
Efficient Multi-scale POMDPs for Robotic Object Search and Delivery

Luc Holzherr, Julian Förster, Michel Breyer, Juan Nieto, Roland Siegwart and Jen Jen Chung

Abstract— We present a novel hierarchical POMDP frame-
work to solve an object search and delivery task where the agent
is given a prior belief about the possible item locations. Solving
POMDPs is computationally demanding and, as such, applica-
tions have typically been limited to small environments. The
proposed hierarchical POMDP framework performs reasoning
on multiple spatial scales in order to reduce computation time.
The problem is first solved in the top layer of the hierarchy with
a coarsely discretized state space. Its solution is refined in the
lower layers with increasing resolution. Three different methods
for propagating information down the spatial hierarchy are
discussed and validated in simulation. We show that a two-
layer multi-scale POMDP decreases computation time by an
order of magnitude allowing for real-time applications while
maintaining high solution quality. For large problems that
require three layers to reach the desired resolution, computation
time speedups by two orders of magnitude are achieved.

I. INTRODUCTION

Partially observable Markov decision processes
(POMDPs) are a powerful tool for planning under
uncertainty. They describe a mathematical framework for
sequential decision making problems with uncertain states
(represented by a belief) in stochastic environments [1].
Solving POMDPs exactly is computationally intractable
for many real-world problems [2]. Reasoning over a task
such as finding and delivering objects in a multi-room
environment requires reasoning over all possible object
locations as well as the optimal order in which to execute
the task if multiple deliveries are involved [3]–[5].

Instead, anytime algorithms which approximate the opti-
mal solution through sampling are used. These can be divided
in two major groups, Monte Carlo methods and point-
based methods. Monte Carlo methods are online solvers [5]–
[8]. They perform a Monte Carlo lookahead search on a
belief tree to find the next best action to execute. They
can also be adapted for problems with a continuous state
space [8]. Point-based methods accelerate the solving process
by sampling a small set of points from the belief space
and approximating the value function through a set of α-
vectors [9]–[12]. These are offline solvers, i.e. the output is
a value function which can be used to compute a policy.

Another strand of work aims at modifying the problem
structure in order to decrease the computational burden.
Sutton et al. extended the MDP framework to include op-
tions [13], sometimes referred to as macro-actions, which

This work was supported in part by ABB Corporate Research, the Lux-
embourg National Research Fund (FNR) 12571953 and the ETH Foundation
with an unrestricted gift from Huawei Technologies.

The authors are with the Autonomous Systems Lab, ETH Zürich, Zürich
8092, Switzerland. {luch; fjulian; mbreyer; jnieto;
rsiegwart; chungj}@ethz.ch

can be applied to POMDPs if the option is a closed-loop
policy acting on the belief space as shown in the work of
Omidshafiei et al. [14]. An option is an action that takes
multiple timesteps to execute and solves a subproblem of
the task like picking up an item. An option can be added
as separate actions to the action space of the (PO)MDP.
This speeds up the solving process since it enables larger
state transitions. However, the state space considered remains
identical to the original (PO)MDP problem, which limits the
computational benefits.

Similar methods related to abstract MDPs [15] and hi-
erarchical MDPs [16]–[19] perform some form of problem
partitioning to achieve computational efficiency. However,
this often comes at the cost of the final solution quality. These
methods also sometimes require that the original (PO)MDP
can be split into decoupled or non-interacting subproblems,
which is an invalid assumption in many real-world problems.

In particular, for hierarchical (PO)MDP formulations, the
higher layer transition, reward and observation models need
to be computed by either first solving the hierarchy from the
bottom up [16], [18] or by using heuristics [19]. The former
approach requires solving many (PO)MDP problems, which
sacrifices part of the computational gains, while for the latter
approach it can be difficult to find good heuristics.

In this paper, we propose three multi-scale POMDP meth-
ods for the task of object search and delivery that address
these problems by creating the higher layer models through
fixed policies on the lower layers. The multi-scale methods
differ in how information is propagated through the layers:
either through the higher layer’s computed action, both the
computed action and value function, or simply propagating
the value function to the next layer. We use SARSOP [11],
a state-of-the-art point-based method, as our underlying
POMDP solver. Our results on single and multi-object search
and delivery tasks show a substantial speedup in computation
time compared to directly solving the full-resolution (flat)
POMDP, which for larger problems often fails due to solver
time-out. At the same time, our multi-scale methods maintain
comparable solution quality on modest problem sizes while
actually demonstrating superior performance (faster delivery
times) compared to the solutions found by the flat POMDP
when tested on larger problems (larger environments, more
items to deliver).

II. PROBLEM FORMULATION

The agent’s task is to find one or multiple items in an office
environment with multiple rooms and deliver each item to a
specified goal location in as little time as possible. A map
of the static, closed environment is given and the agent has

a prior estimate about the item locations in the form of a
probability distribution. An object’s goal location is specified
with coordinates. It is further assumed that items are uniquely
identifiable (e.g. via an instance segmentation pipeline). The
agent modeled for this task is a simple ground robot with
a forward-facing camera and a manipulator arm. The robot
can only carry one item at a time.

We formulate the object search and navigation problem
as a POMDP. Formally, a POMDP is defined by the tuple
P = 〈S,A,O,T,Z,R,b0,γ〉, where O is a discrete set of
observations, Z is the observation model, b0 is the initial
belief of the state and γ ∈ [0,1] is the discount factor. At
each time step the agent is in a state s∈S, chooses an action
a ∈ A, receives a reward R(s,a), transitions according to
T (s,a,s′) to state s′ and then receives an observation o ∈O
according to Z (o,s′,a).

Given an initial belief distribution of the item locations, b0,
the goal is to solve for the agent policy π (or corresponding
value function V (b(s))) that will maximize the discounted
sum of future rewards as defined by R. For our object search
and delivery task, the reward model is defined by,

R = Rtime +Rsubtask +Rtask, (1)

where the first term is a time penalty (negative), the second
term provides an intermediate reward for picking up a target
item, and the final term rewards the delivery of an item to its
target location. As discussed in Section I, solving a POMDP
scales poorly with problem size and dimensionality, even
when using approximation methods such as SARSOP [11].
Hierarchical solutions are key to achieving computational
tractability, yet it is still unclear how information should
be propagated between the different hierarchical planning
layers. Thus, this is the core investigation of our work.

III. OBJECT SEARCH AND DELIVERY DOMAIN

We adapt the work from [20], [21] for a search and
delivery task involving K items. The environment is divided
into N separate non-overlapping regions, referred to as nodes.
Fig. 1b shows an example of a small office with three rooms
that has been partitioned into N = 9 nodes n0 to n8. Nodes
can have any shape and do not need to be rectangles.

The state s = [xa,x1, · · · ,xK] is a vector of size K + 1
with one variable, xa, describing the agent’s position (current
node) and K variables for the items, where

xa ∈ {n0, · · · ,nN−1} ,
xk ∈ {n0, · · · ,nN−1,agent,goal} , 1≤ k ≤ K, (2)

|S|= N (N +2)K .

Since the object search and delivery task has a defined and
observable goal, then a state is considered a terminal state,
iff all item variables take the value goal.

The action space consists of four types of actions: (i)
nav(ni,n j) navigates the agent between adjacent nodes; (ii)
look around moves the camera field of view (e.g. by
rotating) to observe the node the agent is in; (iii) pickupk
instructs the agent to pick up item k if it is observed within

(a) (b)

(c) (d)

Fig. 1: A three-room office environment decomposed into (a) three
or (b) nine nodes. (c) Initial belief of an item’s location. (d) Updated
belief after executing the look around and nav actions.

the current node; and (iv) release allows the agent to
deliver the item it is carrying within the current node.

The observation o = [o1, · · · ,oK] is a vector of size K,
where each variable corresponds to an item. The observation
ok takes the value no if item k is not observed in this time
step, ni if the item was observed in node i, and agent if
the agent is currently carrying item k. If the item variable xk
takes the value goal, the observation always returns no.

ok ∈ {no,n0, · · · ,nN−1,agent} , 1≤ k ≤ K, (3)

|O|= (N +2)K

In this work we adopt a deterministic transition function
and assume conditional independence between the state vari-
ables given the current state-action. Specifically, nav(ni,n j)
only affects the agent state xa (indeed, it is the only action
that affects xa). It results in xa transitioning to n j with
probability 1 if the agent started the action in ni or vice versa.
look around allows the agent to search the current node
for items but does not cause changes to the state. pickupk
transitions item k to state agent if the agent is in the same
node as the item and is not already carrying another item.
release successfully delivers item k if the agent is in the
same node as the goal location, otherwise the item is dropped
and takes the state of the current node.

The observation model we use also assumes conditional
independence between the observation variables (item lo-
cations, ok) given the action and resulting state. Note that
this may not always hold, e.g. some items like salt and
pepper are often co-located; however, it is a valid assumption
for our particular problem domain. The observation model
takes into account the robot’s object recognition rate and
false positive detection rate as well as an approximation
of the swept camera field of view (FOV) during the nav
and look around actions. For example, the probability
of observing an item during a nav action in node i is
approximated as the ratio between the expected observed

area of node i as swept out by the camera FOV and the total
area of node i. If item k is picked up, its state x′k = agent
becomes perfectly observed, while we assume that no other
items are observed during this action. Similarly, for the
release action observations.

As shown in (1), the reward function consists of three
components. The time penalty Rtime is approximated for each
high-level action since execution times may differ depending
on various low-level factors. The run-time of an action sub-
routine depends on the specific agent location, item positions
and the current state of the belief grid. Modeling Rtime
requires approximating these execution times, either through
a simulation using sampling to get robust averaged values
or by using a heuristic. In this work we implemented the
former simulation averaging approach. For Rsubtask, the agent
receives a positive reward rpickup for successfully grabbing
an item. When the agent releases the item in a later time step
the same reward must be subtracted to prevent the agent from
repeatedly picking up and releasing an item to accumulate the
subtask reward. Similarly, there is a positive reward rdelivery
for delivering an item to its goal location.

The initial belief is provided as a distribution that defines
the probability for each partially observable state variable.
We assume that the agent state xa is fully observable and so
only the item locations are represented in b. Following [5],
we exploit the independence between object locations and
factor the belief into K high-resolution discretized grids,
where the value of each cell is the belief that the item occu-
pies the cell. Figures 1c and 1d show the initial and updated
belief grid after the agent has executed the look around
and nav actions.

Finally, discounting can be used to value future rewards
less than current ones and is required for methods like
SARSOP. Since the goal of this object search and delivery
problem is to minimize the total time, the discounting factor
is chosen close to one, γ = 0.999. Further implementation
details can be found in our open-sourced code1.

IV. MULTI-SCALE POMDP AGENTS
Here we present a novel hierarchical POMDP framework

which greatly reduces computation times while maintaining
comparable solution quality to solving the flat (full) POMDP.
The core idea is to split the original POMDP into multiple
smaller problems with different spatial resolutions. An ex-
ample spatial decomposition is shown in Figs. 1a and 1b,
where the top layer l0 constructs a POMDP with only three
nodes, while the next layer l1 contains the original POMDP
resolution with nine nodes. Each node of l1 can be mapped
uniquely to one node of l0. This relationship is true in general
between nodes in layers l (λ +1) and lλ . Then, starting from
l0, which has the coarsest resolution, we solve the resulting
POMDP for its proposed next action and then refine this over
the subsequent layers with increasing resolution. The lowest
layer of the hierarchy corresponds to the original POMDP
problem. In the following, we use ?lλ to indicate that the
variable belongs to layer λ .

1https://github.com/ethz-asl/multi_scale_search

A. Multi-scale Transition, Reward and Observation Models
The higher layer POMDPs are formulated similarly to the

original (lowest layer) POMDP as described in Section III.
The main differences lie in the higher layer reward, transition
and observation models, which are created from the lower
layer ones in a recursive manner through the (λ +1)-layer
policies that execute the λ -layer actions. In this work, we
consider relatively simple actions at each layer and so we use
handcrafted open-loop policies. We formulate the policy πOL
as an ordered list where element πOL[i] is the i-th action to
execute. Instead of using open-loop policies, one could also
use closed-loop policies on states π(s). This corresponds to
the options/macro-action model for MDPs [13], [15]. It is
also possible to use automatically constructed closed-loop
policies on beliefs [14].

Using the decomposition in Fig. 1 as an example, selecting
nav

(
nl0

0 ,n
l0
1
)

when xl0
a = nl0

0 results in the execution of,

πOL

(
nav

(
nl0

0 ,n
l0
1

))
=

[
nav

(
nl1

0 ,n
l1
2
)
,nav

(
nl1

2 ,n
l1
3
)]
, if xl1

a = nl1
0 ;[

nav
(
nl1

1 ,n
l1
2
)
,nav

(
nl1

2 ,n
l1
3
)]
, if xl1

a = nl1
1 ;[

nav
(
nl1

2 ,n
l1
3
)]
, if xl1

a = nl1
2 .

(4)

Continuing with this example, the reward for executing πOL
in nl1

0 is the discounted sum of rewards for each action:

RπOL
(

xl1
a = nl1

0

)
= R

(
xl1

a = nl1
0 ,a

l1 = nav
(

nl1
0 ,n

l1
2

))
+ γR

(
xl1

a = nl1
2 ,a

l1 = nav
(

nl1
2 ,n

l1
3

))
. (5)

The layer 0 reward can now be calculated by averaging the
rewards for executing πOL for the different starting states:

R
(

xl0
a = nl0

0 ,a
l0 = nav

(
nl0

0 ,n
l0
1

))
=

1
3

(
RπOL

(
xl1

a = nl1
0

)
+RπOL

(
xl1

a = nl1
1

)
+RπOL

(
xl1

a = nl1
2

))
. (6)

Note that multiple open-loop policies could be used and the
respective rewards averaged to compute the layer 0 reward.

In a more general setup with a non-deterministic transition
model the expected reward for following πOL on layer λ

starting in state slλ can be computed recursively as:

RπOL
(

slλ
)
= R

(
slλ ,πOL [1]

)
+ γ ∑

s′∈S lλ

T
(

slλ ,alλ = πOL [1] ,s′
)

RπOL[2:] (s′) , (7)

where πOL [2 :] is the same list starting at the second element.
The higher layer observation and transition models are

constructed with the same approach. One action of layer λ

corresponds to a policy on the next layer down l (λ +1),
which produces a sequence of observations. Thus, we first
need to define a mapping from the (λ +1)-layer observations
to the λ -layer observation. The observation of item k in layer
λ takes the value ni if any of the observations on layer
(λ +1) is within ni. If all observations on the lower layer
are no the higher layer observation also takes the value no:

olλ
k =

{
nlλ

i , if any ol(λ+1)
k ∈N (nlλ

i);

no, if all ol(λ+1)
k = no,

(8)

N (nlλ
i) is the set of nodes on layer (λ +1) that lie in nlλ

i .
Solving the top layer l0 yields the value function V l0 (b)

and the first action to execute al0. In subsequent layers,
only a subset of the state, observation and action spaces
is considered, based on the state-action of the layer above.
Decision information only propagates down. The multi-scale
methods we present do not compute the entire solution
beforehand but only the next action to execute.

B. Reasoning over Multiple Spatial Scales

Given the higher layer model definitions it is now possible
to solve each POMDP layer. In this subsection, we present
three different methods for propagating the solutions of each
spatial layer. The methods differ in computation speed and
the reasoning capabilities of the lower layers. All methods
consider restricted state, action and observation spaces on
the lower layers to achieve a speedup in computation time.

1) Action Propagation (AP): The first method is the sim-
plest and explores a leader-follower relationship where the
lower layer attempts to directly execute the action chosen by
the layer above. The lower layers consider as few variables
and values as strictly needed to execute the higher layer
action. The transition, reward and observation models remain
unchanged for the lower layers. We illustrate the concept
with an example of the restricted POMDP solved in layer 1
for a layer 0 nav action.

Example 1 Consider the three room environment from
Fig. 1 where the agent is currently in nl0

0 and the task is
to find and deliver K items. Solving layer 0 yields the action
al0 = nav

(
nl0

0 ,n
l0
1
)
. The layer 1 POMDP only considers the

layer 1 nodes that are within the current layer 0 node nl0
0

and the entry node to nl0
1 which is nl1

3 . To navigate the agent,
the items do not need to be considered in this sub-problem,
which makes layer 1 an MDP. The terminal state on layer 0
is when the agent is within the node nl0

1 . Further, the action
space only consists of navigation actions:

xl1
a ∈

{
nl1

0 ,n
l1
1 ,n

l1
2 ,n

l1
3

}
sl1

term =
[
xl1

a = nl1
3

]ᵀ
(9)

al1 ∈
{
nav

(
nl1

0 ,n
l1
1

)
,nav

(
nl1

0 ,n
l1
2

)
,nav

(
nl1

1 ,n
l1
2

)
,

nav
(

nl1
2 ,n

l1
3

)}
. �

AP yields a big speedup regarding computation time
compared to solving the flat (single-layer) POMDP from
Section III as the state, action and observation spaces of
both layer 0 and layer 1 are smaller. The drawback is that
the lower layers perform very little reasoning and just try to
solve the action of the layer above in as little time as possible.
Since the higher layers use a coarse resolution their proposed
action could be suboptimal. Later in Section V we show that
such problems start to occur for larger environments where
more than two layers are used. One particular problem for
large environments is inconsistent search behaviour. The AP
agent stops the search in a room and goes to another room
even though the belief that the item is in the room is still

relatively high. The next two methods address those issues
by giving the lower layers more flexibility and information
about the entire problem.

2) Action-Value Propagation (AVP): The second method
aims to improve the lower layer reasoning while still yielding
a large computational speedup. The lower layers access the
value function of the layer above to get global context about
the problem. The value function can be incorporated through
the terminal state reward as is shown in Example 2. Thus, the
lower layers can, for example, choose to explore the nodes
before executing the proposed action of the layer above. This
changes the belief at the terminal state and therefore the
terminal state reward. Similar to AP, the state, action and
observation spaces of the lower layers are determined by the
higher layer state and action. However, all item variables are
considered on all layers, and in addition to the (λ +1) node
values, item variables can also take the value not here for
which the initial belief is given as one minus the belief that
the item is in nlλ

i .

Example 2 Consider the same problem as in Example 1. In
contrast to AP, AVP accounts for all item variables on layer
1 and the action space now also contains the look around
action (note that xl1

a remains the same as in Example 1 (9)):

xl1
k ∈

{
nl1

0 ,n
l1
1 ,n

l1
2 ,n

l1
3 ,not here

}
, 1≤ k ≤ K,

sl1
term =

[
xl1

a = nl1
3 ,x

l1
k

]ᵀ
, 1≤ k ≤ K,

ol1
k ∈

{
no,nl1

0 ,n
l1
1 ,n

l1
2 ,n

l1
3 ,agent

}
,1≤ k ≤ K, (10)

al1 ∈
{
nav

(
nl1

0 ,n
l1
1

)
,nav

(
nl1

0 ,n
l1
2

)
,nav

(
nl1

1 ,n
l1
2

)
,

nav
(

nl1
2 ,n

l1
3

)
,look around

}
This gives layer 1 the flexibility to search the first room
before driving to the second room. The terminal state reward
is an additional reward which is defined through the value
function of layer 0. Note that there are 5K terminal states
for all item combinations, since each item state can take 5
different values. For example, in a two-item scenario, the
terminal reward where the first item is in nl1

1 and the second
item in nl1

3 is given by:

Rterm

(
sl1 =

[
nl1

2 ,n
l1
1 ,n

l1
3

]ᵀ
,al1 = nav

(
nl1

2 ,n
l1
3

))
=

V
(

xl0
a = nl0

1 ,b
(

xl0
1 = nl0

0

)
= 1,b

(
xl0

2 = nl0
1

)
= 1
)
. (11)

The belief vector bl0 at the terminal state can be altered
through the actions that the agent chooses. Through changing
bl0 the expected terminal reward changes, thus giving layer
1 context about the entire problem. �

The improved lower layer reasoning leads to better so-
lutions as is shown in Section V but has slightly longer
computation times compared to AP since all items are
considered in the lower layers and additional exploration
actions are included in the action set. AVP resolves the
inconsistency problems of AP as the lower layers allow for
more exploration. However, the lower layers still have to
follow the proposed action of the above layers. This can

become a problem for larger environments where the coarse
discretization of layer 0 can lead to suboptimal decisions.
Value Propagation resolves this limitation with additional
terminal states in the lower layers.

3) Value Propagation (VP): The third method improves
the lower layer reasoning by lifting the state restrictions
coming from the proposed action of the layer above. The
lower layer POMDPs are instead guided purely by the value
function of the layer above, which is incorporated in the same
way as in AVP. The concept is demonstrated in Example 3.

Example 3 Again, consider the same problem as in Exam-
ple 1. Solving layer 0 yields the value function V (bl0). The
restricted state, action and observation space is determined
solely by the agent variable of layer 0, i.e. xl0

a . Thus, xl1
a and

ol1
k remain the same as in Example 2 (10). Terminal states

are reached when the agent leaves the current layer 0 node
or if it successfully grabs an item:

xl1
k ∈

{
nl1

0 ,n
l1
1 ,n

l1
2 ,n

l1
3 ,not here,agent

}
, 1≤ k ≤ K,

sl1
term ∈

{[
xl1

a = nl1
3 ,x

l1
k

]ᵀ
,
[
xl1

a ,x
l1
1 = agent, · · · ,xl1

K

]ᵀ
,

· · · ,
[
xl1

a ,x
l1
1 , · · · ,xl1

K = agent
]ᵀ}

, 1≤ k ≤ K, (12)

al1 ∈
{
nav

(
nl1

0 ,n
l1
1

)
,nav

(
nl1

0 ,n
l1
2

)
,nav

(
nl1

1 ,n
l1
2

)
,

nav
(

nl1
2 ,n

l1
3

)
,look around,pickupk

}
�

Thus, layer 1 has complete freedom in its choice of action
and does not need to follow the proposed action of layer
0. Layer 1 solves its reduced POMDP using the value
function of layer 0 to inform its terminal rewards, similar
to (11). Through the higher resolution of layer 1, the agent
can correct for model approximation errors of layer 0, for
example, finding shorter routes between nodes. However, as
the example shows, the state, action and observation spaces
are larger than for either AP or AVP, which increases overall
computation time.

C. Multi-scale Search Properties

Each of the multi-scale methods splits one large POMDP
into multiple smaller POMDPs. With the hierarchical layout
from Fig. 1, where each node is split into ν = 3 subnodes on
the next lower layer, a logarithmic relationship between the
number of nodes in the original POMDP and the number of
layers in the hierarchy is given:

λmax = logν N. (13)

This is a nice scaling property as the number of layers is
proportional to the number of POMDP problems that must
be solved. Moreover, the reduced POMDP at each layer
only deals with ν nodes, which means that it also has an
exponentially reduced state and observation space.

Of course, this speedup is achieved through discretization
approximations and so in general, all multi-scale methods
are susceptible to suboptimal solutions due to discretization
inaccuracies. An example is depicted in Fig. 2 where the
task involves two items in the three room environment. Both

items are within the same layer 0 node nl0
0 and both goal-

locations are in nl0
2 . Layer 0 is unable to differentiate between

the two items regarding expected delivery time and randomly
chooses either the pickup1 or pickup2 action first. Layer
1 is guided through the layer 0 action al0 and value function
V (bl0). Neither reflects that the pink item’s goal location
is closer and should therefore be delivered first. Therefore,
the multi-scale agents cannot correctly reason which item to
deliver first. The flat (single-layer) POMDP delivers the pink
item first as the initial positions and goal locations of the two
items are in different nodes.

Fig. 2: A scenario where the
multi-scale methods are un-
able to correctly reason over
which item should be deliv-
ered first. The robot starts
at the black circle; col-
ored squares show the cur-
rent item locations; hexagons
show the desired delivery
points.

V. RESULTS AND ANALYSIS
We evaluated our three multi-scale POMDP methods in

the five test scenarios shown in Fig. 3. The scenarios vary in
the number of items (S1, S2 and S5 each have one item to
deliver, whereas S3 and S4 have two items), the number of
peaks in the initial belief distribution over the item locations,
as well as the size of the underlying map. S1–S4 are executed
in the three-room office environment introduced earlier and
are solved with two POMDP layers, while S5 is conducted in
a large eight-room environment with 56 nodes in the bottom-
layer POMDP and is solved using three layers (Fig. 3g shows
the hierarchical decomposition).

The flat and multi-scale POMDP methods were tested in
S1–S4 over 100 statistical runs each. At the start of each
run, the true location of the item(s) was sampled from the
initial belief distribution. Since the final delivery time is
strongly influenced by the initial placement of the item(s),
we report the difference in delivery time of each multi-
scale POMDP solution as compared to the solution found
by the flat POMDP. For all runs, we set the SARSOP solver
timeout to 600s. If a timeout occurred, the policy found at
the previous timestep was used (which could lead to very
suboptimal actions) or a planning failure was recorded if
there was no prior policy.

Results are shown in Fig. 4. On average, the multi-scale
solutions result in comparable delivery times to the flat
POMDP with suboptimality of the solutions demonstrated in
several outlier cases. However, as the problem size increases
(two items to deliver instead of one) the multi-scale solutions
are just as often able to find solutions within the given solve
time that lead to faster overall delivery times. When testing
in S5, we were unable to achieve a solution from the flat
POMDP within the allocated solve time. Thus, we only show
results from 30 statistical trials comparing AVP and VP to the
AP multi-scale algorithm. In this case, all three algorithms
achieve similar mission performance.

(a) S1 (b) S2

(c) S3, item 1 (d) S3, item 2

(e) S4, item 1 (f) S4, item 2

(g) S5: large office environ-
ment decomposition into three
POMDP layers

(h) S5: initial belief

Fig. 3: Initial item belief distributions for our test scenarios S1-S5.

Fig. 4: Increase in mission times compared to solving with the flat
POMDP. Note: S5 is compared to the AP multi-scale method since
the flat POMDP failed to find a solution within the time budget.

We present the average time required to compute an action
by each POMDP framework over all the tested scenarios
in Fig. 5. The computational efficiency of the multi-scale
algorithms are evident when compared to the flat POMDP. In
particular, the flat POMDP scales poorly when the size of the
state space increases, either through the introduction of more
items to deliver or when the number of nodes increases. In
contrast, the multi-scale methods average {0.18,0.21,0.13}s
per action in S1 (|S| = 99), which increases modestly to
{0.65,0.74,1.53}s in S5 (|S|= 3248).

Finally, in Fig. 6 we highlight a case where information
propagation across the layers changes the delivery time
performance between the AP, AVP and VP methods. Due
to the coarse resolution at layer 0, AP and AVP are not able
to correctly reason if traveling via nl0

1 or nl0
2 is faster for

reaching the goal location (in nl0
3). Since VP is not restricted

to follow the higher layer actions, it correctly reasons that
the path via nl0

1 is faster. Thus, demonstrating the benefits of
allowing greater decision independence to the lower layers.

VI. CONCLUSIONS

In this work, we presented a multi-scale POMDP frame-
work that allows efficiently solving an object search and
delivery task. Three methods of propagating information

Fig. 5: Average computation time per action.

(a) AP, AVP solution (b) VP solution

Fig. 6: Solution differences as a result of decision-making power.

between layers of different resolutions were shown to pro-
duce a similar solution quality compared to solving a flat
POMDP. All three methods achieve this at a significantly
decreased computational cost, allowing them to tackle larger-
scale problems that cannot be solved using the flat POMDP.

Interestingly, the three methods perform very similarly
despite varying degrees of reasoning authority at lower
levels. The VP method showed a slightly more consistent
solution quality improvement especially for the multi-item
scenarios. However, this comes at the expense of an increased
computational cost compared to the AP and AVP methods.

A limitation of the multi-scale approach is that the node
partitioning for each layer needs to be manually designed
for each environment. Although not studied in detail here,
the resolution and placement of the partitions (especially
those at the interface of higher layer nodes) will also impact
the solution quality. While the same needs to be done for
the flat POMDP to make it tractable, we recognize that
each extra layer of the multi-scale approach increases this
effort. However, we believe that this can be justified by the
subsequent performance improvements.

While we evaluated the proposed method in an object
search and delivery task, we believe that it can be extended
to most POMDPs where physical space is discretized for a
state variable. To make our approach more readily applicable
to unseen domains, we would like to alleviate the need to
handcraft open-loop policies by automatically constructing
closed-loop policies. Automating the partitioning of nodes
could be tackled with a similar motivation. Furthermore, to
improve the accuracy of the higher-layer models, an idea
is to adapt them through a correction mechanism after the
lower-layer POMDPs are solved. Finally, we would like to
investigate whether our multi-scale approach is beneficial in a
model-free reinforcement learning context, sharing Q-values
over layers, similar to how the value function is shared in
the presented AVP and VP approaches.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations Re-
search, vol. 21, no. 5, pp. 1071–1088, 1973.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[3] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 1470–1477.

[4] S.-Y. Lo, S. Zhang, and P. Stone, “PETLON: planning efficiently for
task-level-optimal navigation,” in Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems,
2018, pp. 220–228.

[5] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, L. L. Wong, and
S. Tellex, “Multi-object search using object-oriented POMDPs,” in
2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 7194–7200.

[6] D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,” in
Advances in neural information processing systems, 2010, pp. 2164–
2172.

[7] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in neural information
processing systems, 2013, pp. 1772–1780.

[8] H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo, “Monte Carlo value
iteration for continuous-state POMDPs,” in Algorithmic Foundations
of Robotics IX, 2010, pp. 175–191.

[9] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in International Joint Conference
on Artificial Intelligence (IJCAI), vol. 3, 2003, pp. 1025–1032.

[10] M. T. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[11] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-

based POMDP planning by approximating optimally reachable belief
spaces,” in Robotics: Science and Systems, vol. 2008, 2008.

[12] N. P. Garg, D. Hsu, and W. S. Lee, “DESPOT-α: Online POMDP
planning with large state and observation spaces.” in Robotics: Science
and Systems, 2019.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[14] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato, and J. P. How,
“Decentralized control of partially observable Markov decision pro-
cesses using belief space macro-actions,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 5962–
5969.

[15] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier,
“Hierarchical solution of markov decision processes using macro-
actions,” in Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, 1998, pp. 220–229.

[16] J. Pineau and S. Thrun, “An integrated approach to hierarchy and
abstraction for POMDPs,” Carnegie Mellon University, Tech. Rep.,
2002.

[17] A. Foka and P. Trahanias, “Real-time hierarchical POMDPs for
autonomous robot navigation,” Robotics and Autonomous Systems,
vol. 55, no. 7, pp. 561–571, 2007.

[18] N. K. Jong and P. Stone, “Hierarchical model-based reinforcement
learning: R-max + MAXQ,” in Proceedings of the 25th International
Conference on Machine Learning, 2008, pp. 432–439.

[19] N. Gopalan, M. desJardins, M. L. Littman, J. MacGlashan, S. Squire,
S. Tellex, J. Winder, and L. L. Wong, “Planning with abstract Markov
decision processes,” in International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2017.

[20] W. Van den Hof, “Robot search in unknown environments using
POMDPs,” Master’s thesis, TU Delft, 2014.

[21] A. R. Mendes, M. T. J. Spaan, and P. U. Lima, “Planning under
uncertainty for search and rescue,” in Robótica - 11th International
Conference on Mobile Robots and Competitions, 2011.

