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Abstract— As multi-robot teams increasingly permeate real
world environments like factories, homes and other extrater-
restrial surfaces, the ability to form joint strategies that can
effectively adapt to new observations and changes in teammates’
policy becomes more vital. Memory is a crucial part of adaptive
behavior since it is the mechanism by which knowledge from
past observations can be used to modify future behavior.
Previous works have studied adaptive behaviors primarily with
the tools of memory but have largely been limited to single robot
approaches. In this paper, we formulate the Extended T-Maze
domain that marries the difficulties of a task requiring explicit
adaptive behavior, to the complexities introduced by concurrent
actions of multiple robots acting in the same environment.
We develop a memory-based learning approach using Gated
Recurrent units with Memory Block as robot policies, and
demonstrate its efficacy in diverse sets of experiments in the
Extended T-Maze domain that vary across multiple axes of
difficulty including team size and task depth. Our results
show that the memory-based multi-robot controllers are able
to form effective joint strategies significantly outperforming
feedforward controllers trained without memory.

I. INTRODUCTION

Autonomous multi-robot teams can accomplish complex

tasks in highly dynamic and stochastic environments im-

proving on both speed and effectiveness over single robot

approaches. However, multi-robot coordination is a complex

control problem especially when the task requires adaptive

behaviors from the group of coordinating robots.

The requirement for adaptive behavior imposed by the task

definition institutes an added layer of complexity in learning.

This complexity is orthogonal to the one imposed by the need

for adaptation to each other, inherent in a team of robots

acting concurrently. It is important to disambiguate these

two requirements for adaptive behavior, and consider each

independently. The first statement of adaptation is imposed

by the environment itself. In well-defined, static and stable

environments, fixed and reactive robot behavior is generally

sufficient. However, when the environment is ever changing,

highly dynamic, or is responsive to the robot’s own policies,

adaptive behaviors provide a huge selective advantage.

An example would be a mobile robot operating in a

factory, that is tasked with moving a package from Point A
to Point B every hour. The robot takes route Z which is the

most efficient way to travel from A to B. However, sometimes

this path is obstructed due to construction or unforeseen

disturbances. An adaptive robot here would take path Z and

observe the obstruction a couple of times, but then would

alter its policy to take another path Y for the next couple of

deliveries as it adapts to the obstruction.

Extending these adaptive tasks to a multi-robot system

adds another layer of complexity imposed by the concurrent

actions of multiple robots operating within the same environ-

ment. The individual robots could be learning or executing

static policies, and can differ in capability or objective. The

robots may even differ by versions, where a new iteration of

robots are added to the team for the same task.

For example, a new and more capable generation of

package delivery robots may be introduced to the factory in

our previous example. Instead of entirely decommissioning

or reprogramming the previous team, it is cheaper and much

more effective to build the new team of robots to work

alongside the team that is already operational in the factory.

Adapting to the previous team would allow the new team of

robots to augment its capability, and leverage the resources

already present in the factory towards a more effective

strategy for package delivery. As robots are increasingly

deployed in the real world, such adaptive behaviors will

become increasingly important. This is particularly true in

commercial applications like cleaning robots, mowing robots

or factory robots where heterogeneity within the same task

can be frequently borne out of iterations through the years,

and adaptive behavior will be crucial for effective reconcili-

ation.

Features relevant to adaptive decision making are often

distributed over a robot’s current as well as its past states.

Considering the entire set of past observations for decision

making is intractable as the length of the temporal sequence

increases. Truncating the temporal window of observations

provides a method to achieve computational tractability while

trading off on the quality of information the state represen-

tation can capture. However, this introduces a free parameter

of temporal window depth that the designer has to set

manually, and requires a priori knowledge of the the domain.

One approach to alleviate this problem is the integration

of memory that can be used to selectively remember past

observations and use it towards future decision making [1].

Remembering past events can allow a robot to more

effectively adjust its behavior and adapt to local changes

in the environment [2][3]. Memory can also allow robots

to better model other robots’ capabilities, limitations and

policies, empowering them to form better joint strategies and

more complex coordination protocols. Integration of memory

is a key cognitive component in most social living organisms

that exhibit adaptive behaviors. Adaptive behaviors for single

robot systems have been explored in the past largely with the

tools of memory [4][5][1]. However, the addition of further

complexity in the form of other robots acting concurrently

is not widely explored for this class of adaptive tasks.

In this paper, we leverage the developments towards adap-

tive behavior facilitated through the integration of memory,
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and extend it to tasks that require, or benefit from, a team of

robots learning to adapt and coordinate with each other. The

T-Maze task [4][6] is a popular benchmark task often used to

test for adaptive behavior in single robot applications. Here,

the reward is present in one of the T-Maze endpoints, and

alters periodically. The robot traverses the maze for multiple

trials and has to find the reward. When the reward location

is altered, the robot should alter its strategy accordingly and

explore other endpoints and remember the new position in

the future. In this work, we extend this task of adaptability to

a multi-robot definition where observing the reward altering

through the maze’s endpoints either requires multiple robots

to be at the same endpoint (tightly coupled), or benefits

from having multiple robots explore different endpoints

concurrently (loosely coupled).

We then develop a neuroevolutionary approach to evolve

Gated Recurrent Unit with Memory Block (GRU-MB) [7]

as robot policies. GRU-MB is a type of memory augmented

neural network which features a modular architecture where

the memory is decoupled from the central feedforward

operation. This decoupling facilitates independent read and

write access to memory allowing for selective memorization

of past observations that can be retained across variable

temporal scales. This flexible framework representing indi-

vidual robot policies, combined with the global optimization

potency of our neuroevolutionary approach leads to effective

joint robot policies that can adapt effectively. Results in

a variety of experiments spanning across multiple axes of

difficulty in the Extended T-Maze domain demonstrates the

efficacy of our approach.

II. BACKGROUND AND RELATED WORK

A body of work has leveraged memory to train adaptive

behaviors in single agent systems. Grabowski et al.[8] looked

at the evolution of memory usage in environments where

information about past experience is required for optimal

decision making. Bakker used reinforcement learning in

conjunction with a Long Short Term Memory (LSTM) to

solve a single T-Maze task [4]. Bayer et al. evolved varying

LSTM cell structures [5] while Greve et al. recently evolved

Neural Turing Machines [6] to solve a more complicated

version of the T-Maze. However, all of these work deal with

single agent systems that learn adaptive behavior as exacted

by the environment. The addition of further complexity in

the form of other agents acting concurrently is not widely

explored for this class of adaptive tasks.

Extending single agent approaches to multiagent settings

presents challenges in ensuring each agent learns to act in

a way that benefits the entire team. A viable decomposition

of the team goal is rarely available or easily computable,

which necessitates for agents that learn to adapt to each

other. Stone et al. [9] highlights this need for collaboration

of autonomous agents without preordained protocols for

coordination. Distributed policy learning is well suited to

these kinds of problems and has received much attention in

the field of multiagent coordination. Colby et al. [10] utilized

a cooperative coevolutionary algorithm to train multi-robot

teams exploring an unknown space environment with humans

in the loop. Knudson and Tumer [11] coevolved multi-robot

teams to solve a tightly coupled task requiring multiple robot

observations and extended it to heterogeneous multi-robot

teams with varying capabilities. Hsieh et al. [12] developed

a framework for deployment of an adaptive heterogeneous

team consisting of aerial and ground robots, for an urban

surveillance task. The extended T-Maze domain introduced

in this work serves to marry the difficulties of a multi-robot

system with the complication of adaptive behavior prescribed

by the task itself.

A. Gated Recurrent Unit with Memory Block

Fig. 1. Schematic of a GRU-MB neural architecture (extracted from [7])

The Gated Recurrent Unit with Memory Block (GRU-

MB) [7] is a class of recurrent neural network (RNN) that

uses an external block of memory with which it interacts

using independent read and write gates. It was developed

as a bridge between Gated Recurrent Units (GRUs) [13]

and Neural Turing Machines (NTMs) [14] synthesizing the

simple structure of the former with the detached memory

architecture of the latter. Unlike most other gated RNN archi-

tectures which inherently entangle memory with their central

feedforward computation, the GRU-MB has the ability to

entirely decouple these two structures. Figure 1 illustrates

this modular structure where opening the read and write

gates shown as w and r, leads to complete detachment

of the memory (M ) with the feedforward operation of the

network. This unique property of the GRU-MB architecture

allows it to choose when to read from memory, update it, or

simply ignore it. This provides a regimented method to shield

the memory from distractions and noise; while interacting

with it when required to read, store and process useful

information over an extended time scale of activations. GRU-

MB has been shown to outperform traditional memory-based

methods using Long Short Term Memory (LSTM) [15] in a

series of deep memory tasks [7].

B. Cooperative Coevolutionary Algorithm

Cooperative Coevolutionary Algorithms (CCEAs) are an

extension of Evolutionary Algorithms (EA) [16][17] that

deal with multiple evolving sub-populations, and have been

shown to perform well in cooperative multi-robot domains

[18]. Multiple populations evolve in parallel, with each

population developing a policy for one of the robots in the

team. Policies from each population are drawn to form a

team of robots, and the overall performance of this team is

evaluated using a fitness function F (z), where z is the joint
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Fig. 2. Illustration of a 2-deep Extended T-Maze with 2 robots. Each robot
travels through the corridor and goes left or right at each junction, ending
up in one of the endpoints A, B, C or D. The number of robots can be
scaled arbitrarily by adding orthogonal planes sharing the endpoints.

state of all robots in the team. This fitness is then assigned to

each policy in the team. The key difference between a CCEA

and an EA is the assignment of fitness to each evolving

robot’s policy. In a traditional EA, the fitness of a policy

is simply the system performance attained by that policy.

However, in a CCEA, all the robots in the team affect the

overall system performance; this means that the fitness of

an robot’s policy is based on its interactions with all other

robots it collaborates with, resulting in context-dependent

and subjective fitness assignment [19].

III. EXTENDED T-MAZE DOMAIN

The T-Maze is a popular benchmark domain used to

test for memory based adaptive behaviors in single robot

applications [4][6]. We extend the T-Maze domain to a multi-

robot paradigm where multiple robots traverse the maze in

search for the reward. The location of the reward is changed

periodically, and multiple robots are required to coordinate

tightly in exploring and observing the reward. The corridors

of the maze are identical and indistinguishable which pre-

vents the robots from learning explicit value functions for

the states. The robots are instead forced to coordinate tightly

with their teammates and learn joint strategies that adapt to

the changing reward location.

Figure 2 illustrates a 2-deep extended T-Maze domain with

2 robots. The number of junctions that a robot has to navigate

past to reach the endpoint is termed the depth of the T-

Maze. The 2-deep T-Maze with two binary decision points

(junctions) consists of four separate endpoints marked A, B,

C and D. Each robot starts off as shown, and navigates to

one of the endpoints. This process is termed a trial. During

each trial, the reward is present at one of the endpoints,

and this location changes 2 times over the course of one

evaluation. One full evaluation consists of n trials where

n is the number of unique endpoints multiplied by 3. For

example, a 2-deep T-Maze has 4 unique endpoints leading

to 12 trials per evaluation.

The robot records three values as its input. The first input

measures the distance to the next junction. The second and

third inputs are binary measurements that specify whether

other robots were present and whether reward was observed,

respectively, in the robot’s last trial. The goal of the robot

is to maximize the number of trials in which it observes the

reward in coordination with the other robots. In a single robot

T-Maze case, a policy would be to explore the endpoints

in some defined sequence until the reward is observed.

The robot then revisits the endpoint where the reward was

observed until the location of the reward changes. At this

point, the robot then resumes exploration of the endpoints

to find the new location. This policy is optimal in the single

robot case, and will be termed the static policy.

The extended T-Maze domain marries two distinct require-

ments for adaptive behaviors in one general framework. The

first requirement for adaptation is imposed by the task itself

where the robot needs to alter its strategy in response to the

change of reward location. We will refer to this as task adap-
tation. The difficulty level of task adaptation can be altered

by modulating the depth of the task. The second requirement

of adaptive behavior is imposed by concurrent actions of

multiple robots acting within the same environment and will

be referred to as multi-robot adaptation. Figure 2 illustrates

two robots acting together, but the number of robots can be

scaled arbitrarily. The nature of multi-robot adaptation can be

specified by the objective function that maps the joint action

of the multi-robot team to a system performance value. In

this work, we specify two such distinct objective function

definitions:

a) Converge: This objective function definition re-

quires the reward and all the robots to be at the same endpoint

for the reward to be considered observed in that trial. This is

a tightly coupled objective definition which represents tasks

like picking up heavy objects that might not be solvable by

one robot, and explicitly require the co-presence of multiple

robots.

b) Spread: This is a loosely coupled objective function

definition which requires the reward and a minimum of

one robot to be at the same endpoint for the reward to

be considered observed in that trial. This objective function

represents tasks like exploring or information collection

which can be completed by one robot, but is able to benefit

from larger team sizes.

IV. MULTI-ROBOT POLICY TRAINING WITH MEMORY

We use a GRU-MB network as our robot control policy

leveraging its unique architecture that decouples memory

from its feedforward computation. This detachment is crucial

as our robots must be able to effectively filter noise and

capture the relevant information over the course of a traversal
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of the Extended T-Maze. For example, a successful robot

control policy should be able to ignore the noisy inputs as it

travels the corridors of the T-Maze. Simultaneously however,

in order to effectively localize itself, the robot should be able

to remember the number of junctions it has passed, as each

corridor of the Extended T-Maze looks virtually identical.

Additionally, the robot also has to memorize relevant in-

formation about its last exploration endpoint so that it can

explore a new one for its next trial.

We use CCEA modified for neuroevolution [20][21] to

train our neural network control policies. However, memory-

augmented architectures like the GRU-MB, can be a chal-

lenge to evolve, particularly due to the large number of

weights that parameterize highly non-linear and correlated

operations. To alleviate this problem, we use independent

mutational operators for each weight structure within our

neural architectures, and use probabilistic extinction to retain

diversity in the population.

Algorithm 1 CCEA used to evolve our multi-robot teams

1: Initialize M populations of k neural network policies

2: Define a random number generator r() ∈ [0, 1)
3: for each Generation do
4: for i = 1 : k × φ do
5: Select a network from each population randomly

6: Add networks to team Ti

7: Run z independent simulations for team Ti

8: Assign reward to each members of Ti

9: for each Population do
10: Rank networks based on fitness scores

11: Select the first e networks as elites

12: Probabilistically select (k−e) networks from the

entire pool based on fitness, to form Set S
13: for iteration (k − e) do
14: Randomly extract network Ni from Set S
15: for each weight matrix W ∈ Ni do
16: if r() < mutprob then
17: Randomly sample individual weights

in W and mutate them by adding 10% Gaussian noise

18: if r() < extinctprob then
19: for each Network Ni not in elites do
20: if r() < extinctmag then
21: Reinitialize Ni’s weights

Algorithm 1 details the CCEA used to evolve our multi-

robot teams. The population k was set to 100, and the number

of elites to 4% of k. M represents the size of the team and

varies between 2 − 4 for varying experiments. The number

of randomly initialized simulations conducted to compute

an evaluation, z was set to 7. The number of different teams

an individual robot was drafted to, in order to compute its

fitness, φ was set to 5. The mutation probability mutprob,

extinction probability extinctprob and extinction magnitude

extinctmag were set to 0.9, 0.004, and 0.5 respectively.

V. EXPERIMENTATION

We design a variety of experimental setups to evaluate out

neural network controllers in the Extended T-Maze domain.

The axes of variations that characterize our experiments are

summarized below:

a) Control Policy Architecture: We test two distinct

types of neural architectures as control policies that learn.

The first kind is a GRU-MB network that has memory, while

the second type is a standard feedforward neural network
(FF) without any memory. The same training approach

described in Section IV was used to evolve the FF control

policies. This axis of variation evaluates the role of memory.

b) Robot Type: We have two categories of robots

working together in a team. The first type of robots are

learning robots that use either a GRU-MB or feedforward

neural network as their policy, and are trained. The secondary

category of robots are static robots that use the static policy

as described in Section III. The robot under the static policy

explores the endpoints in a specific order, returns to an

endpoint if it finds a reward there, and resumes exploring as

the reward location is switched. This strategy is the optimal

strategy for the T-Maze in a single robot case, and represents

a hard-coded optimal policy that is already operational on

site in a real world setting. The learning robot’s goal is to

augment the static robot by adapting to work alongside it.

c) Static Robot Type: We test two types of static robots

based on their exploration policy. The first type termed fixed
static policy (FSP) will be a static robot that has a fixed

endpoint it starts with and a fixed routine of exploration.

The second type termed the randomly exploring static
policy (RESP) will vary the endpoint it starts with, and the

pattern in which it explores. The RESP represents an added

challenge to the learning robots as they have to additionally

infer the type of static robot they are teamed with, by

observing them during the first couple of trials.

The protocol for computing the results were kept con-

sistent across all the experimental variations. During each

generation of training, the individual robot with the highest

fitness from its population was selected to be part of a

champion team. The champion team was then tested on

a separate test set of 15 experiments, generated randomly

for each generation. The average reward achieved by the

champion team normalized by the number of trials, on this

test set was then logged and reported as the Test System
Performance for that generation. This protocol of a test set

was implemented to shield the reported metrics from any

bias of the distribution of random reward locations, depth

of the task, or the size of the population. Ten independent

statistical runs were conducted, and the average with error

bars reporting the standard error in the mean were logged.

VI. EXPERIMENT 1: CONVERGE

This set of experiments test the multi-robot teams con-

sisting of one static robot and one learning robot, under the

converge objective function as explained in Section III. This

is a tightly coupled task definition where all the robots are

required to be alongside the reward to observe it.
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(a) (b)

Fig. 3. GRU-MB and FF control policies are compared for a 2-deep (a) and 3-deep (b) tightly coupled Extended T-Maze, where both the static and
learning robot have to be at the same endpoint alongside the reward to observe it.

Figure 3(a) shows the results for a 2-deep Extended T-

Maze domain tested against robots with both fixed (FSP)

and randomly exploring static policies (RESP). The brown

dashed line represents the expected system performance for

an optimal joint policy between the learning robot and the

FSP robot. The expected value for optimal joint policy

alongside the RESP is not easily computable, but is provably

lower than the FSP case. This is apparent as FSP is simply a

special case of RESP where the type of robot exploration

routine is fixed. The robot using the GRU-MB network

significantly outperforms the robot using the feedforward

network as its policy across both types of static robot types.

The GRU-MB control policy achieves a system performance

of 41.3 ± 2.4% and 33.7 ± 1.4% while the FF control

policy achieves a system performance of 15.0 ± 0.1% and

16.5± 0.2% for the FSP and RESP variations respectively.

Figure 3(b) shows the results for a 3-deep Extended T-

Maze domain tested against robots with both fixed (FSP)

and randomly exploring static policies (RESP). The brown

dotted line represents the expected system performance for

an optimal joint policy between the learning robot and the

FSP. The robot using the GRU-MB network significantly

outperforms the robot using the feedforward network as its

control policy across both types of static robot types. The

GRU-MB control policy achieves a system performance of

29.8 ± 2.7% and 28.0 ± 1.5% while the FF control policy

achieves a system performance of 7.1±0.2% and 8.0±0.1%
for the FSP and RESP variations respectively. The GRU-MB

robots’ performance alongside the FSP static robot variation

has also not fully converged and seems to be approaching

the expected optimal joint policy value of 33%.

The results in Figure 3 demonstrate that the robot using

the GRU-MB network is able to learn effective policies that

let it adapt to the varying types of static robots. The robot

using the FF network however fails to learn any intelligent

joint policy at all. The critical factor behind this disparity

is memory, which is the primary point of variation between

the GRU-MB and FF network architecture. The FF robots

do not have enough input information to form an effective

strategy that can learn to exploit the reward when its location

is known, and explore when it is unknown. Additionally, the

FF robots also do not have enough information to model their

teammates’ policies and built a strategy around it. An im-

mediate mapping between their current input measurements

and an effective exploration strategy or joint action policy is

not existent. The GRU-MB robots on the other hand have

access to the same information (input) as the FF robots,

but have the additional capability of memory. This ability

to memorize past events and process temporal dependencies

in their input channels forms a type of information bridge

that can be leveraged to form effective exploration strategies

that can adapt to the change in reward location. Additionally,

the availability of memory also allows the GRU-MB robot

to model its teammates’ policy and adapt alongside it to

maximize system performance. This is especially apparent in

the RESP case where in order to succeed, the GRU-MB robot

is required to first samples its colleague static robots’ actions,

identify its exploration strategy and adapts its behavior to

best supplement that strategy. This behavior highlights the

crucial role memory plays in learning adaptive behaviors that

facilitate tight multi-robot coordination.

VII. EXPERIMENT 2: SPREAD

This set of experiments test the multi-robot teams under

the spread objective function as explained in Section III. This

is a loosely coupled task definition where a minimum of one

robot is required to be alongside the reward to observe it.

Figure 4(a) shows the results for a 2-deep Extended

T-Maze tested against both FSP and RESP robots. The

expectation for the lower bound of performance (not plotted)

is 48% and represents the worst possible system performance

achievable by the learning robot. This is the expected system

performance achieved simply by the hard coded policy of the

static robot. The robot using GRU-MB network outperforms

the robot using the feedforward network as its policy across

both types of static robot types. The GRU-MB control

policy achieves a system performance of 77.0 ± 0.7% and

75.1 ± 0.6% while the FF control policy achieves a system

performance of 69.3 ± 2.0% and 69.4 ± 1.2% for the FSP

and RESP variations respectively.

Figure 4(b) shows the results for a 3-deep Extended T-

Maze domain tested against both FSP and RESP robots. The

expectation for the lower bound of performance (not plotted)

is 33%. The robot using the GRU-MB network outperforms
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(a) (b)

Fig. 4. GRU-MB and FF control policies are compared for a 2-deep (a) and 3-deep (b) Extended T-Maze domain, using the Spread objective where any
one robot is sufficient in observing the reward.

the robot using the feedforward network as its policy across

both types of static robot policies. The GRU-MB control

policy achieves a system performance of 67.5 ± 0.4% and

63.7 ± 0.3% while the FF control policy achieves a system

performance of 60.0 ± 1.0% and 60.0 ± 0.8% for the FSP

and RESP variations respectively.

Similar to the results in Section VI, the results in Figure

4 demonstrate the GRU-MB robot learning to form effective

joint policies alongside both types of static robots. The FF

robots however fail to learn and simply picks an endpoint to

stick to. It fails to adapt to the task where the reward location

changes periodically, and to the nature of the static robot’s

exploration strategy. The GRU-MB robot however is able

to leverage its memory and adapt to both the task, and the

varying exploration strategies of its teammates, effectively

augmenting the static robots in the task.

A. Multiple Learning Robots

To further probe our approach on the axis of multi-robot
adaptation, we ablate the robot with static policy from our

multi-robot team, and experiment with learning robots of

varying team sizes.

Fig. 5. GRU-MB and FF control policies are compared for a 2-deep and
3-deep Extended T-Maze, with Spread objective tested for varying number
of learning robots.

Figure 5 shows the results for a 2-deep and 3-deep

Extended T-Maze tested for varying number of learning

robots. The robots using GRU-MB network significantly

outperform the robots using the feedforward network as its

control policy across all values for team size and task depth.

The system performance for the GRU-MB robots improves

with increasing number of robots for both variations of depth.

This demonstrates that the GRU-MB team is able to leverage

memory and form coordinated exploration strategies that

explore different sections of the Extended T-Maze, benefiting

from larger team sizes. The FF team however fails to form

effective joint exploration strategies and thus fails to fully

benefit from increasing team sizes. This result highlights

the critical role memory plays in facilitating the learning

of effective coordination policies in adaptive tasks like the

Extended T-Maze.

VIII. CONCLUSION

In this work, we designed a diverse set of experiments

across multiple axes of difficulty in the flexible Extended

T-Maze domain. Our results demonstrated that the multi-

robot teams trained with the GRU-MB network perform

significantly better in all tasks as compared with multi-

robot teams trained with a traditional feedforward neural

network, acting with the same set of information. These

results highlight the critical role memory plays in developing

effective multi-robot coordination strategies that can adapt to

changing environmental factors and teammates’ policies.

The Extended T-Maze domain formulated in the paper

is designed to be a general framework for testing adaptive

tasks alongside the difficulties of a multi-robot approach.

The framework is also devised to be modular and flexible

such that each axis of difficulty can be regulated somewhat

independently of the other. Future work will look to retain

these properties while transcribing the domain into a ROS

environment. This is prescribed with the objective of integrat-

ing the noise and constraints of a robot hardware within the

domain, and facilitating benchmarks for performance with

real robots. We will start with the GRU-MB based controllers

developed in this paper.

Additionally, in this work we used the system performance

obtained for each multi-robot team as an evaluation for each

of its member. Future work will look to integrate reward

shaping techniques like the difference reward [22] that can

better compute each robot’s marginal utility and provide a

cleaner signal to learn on.
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[16] W. Spears, K. De Jong, T. Bäck, D. Fogel, and H. De Garis, “An
overview of evolutionary computation,” in Machine Learning: ECML-
93. Springer, 1993, pp. 442–459.

[17] D. B. Fogel, Evolutionary computation: toward a new philosophy of
machine intelligence. John Wiley & Sons, 2006, vol. 1.

[18] S. G. Ficici, O. Melnik, and J. B. Pollack, “A game-theoretic and
dynamical-systems analysis of selection methods in coevolution,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp.
580–602, 2005.

[19] M. Colby, J. J. Chung, and K. Tumer, “Implicit adaptive multi-robot
coordination in dynamic environments,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 5168–5173.

[20] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Efficient non-linear
control through neuroevolution,” in European Conference on Machine
Learning. Springer, 2006, pp. 654–662.
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