
Crowd against the machine: A simulation-based benchmark tool to
evaluate and compare robot capabilities to navigate a human crowd

Fabien Grzeskowiak1, David Gonon2, Daniel Dugas3, Diego Paez-Granados2, Jen Jen Chung3, Juan Nieto3

Roland Siegwart3, Aude Billard2, Marie Babel1 and Julien Pettré1

Abstract— The evaluation of robot capabilities to navigate
human crowds is essential to conceive new robots intended to
operate in public spaces. This paper initiates the development
of a benchmark tool to evaluate such capabilities; our long
term vision is to provide the community with a simulation tool
that generates virtual crowded environment to test robots, to
establish standard scenarios and metrics to evaluate navigation
techniques in terms of safety and efficiency, and thus, to install
new methods to benchmarking robots’ crowd navigation capa-
bilities. This paper presents the architecture of the simulation
tools, introduces first scenarios and evaluation metrics, as well
as early results to demonstrate that our solution is relevant to
be used as a benchmark tool.

I. INTRODUCTION
A large number of mobile robots are conceived with the

intention of being operated in public spaces, likely to be
frequented by crowds. Assessing robots’ ability to navigate
through the crowd in a way that is efficient and safe is
thus of paramount importance. However, such assessment
is difficult for several reasons. Firstly, a crowd is a dynamic
and complex environment, the state of which depends on a
very large number of parameters. A meaningful evaluation
should cover as much of this parameter space as possible,
this guarantees that the robot behaviour has been studied
in most of the situations it may encounter. However, this
crowd complexity compounds the already high-dimensional
parameter space related to the robot behaviour.

Ideally, we should study and test various robot behaviours
in the same situations. This would enable comparing ef-
ficiency and safety levels offered by various navigation
techniques. Unfortunately, this results in a combinatorial
explosion. The risks linked to the participants and the cost
of conducting real-world experiments are our two last major
problems. This explains why research work dedicated to
robot navigation in crowds are limited to tests with a limited
number of participants that barely constitute a crowd. To
mitigate this issue, our paper explores solutions to provide
the community with a crowd-robot navigation benchmark
tool. Our work addresses three aspect of this problem:
i) to define reference navigation scenarios, ii) to provide
simulation algorithms and a framework for the simulation
itself, iii) to introduce metrics for evaluating efficiency and
safety levels.

1F. Grzeskowiak, M. Babel and J. Pettré are with Univ Rennes Inria
CNRS IRISA, Rennes, France. julien.pettre@inria.fr

2D. Gonon, D. Paez-Granados and A. Billard are with EPFL, Lausanne,
Switzerland. aude.billard@epfl.ch

3D. Dugas, J. J. Chung, J. Nieto and R. Siegwart are with ETH, Zürich,
Switzerland. jenjen.chung@mavt.ethz.ch

Simulation-based evaluation offers valuable insights. Nev-
ertheless, it cannot replace the validity of real tests because,
if robot simulation cannot already be considered perfectly
accurate, the simulation of human behaviour is even more
complex. It is impossible to simulate all the behaviour that
a crowd can exhibit, in particular, its reactions to a robot.
However, crowd simulation is useful to create a synthetic
test environment. It can be a preliminary and complementary
tool to real tests that evaluate the evolution of a robot in an
environment that is representative in many aspects to a real
crowd.

At the very least, simulation-based testing addresses the
four problems outlined above: it can automatically explore
large situational parameter spaces, it eases comparisons and
is, without question, safe. Moreover, simulation brings the
major interest of allowing one to easily define a set of
standard situations, which are defined by the configuration of
the crowd and the task of the robot. These can be precisely
replicated from one series of tests to another, which can be
elaborated and shared at the scale of a whole community. It
therefore makes simulation-based testing an ideal candidate
to be used as a benchmark tool to fairly evaluate and compare
the behaviour of robots in a crowd.

Our article presents the following contributions: (i) a
simulation platform, open and accessible to the community,
allowing the simulation of robot motion among a moving
crowd, (ii) a preliminary set of standard situations, repre-
sentative of common ones to which a robot is exposed when
navigating in a crowded environment, (iii) a set of metrics to
evaluate the test results with regard to the robot’s efficiency,
the disturbance caused to the crowd’s navigation, as well as
the related risks of collisions, (iv) a demonstration of this
tool’s capabilities to be used as a benchmark.

II. RELATED WORK

The development of new mobile robots intended to move
within crowds requires the evaluation of their navigation
capabilities in terms of efficiency and safety. Simulators
facilitate such evaluation by providing interfaces through
which a robotic component can manipulate and perceive an
abstract environment that models a real phenomenon (in our
case, a crowded environment). In the following, we review
some existing crowd simulators by investigating which tech-
nical concepts and metrics they implement that make them
significant for robotic navigation in human crowds.

A contribution of [1] is a probabilistic planner that updates
its belief on pedestrians’ goal positions and assumes that their



decision making is based on PORCA, a variant of ORCA
[2] (using a different cost function modeling pedestrians’
impatience). Thus, the simulator is suitable to demonstrate
exactly this planner’s performance as the planner’s underly-
ing assumptions about pedestrians’ decision making match
exactly how the simulation controls them. The metrics for
the evaluation are the robot’s collision rate, travel time,
length of acceleration/deceleration periods, and success rate
(to reach the goal). [3] compare how a robot using different
learning-based controllers performs when navigating among
pedestrians in the PedSim1 simulator. They measure the
robot’s path length and smoothness as well as pedestrian
comfort by the number of proxemic intrusions by the robot
(proximity at particular angles). [4] evaluate their navigation
technique for the robot in simulations with agents that apply
ORCA [2]. They report the robot’s success rate (to reach
the goal without a collision), collision rate, time, and reward
(referring to their framework of reinforcement learning). [5]
propose an approach that uses inverse reinforcement learning
and predicts collective trajectories by assuming they optimize
an underlying reward function. To show that their approach
works as expected, they perform simulations wherein such
a reward function governs the agents’ behaviour, and the
approach then learns this function to make reliable predic-
tions. [6], [7] call their experiments simulations wherein they
replay crowd motions from a recorded dataset and replace
just one pedestrian by the robot who then needs to plan its
own path (whereas others do not react to it). They measure
the robot’s minimum distance to pedestrians and the robot’s
path length. Similarly, [8] use the same dataset and crowd
replay to simulate how the robot reacts to pedestrians (while
they do not react to it). Webots2 is an open-source simulator
offering animated human characters, albeit looking and walk-
ing rather like puppets. [9] perform crowd simulations which
incorporate heterogeneous navigation methods and limited
perception to investigate the difficulties that one needs to
tackle to enable robots to navigate in crowds. In Webots, they
simulate how a crowd with limited field of view and different
control laws performs, measuring the agents’ number of
collisions and time to reach their goals.

Some work aiming towards robotic navigation in crowds
considers as the key task to understand and accurately
model pedestrian decision making. One could argue that a
robot just needs to replicate the human decision process to
navigate among pedestrians like a regular pedestrian. They
typically do not use simulation to evaluate their methods.
Rather, they (e.g. [10]) measure the similarity between the
trajectories which their methods generate for the robot in a
given situation to the motion of a real human subject in the
same situation (also like in [6], [7]). The evaluation in [11]
lets human participants interact with a virtual pedestrian and
judge later on whether the virtual pedestrian was following
another human participant’s decisions or an automatic game
theoretic planner. This varied Turing test could show whether

1http://pedsim.silmaril.org/
2https://www.cyberbotics.com/

Fig. 1. The CrowdBot simulator architecture: Based on Unity (https:
//unity.com), this application can generate scenarios, it simulates how
the crowd moves and renders it in a 3D environment. It also handle physics
simulation in order to compute collisions between the crowd and the robot.
Finally, it handles the robot dynamics and sensing. A second part of the
tool is the python module which controls the Unity application, conducts
the simulation sending and receiving data through sockets. This module
helps in the generation of datasets of crowd and robot trajectories, which
can be analyzed using the benchmark tools. Finally, it connects to ROS and
PythonRobotics. One last component is the set of configuration files which
gives the parameters of the simulation.

or not the decisions made in the background by the planner
or the second participant are indistinguishable.

In summary, existing works on robots navigating in crowds
mostly just consider one respective facet of crowds in their
simulations, which is likely representing the specific task
they are addressing. Therefore, it seems that a more versatile
simulator, which reflects and integrates such aspects, could
give new impulses to similar research. In particular, the above
simulators are limited to local collision avoidance using only
one specific algorithm to move agents (e.g Pedsim uses a
social force base algorithm), and they mostly lack realis-
tic gait animation and graphical rendering of pedestrians,
while realistic visual rendering is important for fully vision-
based navigation techniques (e.g. end-to-end learning). Fur-
ther, their metrics are mostly the same, surprisingly not
quantifying the crowd’s efficiency in most evaluations. The
metrics for safety also seem fairly simplistic with most only
considering the robot’s distance to pedestrians. Colliding
agents’ mass, velocity and kinetic energy are suitable to
quantify the potential for injury as several works in human-
robot interaction have shown [12], [13].

III. CROWDBOT SIMULATION PLATFORM

This section describes the CrowdBot simulation architec-
ture shown in Fig. 1.

a) Crowd simulation: The purpose of the crowd sim-
ulation component is to compute the motion of a crowd in
a given environment, represented as a collection of moving
points, one for each simulated individual. For this, we rely
on microscopic crowd simulation algorithms, which perform
this calculation based on the notion of an agent whose
trajectory is a function of its goals and its interactions
with the environment. Note that literature has proposed a
number of numerical models of local interactions, and more



specifically of collision avoidance, that determine agents’
behaviours [14] [2] [15]. Realism of simulation is often
subject to debate regarding human simulation. We believe
that the key is to use tools that allows combination of crowd
simulation technique. Indeed, to avoid the effect of limiting
crowd behaviours to one of a unique algorithm, we employ
our recent crowd simulation technique which is capable
of reproducing a collection of crowd simulation algorithms
[16]. The motion of each agent is driven by the definition
of a cost function that the agent optimizes, defined in the
agent’s velocity space, which depend on the state of the
agent as well as the state of one of its neighboring objects
(other agents, robot, obstacles). Several existing algorithms
can be reproduced by changing the definition of this cost
function. In addition, agent motion is subject to the parameter
settings of this function. Crowd realism can be achieved
by optimising those parameters on real trajectories, using
specific tools [17].

By choosing such a technique to simulate crowds in the
CrowdBot framework, we open the possibility to include,
in experimental plans, a variety of simulation algorithms as
well as settings.

b) Environment and human simulation: Robot simu-
lations are usually based on 3D rendering engines with
physics simulation, in order to reproduce the robot’s real
environment. In this paper, we focus on mobile robots that
operate on the x-y plane, defining the robot workspace on
which dynamic obstacles can interact with the robot. For
our crowd simulation dedicated to robotics applications, we
extend the 2D representation of the crowd with animated
avatars walking according to the crowd simulation output.
Those avatars are defined with a visual and a collision
model, used by the physics engine, to interact with the
robot. We use Unity3D in order to have high definition
rendering with physics simulation. The crowd simulation
library UMANS [16] is integrated in Unity thanks to a
dedicated interface (API). The simulation, running in Unity,
was design using the same communication principles as ROS
(i.e using publishers, subscribers, URDF descriptions...) and
is thus highly integrated with ROS, and can be controlled
externally thanks to a ROS node, or through a dedicated
python module.

c) Robot simulation: The robot description is commu-
nicated to ROS using robot description packages from ROS,
and ROS topics.

In our simulator, a mobile robot is defined as a mechanical
model associated to a visual model, as well as a linear
and angular velocity command as input to control the robot
motion, and outputs that sense the robot’ environment. The
visual model is a list of 3D models of the joints of the robot
associated with a skeleton of the robot, which helps defining
the mechanical behaviour of the robot.

Our simulator offers various ways to define the mechanical
properties of a robot. First, every robot we implemented can
be considered as a kinematic rigid body. This method is
useful for simple simulations when physics is not required,
and can be used on every robot. The second method consist

in considering the robot as a unique point-mass, or a set
of connected rigid bodies. With this method, the robot is
moved around using forces applies on the base of the robot.
Friction limits the mobility of the robot, uniformly or non-
uniformly, which is useful to define holonomic robots as well
as differential drive robots or car-like robots. The third way
to control a robot, dedicated to wheeled robots, is through
giving velocity commands to a regulator which directly
controls the torque of the simulated motors in the wheels
of the robot.

The robot model also defines a set of sensors, which uses
the physics engine and the graphics rendering of Unity to
generate outputs. The software can simulate various stan-
dard sensors: LiDAR, RGBD camera, ultrasound sensors,
odometry. Sensor models also contain parameters that can
be used to fit any sensor specification. Imperfections, such
as noise and missing data, can be added to any sensor for
more realism. The simulation also outputs information about
the simulation, such as simulation time, physics engine report
on agent-robot collision, the crowd position, or crowd mask
for LiDAR, which gives the IDs of the agents of the crowd
detected in a LiDAR scan.

d) Robot navigation plugin: We made a simple python
module in order to control the simulation. The module
sends data to the simulator: the simulation clock, which
controls the time between simulation steps, the simulation
controller, which is used to switch between scenarios or to
stop the simulation, and a velocity command, directly used
by the robot controller in the simulation. When a step is
executed by the simulation, the module receives all available
data for this step: robot sensor outputs, crowd location and
collision report. We also provide a ROS node that uses this
python module to control the simulation through ROS topics
and ROS parameters and converts the received data into
ROS topics. The module is also designed to be used with
PythonRobotics [18], a python code collection for robotics
algorithms, or more generally any python implementation of
robotics algorithms.

e) Initialisation pipeline and outputs: The simulation
require a extensive amount of parameters, stored in scenarios
files. Scenarios files are read by the Unity simulator and for a
given simulation, a scenario file defines the 3D environment,
the camera controls (third person view), the robots to load
and their initial location, the crowd initial location, the
density of the crowd, the flow of the crowd, i.e the set of
goals for each agent, the path planner to use for each agent,
the crowd reactivity to the robot (reactive, not reactive),
and the crowd simulator (UMANS) basic parameters such
as preferred speed or maximum acceleration. The scenario
will use the default configuration of UMANS, but it can
be be easily changed to any of the methods proposed by
UMANS in another file. Finally, some parameters are given
as input for the python module directly or as ROS parameters
if the ROS node is used: the time step of the simulation,
the sleep time between steps (for real-time simulation), the
ending conditions, and the number of scenarios to run. Also,
the python module includes a recorder that saves JSON files



of the whole simulation, which is configurable in the python
module (file name and location or data to save).

f) Open source project: The benchmark tool is avail-
able freely for anyone on http://CrowdBot.eu/
CrowdBot-challenge/. On this website, one can down-
load the source code of the simulator as well as the CrowdBot
challenge software which was used to generate the dataset
and the benchmark results. This website also links to the
documentation (wiki) of the software which gives details on
the functionalities, tutorials and examples, and videos.

IV. CROWD ROBOT NAVIGATION BENCHMARK

Our intention is to use the CrowdBot simulation platform
as a benchmark tool to evaluate and compare robot crowd
navigation capabilities in terms of safety and efficiency. This
section presents both some navigation techniques we have
selected from literature to be tested, as well as our evaluation
protocol. The purpose of this section is to demonstrate how
the tool can be used. In this paper, the scenarios scope is
voluntarily limited in order to avoid parameters explosion.
The website3 provide additional examples.

a) Navigation techniques and hypotheses: We have se-
lected the 3 following navigation techniques: i) a “Baseline”
method, which consists in having the robot going straight
toward the goal ignoring the crowd, ii) the dynamic win-
dow avoidance method (DWA) [19], and iii) the reciprocal
velocity obstacles method (RVO) [2]. The reason for this
choice is that the robot will respectively: i) ignore the crowd
agents, ii) consider them as static obstacles, and iii) predict
the short term future motion of agents. With this choice,
the benchmark tool shall demonstrate its capability to reveal
benefits and drawbacks on the robot navigation efficiency
and safety with respect to crowd agents. If our evaluation
tool is adequate to be used as a benchmark, the evaluation
should intuitively satisfy the following hypotheses:
H1: The Baseline method should get the best score in terms

of efficiency, since the robot is ignoring the crowd.
However, it should be the worst in terms of safety,
since it shall move closer to crowd agents and provoke
many collisions with them, not even trying to lower the
collision forces with the crowd.

H2: The DWA method, in comparison with Baseline, should
show a lower number of collision, and thus a higher
safety level. As the method considers obstacles to be
static, it should show quite poor results in terms of
efficiency, since it may put the robot on useless or late
avoidance trajectories

H3: Among all three methods, the RVO method should show
the best compromise between efficiency and safety, as
it is capable of predicting agents’ motion and expects
contribution from agents in performing avoidance.
b) Benchmark setup: The idea of the benchmark is to

propose a number of scenarios that each define the robot,
the task of the robot and the activity of the crowd, with
a number of parameters. The simulation platform generates

3http://CrowdBot.eu/CrowdBot-challenge/

trajectories for both the robot and the crowd, which are
ultimately evaluated according to several metrics to compare
the performances of various navigation techniques in similar
conditions. In this paper, we illustrate the benchmark with a
limited set of scenarios, which can be extended at will.

c) Robot: We choose to illustrate the benchmark on
one single robot, the TurtleBot2, a common differential drive
robot. The simulated TurtleBot has a maximum velocity
of 1 ms−1 and a maximum acceleration of 5 ms−2. It is
controllable with a linear and angular velocity command. The
simulation provides the crowd location, the robot odometry
and the static obstacles. Those data can be used as an input
for the robot navigation. The virtual robot is also equipped
with a set of virtual sensors that offer the possibility of testing
the robot navigation robustness to limited data: two 2D
LiDARs that provide 360◦ coverage, a front-facing RGBD
camera and 12 simulated ultrasound sensors.

d) Environment and task: the environment is defined
as a corridor of 50m by 10m. The robot starts at one side of
the corridor and its task is to reach the other side. The goal
is reached when the robot travels 40m in the direction of the
corridor. We enforces a time limit of 180 seconds to avoid
infinite simulation for situations where the navigation does
not find a solution. The robot is free to move in this corridor
but cannot cross the borders delimited by four walls. The
crowd however, can cross the walls. In the case that they
traverse a wall, the agent’s position is reset at the opposite
one of the environment, which maintains a constant level of
average density over the entire trial.

e) Crowd activity: To restrict our number of scenarios
in this paper, they are finally defined by a crowd flow direc-
tion, a crowd behavior, and a crowd density. The possible
crowd flows can be in the main direction of the corridor,
pointing toward the same wall as the robot (1D+) or pointing
toward the opposite wall, facing the robot (1D-). The crowd
flow can also be bidirectional, in the main direction of the
corridor, where half of the crowd is moving in the opposite
direction of the other half (1Dx). Finally, the crowd can
move in the secondary direction of the corridor, crossing the
robot path, either in one main direction (2D), or with two
opposing flows (2Dx). To illustrate the benchmark capability,
we selected two main crowd simulation algorithms, “RVO”,
and “Social Forces”, which are fairly common, and easily
configurable (the question of crowd simulation realism is
beyond the scope of this paper). These two algorithms can
be configured as reactive or not reactive to the robot. We also
chose to set the parameters of RVO with 0.5s of horizon
time (the crowd only reacts when close to the robot) or
with 1.5s horizon time, which results in more anticipatory
interactions. Finally, we selected four levels of crowd den-
sity: 50 (0.1pm−2), 100 (0.2pm−2) , 200 (0.4pm−2) or 350
(0.7pm−2) agents in the corridor. With all those parameters
combined, we end up with 100 scenarios. We randomly
selected the initial position of the agents of the crowd and
generated the definitive scenarios files to be used by the
different robot navigation techniques.



f) Evaluation metrics: For this paper we limited the
study to seven metrics which can be split into three cate-
gories: path efficiency, effect on the crowd flow, and crowd
proximity. The latter two can be regrouped under the topic
of crowd safety, focusing on the effect the robot has on
the crowd, where the state of the art focus on robot-related
metrics [3], [4]. Our metrics indicate how the crowd and the
robot influence each other.

The path efficiency metrics compare the situations where
the robot is alone to the configuration where the robot is
surrounded by a crowd. For those two configurations, we
compute and compare the time taken by the robot to reach
the goal (T/Tcr), the length of the robot path (L/Lcr), and
the variation of speed (linear and angular) of the robot during
the whole scenario (J/Jcr).

The metrics dealing with the effects on the crowd compare
the speed of the robot neighbors (within 1m range) to the
speed of the whole crowd (NBRvel. =

VNeighbors

VAll
). The slower

the neighbors are, the smaller the metric is. In the second
metric, we compare the angular velocity of the whole crowd
to the velocity of the neighbors of the robot in scenarios
(NBRreac. = ωAll

ωNeighbors
). If the neighbors rotates more than

the rest of the crowd, NBRreac. will be small.
Finally, the metrics dealing with crowd proximity are first

the proximity metric (Prox.) which is defined by Prox =
1− 1

tfinal

∑tfinal
t=0

dmin(t)
R where dmin is the distance to the closest

agent, and R is the range in meter. In our case, we consider
that there is at least 1 person that is in a 5 meter range near
the robot. The last metric is the colliding metric, which is
defined by Colliding = 1− TCollision

TScenario
where TScenario is the total

time of the scenario, and TCollision is the cumulation of the
collision instants. A score of 1 means no collisions at all.

g) Collision Assessment: We assess each collision by
exploiting the simulator’s report of the colliding human body
part in order to compute its reflected mass mref, which
approximates the human inertia’s contribution to the impact’s
kinetics. Each colliding body part’s mref is computed as
the reflected mass of the part’s corresponding segment of
a model that groups the human body into a vertical artic-
ulated chain of four rigid bodies, subsuming respectively
the feet, lower legs, upper legs, and remaining upper body.
These segments’ lengths and inertial properties are sums of
the subsumed parts’ values for average adults (according
to [20]). Following the approach in [21], we compute for our
model mref ≈ 4, 13, 24 [kg] for the feet, lower and upper
legs, respectively. Assuming the robot’s mass as mrob = 20
[kg], we compute the kinetic energy ∆E which a collision
would absorb (and possibly restore) as ∆E = µv2rel/2, where
µ = (m−1

ref + m−1
rob )−1 is the reduced mass and vrel is the

relative velocity of both agents’ centers towards each other.
As ∆E directly quantifies the bodies’ potential deformation,
it provides a measure for collisions’ severity [12].

V. RESULTS

a) Benchmark results: We represent the seven metrics
described in Section IV-.0.f on two radar charts shown in

Fig. 2. Table I gives the standard deviation for each metric
of the radar charts.

TABLE I
STANDARD DEVIATION FOR HIGH AND LOW DENSITY RADAR CHARTS

Navigation method Metrics

T/Tcr L/Lcr J/Jcr NBRreac. NBRvel. Prox. Colliding

BASELINE High density 0.190 0.00 0.238 1.022 0.070 0.132 0.132
BASELINE Low density 0.022 0.00 0.244 1.402 0.084 0.164 0.027

DWA High density 0.257 0.225 0.289 0.488 0.089 0.175 0.117
DWA Low density 0.171 0.123 0.280 0.807 0.096 0.171 0.040

RVO High density 0.236 0.100 0.015 1.052 0.129 0.141 0.092
RVO Low density 0.145 0.067 0.029 1.863 0.125 0.149 0.031

b) Collision Assessment Results: Fig. 3 shows how
many collisions occurred with particular values of energy
∆E during all the simulations with a given robotic controller.
To normalize by the simulated time, we define a particular
robotic controller’s collision rate as fc = Nc/T and energy
rate Q = Σ∆E/T , where Nc, T and Σ∆E denote respec-
tively the total number of collisions, elapsed time and energy
absorption in corresponding simulations. For the baseline,
DWA, and RVO, we measure fc = 0.624, 0.610, 0.311 [1/s]
and Q = 2.568, 2.285, 0.901 [J/s], respectively.

VI. DISCUSSION

This section takes each of the results and gives an inter-
pretation in two levels of comparison: path efficiency and
crowd safety.

a) Path efficiency: The path efficiency can be evaluated
using the radar chart on Fig. 2. For the metric L/Lcr, an
indicator of path length, naturally, the score for the baseline
method is 1, as the method will take the shortest path possible
in the corridor (which validates H1). RVO is a lot more direct
than DWA in both low density and high density crowds,
which shows the tendency of DWA to take less direct paths
than RVO to reach the goal (validates H2 and H3). This idea
is reinforced by the J/Jcr metric which is an indicator of the
variation of linear and rotational speed. Indeed, the baseline
and RVO methods have a lot of erratic movements (start and
stop), while DWA takes the robot dynamics into account
and punishes the difference between the current velocity and
desired velocity. The metric T/Tcr, which is an indicator of
the time taken to reach the goal, shows that the most direct
method, the baseline, is the fastest in both low and high
density scenarios (which validates H1). The two methods
RVO and DWA are much slower in high density scenarios.
Indeed, such scenarios lead to situations where the only
solution for the robot is to totally stop the movements or
even move back, facing the starting point instead of the goal.

b) Crowd safety: The crowd safety can be appreciated
through the Proximity metric, the Colliding metric, the
neighbour-related metrics (“NBR reac.” and “NBR vel.”) and
the histograms of impact energy on Fig. 3.

First, it is interesting to notice that, on the radar chart
for low density crowds, the colliding metric has a maximum
value for each of the methods which means that in low den-
sity (0.1 pm−2) the crowd is perfectly capable of avoiding the
robot without it using any specific method. In high density



Fig. 2. Radar charts of the benchmark. Left: We compute the seven metrics described in Section IV-.0.f for 20 scenarios: 4 levels of density, 5 crowd
flows (see Section IV-.0.b). Right: Similarly, we compute the same radar chart for 5 scenarios with low density only (0.1pm−2)

Fig. 3. The histograms count the collisions for each robotic controller over
all simulations, discriminating them by estimated energy absorption.

scenarios, the baseline has a lower score than the two other
methods: the robot does not try to avoid the crowd, thus the
risk of collision increases (which validates H1). Also, in high
density scenarios, RVO performs better than DWA on the
colliding metric (which validates H2 and H3). The crowd
reaction to the robot can be evaluated through the crowd
velocity metrics: “NBRreac.”, and “NBRvel.”. The radar
charts show that in high density crowds, the robot’s neighbors
are more likely to change their orientation instead of their
speed. In low density, the robot presence does not impact
the crowd much, with the exception of the DWA “NBRreac.”
metric which shows that the robot’s neighbors change their
orientation a lot more than the rest of the crowd. We think
that the robot movement generated by RVO and the baseline
methods generate more linear trajectories than the DWA
method (which validates H3). Linear trajectories are easier
to predict by the crowd simulators we used in the benchmark
(which, at best, linearly extrapolate the trajectory). The
Proximity is naturally higher in high density than in low
density crowds, but the robot navigation method does not
seem to affect this metric. The histograms of impact energy
in Fig. 3 show that the 3 considered techniques generate a
similar distribution of impact energies and thus also impact
forces when collisions occur. It is also visible that DWA leads
to the most collisions at all energy levels. However, the larger

total number results from longer simulations, as the rate of
collision fc (Sec. V-.0.b) for DWA is in between both other
methods (confirming the colliding metric’s ranking). Still, the
Baseline collides more often than RVO on high energy, while
RVO collide more often than the baseline on low energy,
which makes it a good compromise between the number of
collision and energy (which validates H1 and H3). Finally,
the rates of collision and energy absorption fc and Q (Sec. V-
.0.b) are consistently bad for the Baseline, better for DWA,
and a lot better for RVO, which validates H1, H2 and H3
and indicates that RVO leads to the lowest number and risk
of collisions occurring per unit time.

VII. CONCLUSION

We have introduced a new software to simulate the nav-
igation of robots in virtual crowds. We have demonstrated
the potential of such simulator to be used as a benchmark
tool to compare various navigation techniques. This paper
demonstrate limited results, only sufficient to demonstrate
the relevance of this solution to be used as a benchmark
tool. Nevertheless, we believe that the solution we propose
is of interest for the community and opens new perspective
in the evaluation of robot crowd navigation capabilities. For
future work, we want to first extend the metrics by which
we evaluate the robot behaviour. For example, we would like
to measure near-collision situations to evaluate more deeply
safety aspects. Other elements than just trajectories should
be considered. For example, simulation can further explore
the question of sensing the crowd such as by comparing
navigation results in various sensors configuration. Another
direction is to extend the number of scenarios we consider.
The strength of simulation is its potential to explore many
situation for the robot, and is yet unexploited here. Devising
scenarios of greatest interest should however be done at the
community scale.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation program
under grant agreement No 779942, CrowdBot.



REFERENCES

[1] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha,
“Porca: Modeling and planning for autonomous driving among many
pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3418–3425, 2018.

[2] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[3] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: An experi-
mental comparison,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 1341–1346.

[4] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 6015–6022.

[5] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: science and systems, 2012.

[6] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of human–robot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335–356, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914557874

[7] P. Trautman and A. Krause, “Unfreezing the robot: Navigation
in dense, interacting crowds,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp.
797–803.

[8] P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli, “Reactive
planning for assistive robots,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 1276–1283, 2018.

[9] T. Fraichard and V. Levesy, “From crowd simulation to robot naviga-
tion in crowds,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 729–735, 2020.

[10] A. Turnwald, D. Althoff, D. Wollherr, and M. Buss, “Understanding
human avoidance behavior: interaction-aware decision making based
on game theory,” International Journal of Social Robotics, vol. 8, no. 2,
pp. 331–351, 2016.

[11] A. Turnwald and D. Wollherr, “Human-like motion planning based
on game theoretic decision making,” International Journal of Social
Robotics, vol. 11, no. 1, pp. 151–170, 2019.

[12] R. Rossi, M. P. Polverini, A. M. Zanchettin, and P. Rocco, “A
pre-collision control strategy for human-robot interaction based on
dissipated energy in potential inelastic impacts,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 26–31.

[13] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel,
R. Burgkart, A. Bicchi, and A. Albu-Schäffer, “On making robots
understand safety: Embedding injury knowledge into control,”
The International Journal of Robotics Research, vol. 31, no. 13,
pp. 1578–1602, 2012. [Online]. Available: https://doi.org/10.1177/
0278364912462256

[14] D. Helbing, I. J. Farkas, P. Molnar, and T. Vicsek, “Simulation of
pedestrian crowds in normal and evacuation situations,” Pedestrian
and evacuation dynamics, vol. 21, no. 2, pp. 21–58, 2002.

[15] T. B. Dutra, R. Marques, J. B. Cavalcante-Neto, C. A. Vidal, and
J. Pettré, “Gradient-based steering for vision-based crowd simulation
algorithms,” in Computer Graphics Forum, vol. 36, no. 2. Wiley
Online Library, 2017, pp. 337–348.

[16] W. van Toll, F. Grzeskowiak, A. L. Gandı́a, J. Amirian, F. Berton,
J. Bruneau, B. C. Daniel, A. Jovane, and J. Pettré, “Generalized
microscropic crowd simulation using costs in velocity space,” in
Symposium on Interactive 3D Graphics and Games, 2020, pp. 1–9.

[17] D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and
J. Pettré, “Parameter estimation and comparative evaluation of crowd
simulations,” in Computer Graphics Forum, vol. 33, no. 2. Wiley
Online Library, 2014, pp. 303–312.

[18] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“Pythonrobotics: a python code collection of robotics algorithms,”
2018.

[19] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Automat. Mag., vol. 4, no. 1,
pp. 23–33, Mar. 1997. [Online]. Available: http://ieeexplore.ieee.org/
document/580977/

[20] D. A. Winter, Biomechanics and motor control of human movement.
John Wiley & Sons, Ltd, 2009, ch. 4, pp. 82–106. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470549148.ch4

[21] O. Khatib, “Inertial properties in robotic manipulation: An object-
level framework,” The International Journal of Robotics Research,
vol. 14, no. 1, pp. 19–36, 1995. [Online]. Available: https:
//doi.org/10.1177/027836499501400103


