Classification is a deep memory classification experiment where the
network needs to track a classification target among a long sequence of signals inter-
leaved with noise. The network is given a sequence of 1/-1 signals, interleaved with
a variant number of 0’s in between. After each introduction of a signal, the network
needs to decide whether it has received more 1’s or -1’s. The number of signals (1/-1s)
in the input sequence is termed the depth of the task. A key difficulty here are distrac-
tors (0’s) that the network has to learn to ignore while making its prediction. This is a
difficult task for a traditional neural network to achieve, particularly as the length of
the sequence (depth) gets longer.

Figure 4: Sequence Classification: The
network receives a sequence of input
signals interleaved with noise (0’s) of
variable length. At each introduction
of a signal (1/-1), the network must de-
termine whether it has received more
1’s or -1’s. MMU receives an input se-
quence and outputs a value between
[0,1], which is translated as -1 if the
value is between [0,0.5) and 1 if be-
tween [0.5,1].

Note that this is a sequence to sequence
classification task with a strict success cri-
teria. In order to successfully classify a se-
quence, the network has to output the cor-
rect classification at each depth of the se-
quence. For instance, to correctly classify a
10-deep sequence, the network has to make
the right classification at each of the inter-
mediary depths: 1,2,..,9 and finally 10. If
any of the intermediary classification are in-
correct, the entire sequence classification is
considered incorrect.

Further, the number of distractors (0’s)
is determined randomly following each sig-
nal, and ranges between 10 and 20. This
variability adds complexity to the task, as
the network cannot simply memorize when
to pay attention and when to ignore the in-
coming signals. The ability to filter out dis-
tractions and concentrate on the useful sig-
nal, however, is a key capability required
of an intelligent decision-making system.
Mastering this property is a necessity in expanding the integration of memory-
augmented agents in myriad decision-making applications. Figure 4 describes the Se-
quence Classification task and the input-output setup to our MMU network.

4.1 RESULTS

During each training generation, the network with the highest fitness was selected as
the champion network. This network was then tested on a separate test set of 50 exper-
iments, generated randomly for each generation. The percentage of the test set that the
champion network solved completely was then logged as the success percentage and
reported for that generation. Ten independent statistical runs were conducted, and the
average with error bars reporting the standard error in the mean are shown.

Figure 5a shows the success rate for the MMU neural architecture for varying
depth experiments. MMU is able to solve the Sequence Classification task with high
accuracy and fast convergence. The network was able to achieve accuracies greater
than 80% within 500 training generations. The performance also scales gracefully with
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Figure 5: (a) Success rate for the Sequence Classification task of varying depth using
MMU. (b) Comparison of MMU with NEAT-RNN and NEAT-LSTM (extracted from
Rawal and Miikkulainen (2016)). NEAT-RNN and NEAT-LSTM results are based on
15,000 generations with a population size of 100 and are only available for task depth
up to 6. MMU results are based on 1,000 generations with the same population size
and tested for task depths of up to 21.

the depth of the task. The 21-deep task that we introduced in this paper has an input
series length ranging between {221, 441}, depending on the number of distractors (0’s).
MMU is able to solve this task with an accuracy of 87.6% ± 6.85%. This demonstrates
MMU’s ability to capture long term time dependencies and systematically handle in-
formation over long time intervals.

To situate the results obtained using the MMU architecture, we compare them
against the results from Rawal and Miikkulainen (2016) for NEAT-LSTM and NEAT-
RNN (Fig. 5b). These results for NEAT-LSTM and NEAT-RNN represent the success
percentage after 15,000 generations while the MMU results represent the success per-
centage after 1,000 generations. MMU demonstrates significantly improved success
percentages across all task depths, and converges in 1/15th of the generations.

4.2 GENERALIZATION PERFORMANCE

Section 4.1 tested the networks for the ability to generalize to new data using test sets.
In this section, we take this notion a step further and test the network’s ability to gen-
eralize, not only to new input sequences, but to tasks with longer depths or noise se-
quences than what they were trained for.

4.2.1 GENERALIZATION TO NOISE
Figure 6(a) shows the success rate achieved by the networks from the preceding section
when tested for a varying range of noise sequences (number of distractors), extending
up to a length of 101. All the networks tested were trained for distractor sequence
length between 10 and 20. This experiment seeks to test the generalizability of the
strategy that the MMU network has learned to deal with noise. Overall, the networks
demonstrate a decent ability for generalization towards varying length of noise se-
quences. The network trained for a task depth of 21, was able to achieve 43.2%± 13.2%
success when tested with interleaving noise sequences of length 101. This length of
noise sequence results in the total input sequence length of 2041, which is an extremely
long sequence to process. The peak performance across all the task depths is seen be-
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(a) (b)

Figure 6: (a) MMU network’s generalization to an arbitrary number of distractors
(length of interleaving noise sequences) within the task. All MMUs shown were trained
for tasks of their respective depths with variable length of distractors (noise) randomly
sampled between 10 and 20. These were then tested for interleaving noise sequences
ranging from 0 to 101. (b) MMU network’s generalization to arbitrary depths of the
task. We tested MMU networks across a range of task depths that they were not origi-
nally trained for. The legend indicates the task depth actually used during training.

tween noise sequences of length between 10 and 20. This is expected as this is the length
of noise sequences that the networks were trained for. The performance degrades as we
vary the length of the noise sequence away from the 10−20 range. However, this degra-
dation in performance is graceful and settles to an equilibrium whereafter increases in
noise sequence length do not affect performance. This equilibrium performance reflects
the core generalizability of the MMU’s strategy to deal with noise.

Interestingly, decreasing the length of the noise sequence leads to virtually the
same rate of degradation as increasing it. This suggests that the loss of performance suf-
fered by MMU when tested with noise sequence lengths beyond its training, is caused
more by the MMU’s specialization to the expected 10-20 range, rather than its inabil-
ity to process variable length noise sequences. In other words, the MMU is exploiting
the consistency of the noise sequence lengths being between 10-20. Additionally, the
equilibrium performance that the MMU network settles on, also seem to be higher for
tasks with lower depths. The severity in loss of generalization to lengths of noise se-
quences grows with the depth of the task. This can be attributed to the sheer volume of
additional noise added. For example, a 4-deep task consists 4 signals interleaved with
3 noise sequences while a 21-deep task consists of 21 signals interleaved with 20 noise
sequences. An increase in the length of each of the noise sequences thus introduces
significantly more noise to the 21-deep case when compared with the 4-deep case.

4.2.2 GENERALIZATION TO DEPTH

Figure 6(b) shows the success rate achieved by the networks from the preceding sec-
tion when tested for a varying range of task depths, extending up to a depth of 101.
Overall, the networks demonstrate a strong ability for generalization. The network
trained for a task depth of 21, was able to achieve 50.4%± 9.30% success in a 101 deep
task. This is a task with an extremely long input sequence ranging from {1111, 2121}.
This shows that MMU is not simply learning a mapping from an input sequence to an
output classification target sequence, but a specific method to solve the task at hand.
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Interestingly, training MMU on longer depth tasks seem to disproportionately im-
prove its generalization to even larger task depths. For example the network trained on
a 5-deep task achieved 36.7%±4.32% success in a 16-deep task which is approximately
thrice as deep. A network trained trained on the 21-deep task, however achieved
56.4% ± 10.93% success in its corresponding 66-deep task (approximately thrice as
deep). This shows that, as the depth of the task grows, the problem becomes in-
creasingly complex for the network to solve using just the mapping stored within its
weights. Even after ignoring the noise elements, a task depth of 5 means discerning
among 25 possible permutations of signal, whereas a depth of 21 means discerning
among 221 permutations. Therefore, training a network on deeper tasks forces it to
learn an algorithmic representation, akin to a ‘method’, in order to successfully solve
the task. This lends itself to better generalization to increasing task depths.

4.3 CASE STUDY

The selective interaction between memory and the central feedforward operation of
the network is the core component of the MMU architecture. To investigate the exact
role played by the external memory, we performed a case study to probe the memory
contents as well as the protocols for reading and writing.

We analyzed evolved MMU networks and identified one particular network
within the stack trained on the 21 deep task. This specific individual network exhib-
ited perfect generalization (100% success) to all but the 96-deep and 101-deep task sets,
in which it achieved 98.0% and 96.0% respectively. Additionally, this network also
achieved perfect generalizability to increasing the length of noise sequences, achieving
100% success for all noise sequence lengths. We will refer to this specific network as
21-champ and use this network to perform case studies at multiple levels of abstrac-
tion. First, we perform a case study for a specific depth of task, highlighting all of its
possible configurations (sequence of signals) and the corresponding final memory con-
tents achieved while solving them. Secondly, we perform a finer study where we use a
trained MMU network to solve a singular instance of a task, and investigate the magni-
tude of read-write interactions at every time step. Finally, we will test the memory rep-
resentations that the network uses to encode its intermediate variables, operations that
use them, and decode the pseudo algorithm that the network has seemingly learned.

4.3.1 TASK LEVEL STUDY
For every depth of the sequence classification task, there are a large but finite num-
ber of unique permutations for the input sequence. A primary contributor to this
large possible set of input sequences is the variable number of distractors interleaved
between signals. If we ignore the variable number of distractors (noise), the num-
ber of permutations of inputs for each task is simply 2d where d is the depth of the
task (1 or −1 for each signal). For example, in a 2-deep task we can have either of
{[1,−1], [1, 1], [−1,−1], [−1, 1]} as our input sequence, ignoring the distractors (0’s) in
between. We will refer to each of these unique input sequences as a permutation.

The task-level case study seeks to identify the distinctions within the memory con-
tent in response to different permutations of input sequences spanning a specific task
depth. Since the number of unique permutations even after ignoring the variable num-
ber of distractors scales exponentially, we use a smaller task depth of 3 to conduct our
analysis. This leads to 8 unique permutations of the input sequence. We set the number
of distractors to a constant of 15 while testing to allow for a fair comparison.

The 21-champ network is able to solve all the permutations successfully. The 21-
champ network has 5 units of memory, 3 of which it holds constant. However, this is
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deceiving. We tested the marginal value of each memory unit to the network’s opera-
tion by masking each memory unit. We found that although the network held 3 units
constant and only updated 2, it needed 3 memory units to be able to classify all 8 per-
mutations successfully. Out of the 3 memory units that the network held constant, a
specific one was necessary to maintain the network’s 100% success performance. Over-
all, the network required the second, third and fifth units (M2, M3, M5) to solve all 8
permutations. The network modified the values of M3 and M5 as it observed signals
while M2 was held constant. The network is seemingly using M2 unit as a bias while
the other two units encode the current state of the cumulative sum.

# Permutation Sum Final Memory State [M2, M3, M5] Signature
1 [-1,-1,-1] -3 [-0.33,-1.51, 2.72, 0.84, -0.80] [-1.51, 2.72, -0.80] [0,2,1]
2 [-1,-1,1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
3 [-1,1,-1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
4 [1,-1,-1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
5 [-1,1,1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
6 [1,-1,1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
7 [1,1,-1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
8 [1,1,1] +3 [-0.33,-1.51, 0.01, 0.84, -3.34] [-1.51, 0.01, -3.34] [2,0,1]

Table 1: Final memory states for a fully trained MMU network across all unique per-
mutations of the 3-deep Sequence classification task (number of distractors set to a
constant value of 15).

Table 1 shows the results for running our 21-champ network across all 8 permuta-
tion of 3-deep sequence classification task (setting the number of distractors to a con-
stant value of 15). The sum refers to the cumulative sum of real signals (input se-
quences). While comparing the final memory states explicitly against each other is
extremely difficult, we observed some interesting patterns. The final memory state was
entirely predictive of the cumulative sum of the corresponding input permutation. In
other words, permutations with the same sum ended up with the same final relevant
memory state regardless of the ordering of the signals in the input sequence. The final
memory state is a coarse record of the cumulative central feedforward-memory inter-
actions within that run. The unique mapping from cumulative sum to final memory
state indicates that this coarse representation is predictive of the interactions that are
necessary for representing that cumulative sum.

The two memory units that vary across different permutations (M3 and M5) also
demonstrated a monotonic decrease in the magnitude of final activation value as the
cumulative sum increased. Additionally, we sorted the three relevant final memory
states (M2, M3 and M5) in ascending order and recorded the sorted index as its signa-
ture. The correct classification at any depth of this task depends on the cumulative sum.
In other words, the permutations with the negative cumulative sum should be classi-
fied as −1 while the ones with a positive cumulative sum as 1. The memory signature
observed at this depth is entirely predictive of this binary classification. The network
seems to be interpreting the memory signature (relative values of the unit’s activations)
directly to make a classification.

Collectively, the network is using the specific magnitude of memory states to en-
code the magnitude of the cumulative sum, while using the memory state’s relative
relationship (signature) to make classification decisions. This is akin to tracking the cu-
mulative sum and using its sign (whether positive or negative), to make classification
decisions for each depth. This is an optimal policy to solve the Sequence classification

Evolutionary Computation Volume x, Number x 13



S. Khadka, J.J. Chung and K. Tumer

task, and is representative of what a human solver might perhaps do. The MMU seems
to be executing this very policy using a distributed representation of the cumulative
sum.

4.3.2 ROLE OF SELECTIVE MEMORY ACCESS

Figure 7: Illustration of the write interaction between memory and the central feedfor-
ward network in a 3-deep #3 permutation task from Table 1. The input sequence con-
tains three signals [-1,1,-1] with 0s interleaved between them (x-axis of the heatmap).
The color scheme corresponds to a scale of memory update magnitudes. Write activa-
tions in response to each individual input is shown for each of the five memory units.

We investigate the role of selective memory access facilitated by the read/write
gates. Figure 7 illustrates the write interaction between memory and central feedfor-
ward part of the MMU network during the course of one experiment where the input
sequence contains the signals [-1,1,-1] interleaved with variable-length distractors. A
clear pattern emerges from the heatmap of the write activations. Memory Units M3
and M5 are the only units written to during the entire run. M3 and M5 are written to
when a −1 and +1 is encountered, respectively. When a distractor is encountered, the
memory is shut off and nothing is written to it. This is demonstrative of the MMU’s
mechanism to shield memory from noisy activations, while selectively updating it
when a signal is encountered. The selective shielding of memory content from noise
was consistent across all other depths (not shown here). This behavior seems to have
evolved as a general protocol for dealing with the variable length distractors.

Figure 8: Illustration of the write interaction between memory and the central feedfor-
ward network in a 21-deep task with input sequence that followed the format [-1,1,-
1,1,-1...] (flipping subsequent signal) interleaved with a variable number of 0s. The
activations for the noise inputs (0s) are not shown but were all constantly 0s.

Figure 8 illustrates the write activations during the course of a 21-deep task in-
stance. The input sequence in this task contain 21 signals in the format [-1,1,-1,1,-1....].
The pattern is that the signal starts with −1 and each subsequent signal flips the sign
from its predecessor. The signals are interleaved with variable number of 0s ranging
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between 10 and 20 as usual. The write activation for the part of the sequence with 0s
(distractors) were consistently zero (similar to Figure 7) and were thus omitted from the
plot. Memory Unit (M3) is written to when a −1 is encountered while M5 is written to
when a +1 is encountered. This pattern is consistent across the entire sequence. This is
indicative of the network’s protocol for memory consolidation, tracking and retaining
the number of times −1 and +1 is encountered, separately and independently.

4.3.3 MEMORY REPRESENTATION

The memory consolidation protocol demonstrates that the 21-champ network system-
atically updates specific memory units in response to specific inputs. M3 and M5 track
the number of -1s and +1s observed, respectively. However, to successfully solve the
sequence classification task, it is necessary to reliably represent the cumulative sum
of the signals at any time. For example, in a 21-deep task, consider an extreme input
sequence which has 10 counts of 1s followed by 11 counts of -1s (disregarding inter-
leaving distractors). For this task, the correct classification sequence would be 1 for the
first 20 depths and -1 for the 21st depth. This is because the cumulative sum in this
task instance is always positive, except for the final depth. The cumulative sum is at its
maximum value of +10 at depth 10, 0 at depth 20, and finally -1 at depth 21. To solve
this task instance, it is necessary for the network to precisely represent the cumulative
sum at any given timestep, discriminating between their magnitudes reliably.

#-1s #1s Memory State M3 M5
1 0 [-0.33, -1.51, 0.78, 0.84, -0.80] 0.78 -0.80
2 0 [-0.33, -1.51, 1.72, 0.84, -0.80] 1.72 -0.80
5 0 [-0.33, -1.51, 4.72, 0.84, -0.80] 4.72 -0.80
100 0 [-0.33, -1.51, 99.72, 0.84, -0.80] 99.72 -0.80
1000 0 [-0.33, -1.51, 999.72, 0.84, -0.80] 999.72 -0.80
10000 0 [-0.33, -1.51, 1244.72, 0.84, -0.80] 1244.72 -0.80
100000 0 [-0.33, -1.51, 1244.72, 0.84, -0.80] 1244.72 -0.80
100000 1 [-0.33, -1.51, 1244.72, 0.84, -1.46] 1244.72 -1.46
100000 2 [-0.33, -1.51, 1244.72, 0.84, -2.36] 1244.72 -2.36
100000 5 [-0.33, -1.51, 1244.72, 0.84, -5.34] 1244.72 -5.34
100000 100 [-0.33, -1.51, 1244.72, 0.84, -100.34] 1244.72 -100.34
100000 1000 [-0.33, -1.51, 1244.72, 0.84, -1000.34] 1244.72 -1000.34
100000 10000 [-0.33, -1.51, 1244.72, 0.84, -10000.34] 1244.72 -10000.34
100000 1000000 [-0.33, -1.51, 1244.72, 0.84, -1000000.34] 1244.72 -1000000.34

Table 2: Memory states at varying counts of -1 and 1s fed within the input sequence
The 21-champ network represents the cumulative sum using M3 and M5, tracking

the number of -1s and 1s observed, respectively. We tested the memory representation
that was used to encode these respective counts. Interestingly, we found that the encod-
ing M3 and M5 use is simply a slightly perturbed negation of the actual count. Table
2 shows the memory representation when the input sequence contains up to 100,000
counts of -1s, followed by 1,000,000 1s interleaved with variable number of 0s.

As shown in Table 2, M3 and M5 directly encode the number of -1 and 1 encoun-
tered, respectively. The reliability of this representation is remarkably robust. M3 was
able to successfully count the number of -1s encountered upto 1,244 introductions, af-
ter which it saturated. M5 on the other hand demonstrated virtually indefinite gen-
eralizability, and was able to successfully count 1,000,000 introductions of 1s reliably.
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The length of the temporal sequence at this stage was approximately 20,000,000 (in-
cluding the interleaving 0s). This ability to represent count is particularly remarkable
when we consider that the 21-champ network was trained exclusively on 21-deep tasks,
whose input sequences can only generate cumulative sums between −21 and 21. The
21-champ network is instead able to represent counts ranging from -1244 to 1,000,000
(at least, but likely more). Additionally, representing counts of -1 and 1 encountered is
not a specific objective the 21-champ was explicitly trained on. Instead, these abilities
were developed by the 21-champ in order to solve the Sequence Classification task.

4.3.4 PSEUDO ALGORITHM
The finer grain investigation into the 21-champ MMU network has provided insight
into its organization and operations that allows it to robustly and generally solve the
Sequence Classification Task. We put all these insights together and derive an approx-
imate pseudo-algorithm (shown in Algorithm 2) that the MMU network uses. M2 is
used as a constant bias while M3 and M5 are used to count the -1 and 1s encountered.
The classification decision at any time step is given by a function f that maps the values
of M2, M3, and M5 to a binary output.

Three core components lie at the heart of 21-champ’s successful operation. Firstly,
the read and write gates serve to selectively access memory, blocking noisy activations
(distractors) while allowing real signals to be registered. Secondly, selective memory
access facilitates reliable representations within memory that are able to encode the
count of each input encountered separately in two different memory units. Finally, the
feedforward operation of the network is able to predict the correct binary classification
at each time step by learning the function to infer from the memory states. These com-
ponents, acting independently from each other collectively define a general strategy to
solve the Sequence Classification Task.

foreach Input Sequence do
foreach Item i in input do

if i == -1 then
M3 = M3 + 1̃

else if i == 1 then
M5 = M5 - 1̃

else
Block any update to memory

Compute Classification C = f(M2, M3, M5)
Algorithm 2: Approximate pseudo-algorithm derived from the operations of the
21-champ MMU network

5 EXPERIMENT 2: SEQUENCE RECALL

For our second experiment, we tested our MMU architecture in a Sequence Recall task
(Fig. 9), which is also sometimes referred to as a T-Maze navigation task. This is a
popular benchmark task used extensively to test agents with memory (Bakker (2001);
Charles et al. (2012); Rawal and Miikkulainen (2016)). In a simple Sequence Recall task,
an agent starts off at the bottom of a T-maze and encounters an instruction stimulus (e.g
sound). The agent then moves along a corridor and reaches a junction where the path
splits into two. Here, the agent has to pick a direction and turn left or right, depending
on the instruction stimulus it received at the start. In order to solve the task, the agent
has to accurately memorize the instruction stimulus received at the beginning of the
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trial, insulate that information during its traversal through the corridor, and retrieve it
as it encounters a junction.

Figure 9: Sequence Recall task: An agent
listens to a series of instructional stimuli
(directions) at the start of the trial, then
travels along multiple corridors and junc-
tions. The agent needs to select a turn at
each junction based on the set of directions
it received at the beginning of the trial.

The simple Sequence Recall task
can be extended to formulate a more
complex deep Sequence Recall task
(Rawal and Miikkulainen (2016)),
which consist of a sequence of inde-
pendent junctions (Fig. 9). Here, at the
start of the maze, the agent encounters
a series of instruction stimuli (e.g.
a series of sounds akin to someone
giving directions). The agent then
moves along the corridor and uses
the instruction stimuli (directions)
in correct order at each junction it
encounters to reach the goal at the end.
The length of the corridors following
each junction is determined randomly
and ranges between 10 and 20 for our
experiments. This ensures that the
agent cannot simply memorize when to retrieve, use and update its stored memory,
but has to react to arriving at a junction.

The agent receives two inputs: distance to the next junction, and the sequence of
instructional stimuli (directions) received at the start of the trial. The second input is
set to 0 after all directions have been received at the start of the trial. The agent’s action
controls whether it moves right or left at each junction. In order to successfully solve the
deep Sequence Recall task, the agent has to accurately memorize the instruction stim-
uli in its correct order and insulate it through multiple corridors of varying lengths.
Achieving this would require a memory management protocol that can associate a spe-
cific ordered item within the instruction stimuli to the corresponding junction that it
serves to direct. A possible protocol that the agent could use is to store the instruction
stimuli it received in a first in first out memory buffer, and at each junction, dequeue the
last bit of memory and use it to make the decision. This is perhaps what one would do,
if faced with this task in a real world scenario. This level of memory management and
regimented update is non-trivial to a neural network, particularly when mixed with a
variable number of noisy inputs.

5.1 RESULTS

Figure 10a shows the success rate for the MMU neural architecture for varying depth
experiments. MMU is able to find good solutions to the Sequence Recall task, achieving
greater that 45% accuracy on all choices of task depths within 10,000 training genera-
tions. Figure 10b shows a comparison of MMU success percentages after 10,000 gen-
erations of evolution with the results obtained using NEAT-RNN, NEAT-LSTM and
NEAT-LSTM-Info-max from Rawal and Miikkulainen (2016) after 15,000 generations
of evolution. The NEAT-LSTM-Info-max is a hybrid method that first uses an unsuper-
vised pre-training phase where independent memory modules are evolved using an
info-max objective that seeks to capture and store highly informative sets of features.
After completion of this phase, the network is then trained to solve the task.

As shown by Fig. 10b, MMU achieves significantly higher success percentages for
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Figure 10: (a) Success rate for the Sequence Recall task of varying depth. (b) Compar-
ison of MMU with NEAT-RNN and NEAT-LSTM (extracted from Rawal and Miikku-
lainen (2016)). NEAT-RNN and NEAT-LSTM results are based on 15,000 generations
with a population size of 100 and are only available for task depth up to 5. MMU re-
sults are based on 10,000 generations with the same population size and are tested for
extended task depths of up to 6.

all task depths, with fewer generations of training except for the 1-deep case. The differ-
ence is increasingly apparent as the depth of the task is increased. MMU’s performance
scales gracefully with increasing maze depth while other methods struggle to achieve
the task. MMU was able to achieve a 46.3%±0.9% success rate after 10,000 generations
on a 6-deep Recall Task that we introduced here.

Figure 11: MMU network’s general-
ization to arbitrary corridor lengths in
the Sequence Recall task. All MMUs
shown were trained with corridor
lengths randomly sampled between 10
and 20. These were then tested for cor-
ridor lengths ranging from 0 to 101.

An interesting point to note here is that
neither MMU’s architecture, nor its train-
ing method, have any explicit mechanism
to select and optimize for maximally in-
formative features like NEAT-LSTM-Info-
max. The influence of the unsupervised
pre-training phase was shown in Rawal
and Miikkulainen (2016) to significantly im-
prove performance over networks that do
not undergo pre-training (also shown in
Fig. 10b). MMU’s architecture is designed
to reliably and efficiently manage informa-
tion (including features) over long periods
of time, shielding it from noise and distur-
bances from the environment. The method
used to discover these features, or optimize
their information quality and density, is or-
thogonal to MMU’s operation. Combining an unsupervised pre-training phase using
the Info-max objective with a MMU can serve to expand its capabilities even further,
and is a promising area for future research.

5.2 GENERALIZATION TO NOISE

Figure 11 shows the success rate achieved when tested for a varying range of corri-
dor lengths, extending up to a length of 101. All the networks tested were trained for
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corridor length between 10 and 20. This experiment tested the generalizability of the
strategy that the MMU network learns to deal with noisy corridors.

Overall, the networks demonstrate a modest ability for generalization towards
varying corridor lengths. The peak performance across all the task depths is seen be-
tween noise sequences of length between 10 and 20. This is expected as this is the length
of noise sequences that the networks were trained for. The performance degrades as
we vary the length of noisy sequence (corridors) away from the 10-20 range. However,
this degradation settles to an equilibrium whereafter increase in noise sequence length
does not affect performance. The degradation observed here is more severe than the
ones observed for the sequence classification task detailed in Section 4.2.1. This is re-
flective of the added complexity of the Sequence Recall task relative to the Sequence
Classification task.

Similar to Section 4.2.1, decreasing the length of the noise sequence leads to virtu-
ally the same rate of degradation as increasing it. This suggests that the loss of perfor-
mance suffered by MMU when tested with noise sequence lengths beyond its training,
is caused more by the MMU’s specialization to the expected 10− 20 range, rather than
its inability to process variable length noise sequences. Further, the severity in loss of
generalization to lengths of noise sequences grows with the depth of the task. Similar
to the Sequence Classification case, this can be attributed to the growth in the sheer
volume of the noise added as the depth of the task is increased.

6 DIFFERENTIABILITY

Experiments in Sections 4 and 5 demonstrated the MMU architecture’s comparative ad-
vantage in retaining information over extended periods of noisy temporal activations
when compared to other RNN architectures. However, the training approach utilized
was limited to neuroevolution. Gradient descent is a staple training tool in machine
learning and thus it is critical to demonstrate MMU’s applicability within this context.
In this section we implement a differentiable version of the MMU and use gradient de-
scent to train it. We then compare and contrast its performance with neuroevolution
within the context of the experiments from Section 4 and 5.

PyTorch (Paszke et al., 2017), a Python based open source library for symbolic dif-
ferentiation was used to implement the differentiable version of the MMU network.
Adam (Kingma and Ba, 2014) optimizer with a learning rate of 0.01 and L2 regulariza-
tion 0.1 was used. Smooth L1 loss was used to compute the loss function while a batch
size of 1000 was used to compute the gradients. GPU acceleration using CUDA was
used to expedite the matrix operations responsible for gradient descent. The weights
were initialized using the Kaiming normal protocol (He et al. (2015)). Since the se-
quence lengths for both of our tasks vary dynamically, we pad the sequence with zeros
to make the final length equal before using GPU acceleration. The operation proto-
col for each training sample and hardware resources required for gradient descent and
neuroevolution vary widely. This poses a difficulty in defining a common experimen-
tation framework to rigorously compare these two approaches. For example, a gen-
eration in neuroevolution is not readily comparable to a gradient descent epoch. The
former involves evaluating multiple solutions within the context of some training ex-
amples, and selecting the best performing one, while the latter involves one solution
learning marginally from all available training examples.

In this experiment, we perform these comparisons by controlling the number of
Reinforcement Instances for each training algorithm. We define reinforcement in-
stances as the number of times the method uses a training example to obtain rein-
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Figure 12: (a) Success rate for the Sequence Classification task of varying depth for a
MMU trained using gradient descent. 1000 reinforcement instances are approximately
equivalent to a generation. (b) Comparison of gradient descent (GD) and neuroevolu-
tion (NE) in training a MMU. (c/d) MMU network’s generalization to distractor lengths
(number of interleaving noise sequences)(c), and task depths (d) within the Sequence
Classification task. All MMUs shown were trained for tasks of their respective depths
with distractor lengths randomly sampled between 10 and 20. These were then tested
for distractor lengths (c) and task depths (d) ranging from 0 and 101.
forcement about its attempted solution. For neuroevolution, a reinforcement instance
is defined as an individual network being evaluated in one training example and get-
ting a fitness score. For gradient descent, a reinforcement instance is defined as one
feedforward and backpropagation loop through a training example. In essence, we are
comparing the two training approaches by controlling the number of training samples
that each method uses to optimize its solution. Note that the training samples are not
guaranteed nor required to be unique.

6.1 SEQUENCE CLASSIFIER

Figure 12 show the success rate for the MMU neural architecture trained using gradi-
ent descent for varying depth experiments, and its comparative performance with neu-
roevolution. MMU is able to solve the Sequence Classification task with good accuracy.
However, the rate of convergence and the final success rates after 1000 reinforcement
instances (comparable to a generation) is significantly lower than the MMU trained
with neuroevolution (Figure 5a in Section 4). In particular, the performance of gradient
descent scales poorly with the depth of the task. This is not surprising, as the length
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of the input sequence increases rapidly with increasing task depth. Propagating error
gradients backwards becomes increasingly difficult as the length of the input sequence
grows. The MMU trained through neuroevolution (Figure 5a) sidesteps this problem
by not relying on propagating gradients backwards through the network’s activations.
Additionally, the final success achieved by the MMU trained using gradient descent
has higher variance than the one trained with neuroevolution. This can be attributed
to gradient descent’s sensitivity to varying weight initialization. The gradient descent
method converges to different local minima depending on varying weight initializa-
tions. Neuroevolution on the other hand is more robust to weight initializations, and
leads to more repeatable solutions.

Furthermore, compared to the MMU trained with neuroevolution (Section 4), gen-
eralizability to larger numbers of interleaving noise, and depths is significantly reduced
(shown in Figure 12c and 12d). A network trained using gradient descent in the 21-deep
task achieved 14.5% ± 2.30% on a 101-deep task while a similar experiment for a net-
work trained with neuroevolution yielded 50.4%± 9.30% (Section 4.2.2). The networks
trained with gradient descent tend to specialize more to the range of distractors, and
depth they were trained for. When either of these variables changed, the network’s
performance degraded quickly.

6.2 SEQUENCE RECALL
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Figure 13: (a) Success rate for the Sequence Recall task of varying depth for a MMU
trained using gradient descent. A reinforcement instance is approximately equivalent
to a generation.(b) Comparison of MMU trained with gradient descent (GD) with one
trained using neuroevolution (NE) from Section 5.

Figure 13 shows the success rate for the MMU neural architecture trained using
gradient descent for varying depth experiments, and its comparative performance with
neuroevolution. MMU is able to solve the Sequence Recall task with a very high level
of accuracy. Interestingly, the rate of convergence and the final success rates after 1000
reinforcement instances (comparable to a generation) is better than the MMU trained
with neuroevolution (Figure 10a in Section 5). Unlike the Sequence Classification task
in the previous section, the range of the depths tested for Sequence Recall is relatively
low. The primary limitation to applying gradient descent is the difficulty of propagat-
ing errors backwards across long temporal activations. An input to the 6-deep task can
have a sequence length between {72, 132}. While this is a long sequence, it is much
shorter than the {221, 441} range of the 21-deep task. In the depth ranges tested, gra-
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dient descent is thus able to propagate errors backwards and successfully solve the
Sequence Recall task.

Figure 14 shows the success rate achieved by the MMU trained using
gradient descent, when tested for a varying range of corridor lengths, rang-
ing up to 101. The capability for generalization to larger corridor lengths
is comparable to the MMU trained with neuroevolution (Section 5 Figure 11).

Figure 14: MMU network’s general-
ization to arbitrary corridor lengths in
the Sequence Recall task. All MMUs
shown were trained for tasks of their
respective depths with corridor lengths
randomly sampled between 10 and 20.

7 DISCUSSION

Memory is an integral component of high
level adaptive behaviors. The ability to
store relevant information in memory and
identify when to retrieve that data is crit-
ical for effective decision-making in com-
plex time-dependent domains. Moreover,
knowing when information becomes irrel-
evant, and being able to discard it from
memory when such circumstances arise,
is equally important for tractable memory
management and computation.

In this paper, we introduced MMU, a
new memory-augmented neural network
architecture. The key feature of the MMU
architecture is its separation of the memory
block from the central feedforward opera-
tion, allowing for regimented memory access and update. This provides the network
with the ability to choose when to read from memory, update it, or simply ignore it.
This capacity to act in detachment from the memory block allows the network to shield
the memory content from noise and other distractions, while simultaneously using it
to read, store and process useful signals over an extended time scale of activations.

We used neuroevolution to train our MMU, and tested it on two deep memory
benchmarks. Our results demonstrate that MMU significantly outperforms traditional
memory-based methods. Further, MMU is shown to be robust to dramatic increases in
the depth of these memory tasks, exhibiting graceful degradation in performance as the
length of temporal dependencies increase. Further, in the Sequence Classification task,
MMU exhibited good task generalization where a network trained via neuroevolution
on a 21-deep memory task is able to achieve 50.4%± 9.30% success rate on a 101-deep
task. This suggests that MMU, with its regimented control over memory, is not limited
to learning direct mappings, but is able to learn general methods for solving the task.
We probed the interactions between memory and the central feedforward operation of
a specific individual network and identified its robust memory representation protocol
which represented extremely large numbers reliably. We also leveraged the modularity
of the MMU architecture to analyze its interior operations, and derived an approximate
pseudo-algorithm that the network had learned to solve sequence classification.

Additionally, we implemented a fully differentiable version of the MMU and com-
pared its performance with neuroevolution. Results show that gradient descent holds
an advantage over neuroevolution for the Sequence Recall task, while neuroevolu-
tion significantly outperforms gradient descent in the Sequence Classification task. Se-
quence Recall requires a more complex memory management protocol than Sequence
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Classification, but was tested for lower depths (length of temporal sequences). This
demonstrates that gradient descent holds a comparative advantage in solving com-
plex problems faster but suffers rapid degradation of performance as the length of the
temporal sequence grows. Neuroevolution on the other hand is more robust and ex-
hibits graceful degradation to increasing temporal lengths. Neuroevolution also leads
to more repeatable and generalizable solutions across both tasks.

Future work will integrate an unsupervised pre-training method, such as info-
max optimization, as described in Rawal and Miikkulainen (2016), in training MMU.
Combining the discovery of maximally informative features with MMU’s capability to
reliably hold and process information over long periods of time can expand the capa-
bilities of MMU even further. Additionally, in this paper, we used a neuroevolutionary
algorithm with slight modifications to exploit the natural decomposition of MMU ar-
chitecture. A principled approach to exploiting this sub-structure decomposition, and
expanding to hybrid training methods such as Evolutionary Reinforcement Learning
(Khadka and Tumer, 2018) is another promising area.

The experiments conducted in this paper tested reliable retention, propagation and
processing of information over an extended period of time. However, the size and
complexity of the information that needed to be retained was small and relatively sim-
ple. Future experiments will develop and test MMU in tasks that require retention
and manipulation of larger volumes of information. The size of the information being
propagated (memory size) also approximately matched the size of features necessary
to be extracted (hidden nodes size). This excluded the memory encoder and decoder
aspects of the MMU from being used and tested. Future work will include experiments
where there is a mismatch between these two aspects of network operation, to test the
memory encoder and decoder functionalities of the MMU architecture.
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