
Robotics and Autonomous Systems 165 (2023) 104428

J

u

j
r

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Automatic extension of a symbolicmobilemanipulation skill set
Julian Förster a,∗, Lionel Ott a, Juan Nieto b, Nicholas Lawrance a,c, Roland Siegwart a,
en Jen Chung a,d

a ETH Zurich, Zurich, Switzerland
b Microsoft Mixed Reality and AI Labs, Zurich, Switzerland
c CSIRO, Pullenvale, Australia
d The University of Queensland, St Lucia, Australia

a r t i c l e i n f o

Article history:
Available online xxxx

Dataset link: https://github.com/ethz-asl/hi
gh_level_planning

Keywords:
Skill representation learning
Learning to plan
Task and motion planning

a b s t r a c t

Symbolic planning can provide an intuitive interface for non-expert users to operate autonomous
robots by abstracting away much of the low-level programming. However, symbolic planners assume
that the initially provided abstract domain and problem descriptions are closed and complete. This
means that they are fundamentally unable to adapt to changes in the environment or tasks that are not
captured by the initial description. We propose a method that allows an agent to automatically extend
the abstract description of its skill set upon encountering such a situation. We introduce strategies
for generalizing from previous experience, completing sequences of key actions and discovering
preconditions to ensure computational efficiency. The resulting system is evaluated on a symbolic
planning benchmark task and on object rearrangement tasks in simulation. Compared to a Monte
Carlo Tree Search baseline, our strategies for efficient search have on average a 25% higher success
rate at a 67% faster runtime. Code is available at https://github.com/ethz-asl/high_level_planning.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Today, mobile manipulators are being developed for work in
nstructured human-centered environments, i.e. spaces that are

not specifically designed for deploying robots. To reach a level
of ubiquity similar to their stationary counterparts in structured
(e.g. manufacturing) domains, we need to shift to more flexible
robot planning and execution that can adapt to changing envi-
ronments and tasks. The goal is to deploy mobile manipulators in
environments where it is impossible to foresee at design time all
possible variations of tasks, disturbances, types and instances of
objects, etc. In addition, a user would ideally only need to interact
with the system at a mission level [1], specifying high-level goals
(e.g. tidy the table) for which the robot would autonomously
generate a plan that it then executes.

Symbolic planning provides a framework that is conducive
to this type of user interaction [2]. Here the goal is to develop
domain-independent planners that find a sequence and parame-
terization of skills that achieve the goal state. By operating on an
abstract level, planning for long-horizon tasks becomes tractable.

While symbolic planning can be applied very naturally to
robotics problems [3], it still relies on a complete definition

∗ Corresponding author.
E-mail addresses: fjulian@ethz.ch (J. Förster), lioott@ethz.ch (L. Ott),

uannieto@microsoft.com (J. Nieto), nicholas.lawrance@csiro.au (N. Lawrance),
siegwart@ethz.ch (R. Siegwart), jenjen.chung@uq.edu.au (J.J. Chung).
ttps://doi.org/10.1016/j.robot.2023.104428
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
of the problem at planning time. Additionally it typically relies
on the closed world assumption, i.e. that all relevant states are
observable and observed by the system. Upon encountering new
tasks or new situations that cannot be correctly captured by
the existing symbolic abstraction, planning will fail. However, in
realistic scenarios, the open world assumption is more realistic,
acknowledging that it is not possible for a single agent to have
complete knowledge of all relevant states. To deal with this in
practice in existing approaches, the symbolic abstraction would
have to be updated manually to solve a new task.

This paper proposes an approach that overcomes the limita-
tions imposed by a closed and complete world assumption. Upon
encountering a failure during planning or plan execution due to
insufficient symbolic operators, our method explores promising
extensions to the currently defined set of symbolic skills to reach
the goal. This is based on the assumption that the existing skills
available to an agent are sufficient to solve the task at hand, but
the symbolic model used for planning is not expressive enough to
account for this. In this sense, our method can be seen as ‘‘learn-
ing to plan’’. For example, in a mobile manipulation domain, there
is a very large number of outcomes that can be achieved with a
‘‘place’’ skill, depending on context, objects being manipulated,
scene, etc. Instead of adding new robot skills for each desired
outcome, we opt to extend the planning model by modifying
what existing robot skills can be used for.

Since building a complete symbolic description (for arbitrary
initial states) for an open world is unrealistic, we opt for a lifelong
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2023.104428
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104428&domain=pdf
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
http://creativecommons.org/licenses/by/4.0/
mailto:fjulian@ethz.ch
mailto:lioott@ethz.ch
mailto:juannieto@microsoft.com
mailto:nicholas.lawrance@csiro.au
mailto:rsiegwart@ethz.ch
mailto:jenjen.chung@uq.edu.au
https://doi.org/10.1016/j.robot.2023.104428
http://creativecommons.org/licenses/by/4.0/

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

l
d
p
t
b
a

a
e
e
r
s

b
v
p
d
o
t
c
a
t
n
c

2

i
w
i
a
c
e

n
t
e
c
t

t
f
f
p
o
r
o
a
i
t
w

h
e
p
P

earning mode of operation. Instead of trying to build a complete
escription once at design time, we envision an incremental
rocess of learning to solve new tasks as they occur, possibly also
hrough interaction with a user. The exploration process needs to
e as efficient as possible to make this practical. Therefore, our
lgorithm features:

• Generalization of existing skills to other object types and
tasks;
• Sequence completion based on key actions to reduce the

search space;
• Precondition discovery to keep the symbolic description

modular and compact; and
• The ability to optionally take user demonstrations into ac-

count.

In summary, the contribution of this paper is a method to
utomatically extend the symbolic description of an agent op-
rating under an open world assumption. We propose a novel
xploration scheme which leverages the above-mentioned algo-
ithm features to achieve flexible and accurate extensions to the
ymbolic description while retaining computational efficiency.
To demonstrate our approach, we evaluate it both in a PDDL

enchmark domain and in a mobile manipulation domain in-
olving continuous parameters, thus requiring task and motion
lanning (TAMP). The latter domain serves to showcase that,
espite being general, our method can be applied to practical
bject rearrangement situations, including when obstacles need
o be overcome or moved to achieve a goal. In both domains, we
ompare the exploration and planning efficiency of our approach
gainst Monte Carlo Tree Search (MCTS). Our results show that
he proposed algorithm leads to better performance in plan-
ing for unseen tasks, both in terms of success rate and task
ompletion time.

. Related work

Symbolic planning lends itself very well to high-level planning
n robotics [3]. In various applications [4,5] impressive behaviors
ere achieved, using it to decide what action to take next. Typ-

cally however, the symbolic domain and problem descriptions
re manually engineered, making it necessary to adapt them in
ase new tasks arise or if the system is to be deployed in a new
nvironment.
TAMP approaches were developed for tasks that require plan-

ing on a geometric level [6–8]. These approaches can deal with
he interplay between discrete and continuous state spaces. How-
ver, similar to purely symbolic planning, TAMP methods typi-
ally rely on hand-engineered symbolic operators [9], requiring
he same manual adaptation when meeting new tasks.

Apart from using symbolic operators, other approaches exist
hat introduce an action hierarchy to guide planning, the options
ramework [10] being a prominent example. Another algorithm
or discovering new options given a goal state classifier is pro-
osed in [11]. While this idea is similar to our approach, we
pted to use PDDL as a representation for skills due to its human-
eadability which simplifies retracing decisions. While the goal
f hierarchical planning (also known as macro operator gener-
tion) [12,13] is to combine primitive skills into meta-skills for
mproved planning efficiency, it does not accommodate adapta-
ion to new goals or unmodeled environment dynamics, which
e investigate in this work.
The complexity of interacting with real-world environments

as motivated decades of research on leveraging learning to
nable planning or to improve its efficiency. The problem of
lanning in changing environments can be seen as a MacGyver
roblem [14], alluding to the creativity of the namesake TV show
2

character. To predict actions an agent should take to achieve
a goal, existing methods are trained using human demonstra-
tions [15], behavior cloning from expert-defined policies [16,17],
or curiosity-based exploration of the state space [18]. Addition-
ally, reinforcement learning (RL) can be applied to finding action
sequences in a goal-driven manner.

In comparison however, planning-based approaches leverag-
ing symbolic models have a number of qualitative advantages.
Operating based on PDDL makes the resulting action models
human readable, rendering resulting plans explainable. Further,
having PDDL as a common language allows for elegant ways
to provide user demonstrations and generalize from previous
experience as we show in this work. The resulting descriptions
are, thanks to the PDDL standard, compatible with existing TAMP
systems, allowing us to build on the latest advances from that
field. Finally, RL or other model-free approaches can have diffi-
culties generalizing beyond the distribution of the training data.
This can become a problem considering the significantly longer
training times of the RL baselines compared to the symbolic
methods reported in [19].

Apart from these qualitative differences, related work has
shown that the success rate of RL methods is inferior compared to
explicit planning methods [18–20]. Therefore, we do not consider
RL a suitable approach to the on-demand lifelong learning style
operation of our method that we describe in Section 1 and Sec-
tion 6. In addition to this, leveraging abstract symbolic operators
as a model to guide the search for a plan was shown to increase
search efficiency for TAMP [6,19].

Learning symbolic operators to support planning is an active
research topic [20,21]. However, studying this in domains that
involve a mix of discrete and continuous state spaces has received
little attention. In this vein, multiple methods [22,23] exist for
building a symbolic description based on exploration and high-
dimensional sensor data. While simultaneously learning state
abstractions allows automatically building a symbolic descrip-
tion, it also necessitates retraining for every new task instance,
limiting generalizability. Despite efforts to tackle this [24], the
need for retraining cannot be completely eliminated. For this
reason and until future work finds a practical solution, most
TAMP approaches, including our method, rely on pre-defined
state abstractions that generalize over environments, scenes and
objects.

Diehl et al. [25] present a system to build symbolic planning
operators from human demonstrations. While demonstrations
are a very promising way to expedite learning to plan, we believe
that automatic exploration as proposed in this paper is crucial
to minimize the required amount of costly human interaction.
Nevertheless, our method allows optionally leveraging human
demonstrations if they are available.

The work of Silver et al. [19] is the closest to ours. They pro-
pose learning symbolic operators in a bottom-up fashion based
on transition data that is collected using an oracle planner. While
we also aim to learn symbolic operators, we adopt a goal-driven
approach that allows us to narrow the search space and avoid
relying on an oracle planner, thus reducing the engineering effort
needed before training can occur.

In summary, we propose an efficient approach to learning
symbolic action models in a goal-driven exploration scheme. The
resulting models can serve as drop-in replacements for their
hand-engineered counterparts that are typically used today for
symbolic planning or TAMP.

3. Definitions and problem formulation

The aim of symbolic planning is to produce a sequence of tran-
sitions leading from the initial state to a goal state. The Planning

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

D
t
s
d

omain Definition Language (PDDL) [26] was created to simplify
he modeling of planning problems and to facilitate comparing
ymbolic planners. It splits the problem into a problem-invariant
omain description and a problem-specific problem description, the

former consisting of:

• The set of object types T organized in a hierarchy.
• The set of predicates P that are available to model a state.

Each predicate can accept parameters of predefined types
and evaluates to a binary value.
• The set of actions A (also referred to as skills) the agent

can perform, each accepting parameters. An action’s pre-
conditions state which predicates need to hold before the
action can be executed and its effects model what predicates
change after executing the action.

The problem description contains:

• A list of all entities E that are relevant for the planning
problem, together with a specification of their types.
• The initial state s0, defining the initial values of all predi-

cates.
• The goal Sg , defined as the set of states that meet the

specifications of a target subset of all predicates.

With these two descriptions, which can be summarized as d =
(T , P, A, E, s0, Sg), off-the-shelf symbolic planners can produce a
plan that solves the task specified by the problem description.
However, this assumes that the domain description is rich enough
for a solution to exist. We consider the problem where this as-
sumption does not hold and thus there is a need to automatically
augment an existing domain description that is not rich enough
to model the laws governing an environment, or the capabilities
of the agent. This can be encountered when:

(C1) The preconditions of an action performed by the agent are
not fully modeled (e.g. because of a new disturbance or the
agent being deployed in a new environment). This case can
be detected as a failure during plan execution.

(C2) The agent is tasked with achieving a newly introduced pred-
icate (e.g. through specification of a goal state by a user),
for which it is not modeled how to achieve it using the
available actions. Characteristic of this case is that the
planner fails to output a valid plan given d.

In the following, we split the set of actions into two subsets,
Ab and Am with A = Ab ∪ Am. Here, Ab is a set of basic actions
ab ∈ Ab available to the agent initially, where each action,

ab =
(
θab , pre(θab), eff(θab), φab

)
, (1)

takes parameters θab , and has a low-level implementation φab
that grounds it. The term pre(·) denotes action ab’s preconditions,
a list of binary predicate states (in Eq. (1) parameterized by
ab’s parameters θab) that need to hold before ab can be exe-
cuted. In the same fashion, eff(·) represents ab’s effects, a list
of predicate states that take effect after executing ab. As an
example, consider a grasp action. Its list of preconditions could be
defined as [(in-reach target-object robot), (empty-hand
robot)], where in-reach and empty-hand are the predicate
labels, and the other tokens in the round brackets represent
parameter assignments.

Meta actions am ∈ Am are defined similarly as,

am =
(
θam , pre(θam), eff(θam), ρam

)
. (2)

Instead of using a grounding φ, these actions are defined using
a sequence of basic actions ρam = (ab,1, ab,2, . . .) where ab,i ∈
A . When choosing a meta action a , its sequence is executed
b m

3

under the hood. Introducing meta actions allows the inclusion of
additional preconditions and effects that are not captured by the
underlying basic actions, which we aim to keep fixed.

To solve cases (C1) and (C2), we aim to adapt applicable types,
preconditions and effects of existing meta actions in Am, leading
to A′m, as well as add new meta action(s) a+m ∈ A+m as necessary.
The planner should be able to use d′ = (T , P, Ab∪A′m∪A

+
m, E, s0, Sg)

to devise a plan that leads to successfully achieving Sg .
As mentioned in Section 2, assuming access to predicate

groundings is common for robotic applications of symbolic plan-
ning and TAMP. Thus, in this work, we make a similar assumption,
i.e. that grounding classifiers provide measurements of instanti-
ations of the predicates in P , which are then used to adapt the
symbolic description.

4. Exploration for skill set extension

4.1. Overview

To get a better intuition of the problem and an overview of our
proposed method, consider the following example. A mobile ma-
nipulation system (MMS) is equipped with a basic skill set Ab =

{navigate, grasp, place, move} and a generic symbolic description
modeling each skill’s preconditions and effects as actions. Con-
fronted with a new user-provided goal to place a cup inside a
drawer (where inside is a predicate that no symbolic operator
has in its effect set), a symbolic planner using the initial symbolic
description fails to output a valid plan, since it is unknown how
to reach the effect inside (see case (C2) in Section 3). From
here, our proposed exploration algorithm (visualized in Fig. 2)
takes over. The exploration module (Section 4.2) forms the core,
sampling and executing sequences of basic actions and testing if
the goal is achieved. To keep the sampling effective despite the
large search space that is caused by long sequences and contin-
uous parameters, we rely on sequence completion (Section 4.3).
To leverage guidance from a user, there is the option to include
simple demonstrations (Section 4.5). Finally, when a successful
sequence that achieves the goal is found, we use a precondition
discovery procedure (Section 4.6) to determine which actions
are required under different conditions, thus only executing the
necessary actions. The newly identified meta actions constituting
the successful sequence are added to the symbolic description
so that the symbolic planner can devise successful plans for this
situation in the future.

Continuing our example, assume that after solving the initial
problem of placing a cup inside a drawer, the system is given
a similar goal, e.g. to place a plate inside a different drawer.
Although we cannot assume that the same plan we found be-
fore will work (e.g. due to different dimensions of the involved
objects), we would like to benefit from previous experience.
This knowledge transfer is achieved by the generalization module
(Section 4.7).

In the following sections, we first introduce the core explo-
ration algorithm (Section 4.2), before detailing the extensions
mentioned above, and how they fit into the core algorithm.

4.2. Exploration

Exploration (Algorithm 1) begins once (C1) or (C2) (see Sec-
tion 3) occurs. At its core, the algorithm samples sequences and
their parameterizations which are then executed and tested for
success. The inputs are: a set of admissible goal states Sg , a set of
objects O to consider during the exploration (either all objects in
the scene or a subset to reduce the search space), a time budget
Tmax, and a maximum sequence length lmax that limits the search
depth.

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

p
e
d
i
f
b
a

t
c
t
a
a
l
a
s
d

t
r
e
e

Algorithm 1: Exploration
Input: Set of goal states Sg , relevant objects O, initial state

s0, time budget Tmax, max. seq. len. lmax
1 while ElapsedTime() < Tmax do
2 S̃ ← SampleSequence(lmax);
3 P̃ ← SampleParameters(S̃, O);
4 Ŝ, P̂, Ikey ← SequenceCompletion(S̃, P̃, s0); // see

Sec. 4.3
5 success← Execute(Ŝ, P̂, Sg);
6 if success then break;
7 if success then
8 S, P ← SequenceRefinement(Ŝ, P̂, Sg , Ikey);
9 C ← PreconditionDiscovery(S, P,O, Ikey); // see

Sec. 4.6
10 ExtendSymbolicDescription(Sg ,S,P,C);

We assume that the set of relevant objects O is provided by a
erception module ([27] for example, or any other system with
quivalent capabilities). As long as the perception module can
etect new and previously unseen objects, our system can readily
nclude them in its exploration procedure without further modi-
ications. For this work, we assume such a perception module to
e given in order to focus on planning aspects. This is a common
ssumption, also among related work [19,25].
To obtain a sequence candidate S̃ = {ã1, . . . , ãñ}, ñ basic ac-

ions are independently and uniformly sampled from Ab. This pro-
edure is labeled as SampleSequence in Algorithm 1. Although
he final successful sequence length depends on the problem
t hand, we found that the best compromise between general
pplicability and runtime is to only sample sequences of length
max. In case only part of a sampled sequence is needed to achieve
goal, we have a SequenceRefinement strategy to shorten the
equence to the relevant part. This will be discussed below. For a
iscussion on alternative sampling strategies, refer to Appendix.
Parameters (i.e. placement positions, objects, etc.) for the ac-

ions in the sampled sequences are determined with SamplePa-
ameters according to the following strategy. Discrete param-
ters are obtained by sampling uniformly from the subset of
ntities Oi,j ⊆ O that satisfy the type restriction of action ãi’s jth

parameter. For continuous parameters, a sampling strategy needs
to be defined. For placement positions considered in this work for
example, we sample uniformly in a volume around the objects
in O. This strategy is purposefully independent of the predicate
that needs to be fulfilled to ensure a broad range of predicates
can be used with a single simple strategy, avoiding the need for
predicate-specific samplers which are common in TAMP systems.

Once sequence and parameterization are determined, execut-
ing the candidate plan in a physics simulator using Execute
checks whether the system successfully terminates in Sg , thus
satisfying the goal predicates.

When a successful sequence is found, the exploration loop
stops and the symbolic domain description is extended. In prepa-
ration for this, we run SequenceRefinement to reduce the
sequence to the minimum length that is still successful in achiev-
ing the goal by removing actions iteratively and testing whether
the resulting sequence still achieves the goal successfully. This
will be discussed in detail in Section 4.4.

For the extension of the symbolic description, implemented
in ExtendSymbolicDescription, our algorithm determines
parameters, preconditions and effects of the refined sequence,
which is then combined into a single new meta action a∗m. Fig. 3
shows an example for this procedure. Effects are determined
4

symbolically during a forward pass through the sequence by
collecting the effects of each individual action and removing
effects from the list that are undone by actions later in the
sequence:

eff(a∗m) =
n⋃

i=1

eff(ai) (3)

where n is the length of the successful sequence and ai is the ith
action in the sequence. In addition, the user-defined goal is added
to the list. Preconditions are extracted similarly, by collecting the
preconditions of all actions during a backward pass and removing
preconditions that are satisfied by actions earlier in the sequence:

pre(a∗m) =
1⋃

i=n

pre(ai). (4)

The parameters of all actions in the sequence are collected, ac-
counting for cases where several actions act upon the same
entity.

Furthermore, we want to avoid that our symbolic description
allows applying meta actions to entities that are incompatible in
reality. To this end, new symbolic types are introduced for all
parameter variables of the newly created meta actions, branching
off the original types of the entities assigned to the parameter
variables. These entities are then assigned the new types in
addition to their existing types. This prevents incorrect infer-
ence results that could be caused by having a meta action being
applicable to new entities it was not tested with.

Returning to our running example, this means that after ex-
ploration, cup and drawer are assigned new sub-types, see Fig. 4.
Assume that the scene also contains a second cup, as well as
a bottle that does not fit into the drawer. When tasked with
putting either object into the drawer, symbolic planning would
fail because the new action is only applicable to entities with
the new sub-types. Without the sub-type limitation, the system
would assume the bottle could be placed into the drawer in
the same way. Instead, due to the symbolic planning failure,
our algorithm would be called to determine whether the goal
can be achieved with the new object. If yes, the correct sub-
type can be added to the new object. We deem this procedure
necessary, since in general it is not possible to automatically
define conclusive rules for determining whether an action in the
symbolic description is applicable to a given object. To ensure we
can manipulate all objects in the environment, we rely on our
algorithm being called for every unseen object. If done naively,
this would perform exploration from scratch every time, which
would be computationally prohibitive. However, we are able to
overcome this challenge by using a generalization module which
will be discussed in Section 4.7.

4.3. Sequence completion

Output sequences for mobile manipulation tasks can be fairly
long. However, we note that often just a small subset of key
actions are crucial for the success of the task, while the other
actions merely fulfill preconditions of the key actions. Based on
this insight, we can drastically reduce our exploration effort by
sampling shorter sequences on line 3 of Algorithm 1 and leverag-
ing the symbolic planner to solve for the corresponding complete
and feasible sequence in our SequenceCompletion routine.

Using our running running example, a successful sequence
that achieves the goal state ‘‘cup inside drawer’’ would consist

of the following actions:

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

t

c
a
g
n
c
t

2
a
p
i

Algorithm 2: Sequence completion

Input : Sequence S̃, parameters P̃ , initial state s0
Output: Completed sequence Ŝ, parameters P̂ , indices of

key actions Ikey
1 Function SequenceCompletion(S̃, P̃ , s0)
2 Ŝ, P̂, Ikey ← [], [], [];
3 X ← s0; /* track current state */
4 foreach ãi, θ̃i ∈ S̃, P̃ do
5 p← GetPreconditions(ãi);
6 Ši, P̌i ← SolvePDDL(initial = X, goal = p);
7 X ← ApplyEffects(X, (Ši, ãi), (P̌i, θ̃i));
8 Ŝ ← Ŝ + Ši + ãi; P̂ ← P̂ + P̌i + θ ;

9 Ikey.append
(
length(Ŝ)− 1

)
;

10 return Ŝ, P̂ , Ikey;

[" navigate to drawer " , " grasp drawer " ,
"move drawer " , " place drawer " ,
" navigate to cup " , " grasp cup " ,
" navigate to drawer " , " place cup "] .

With sequence completion, we can infer this sequence from
he considerably shorter sequence:

["move drawer " , " place cup "] .

Consequently, the task of finding a sequence that achieves a
ertain goal is reduced to finding the key actions from which such
sequence can be constructed using the symbolic planner, thus
reatly reducing the search space. Note that our algorithm does
ot know a priori whether sampled actions are key actions. Only
ompleting and testing a sequence for success reveals whether
he sampled actions are key actions.

Our procedure of sequence completion is laid out in Algorithm
. For each key action ãi in the sampled sequence, we solve
symbolic planning problem (using SolvePDDL) that has the
reconditions of the current key action as desired goal, resulting
n a fill sequence Ši = (iǎ1, . . . , iǎňi) and corresponding param-
eterizations P̌i. Both are appended to the completed sequence Ŝ
and parameters P̂ . Furthermore, before the next iteration, effects
of both the fill sequence and the currently considered key action
are symbolically applied to state X (using ApplyEffects), which
was initialized with s0. After iterating over all key actions, the
completed sequence returned by SequenceCompletion has the
form,

Ŝ =
(
1ǎ1, . . . , 1ǎň1

Š1

, ã1, 2ǎ1, . . . , 2ǎň2
Š2

, ã2, . . . , ñǎňñ , ãñ
)
. (5)

4.4. Sequence refinement

As mentioned in Section 4.2, our SequenceRefinement pro-
cedure shortens a successful sequence found through exploration
to the minimum length required to still be successful. This is
important to avoid the need for assumptions on the success-
ful sequence lengths. Instead, we sample longer sequences of
key actions that can contain solution sequences, and rely on
sequence refinement to shorten after a successful sequence was
determined.

As a first step of the procedure, we truncate the sequence after
the action that achieves the desired goal, since by consequence
any additional actions are superfluous for our problem. Next,
5

we iterate through key actions from second-to-last to first. On
its turn, a key action is replaced by other actions between its
neighboring key actions, as well as removed. The resulting key
action sequences are completed using sequence completion and
then tested for success. Among successful sequences, the shortest
one with the least remaining key actions is selected to continue
from. In Fig. 5, the SequenceRefinement procedure is visualized
using an example.

4.5. User demonstrations

The concept of sequence completion allows for another ele-
gant way to improve efficiency. Since humans are very good at
planning for manipulation tasks, it seems natural to leverage a
user’s knowledge. To achieve this, a user can optionally supply
our system with one or several key actions that are critical to
achieve a goal. In addition, crucial parts of the parameterization
can be given. The key action sequence shown in Section 4.3 is
an example for a potential user demonstration, move and place
being the demonstrated key actions while drawer and cup are
the corresponding parameters. Note that this demonstration does
not provide values for all parameters of the key actions. It is
up to the user to decide which parameter(s) they want to pro-
vide a demonstration for. All other parameters will be filled
by our method’s exploration procedure. For more examples of
demonstrations, see Section 5.3.

The exploration procedure with sequence completion can then
be used to fill in any missing parameters of the key actions as
well as any actions that are missing before or in between the
key actions. All in all, this feature provides an interesting middle
ground, making it easy for the user to provide a demonstration
without the need to specify all details of a sequence and at the
same time reducing the search space during exploration.

4.6. Precondition discovery

In practice it can happen that not all steps of a discovered
sequence are needed every time a similar goal needs to be
reached. For example, if during exploration, an obstacle was
present (drawer closed in our running example) and the agent
correctly learned that the obstacle needs to be removed (drawer
needs to be opened) before the goal can be achieved (object
placed inside), the actions to remove the obstacle (opening the
drawer) will only be needed in the future if the obstacle is present
(drawer is closed) in the individual situation.

The symbolic description should correctly capture what parts
of a sequence actually achieve the goal and what parts solely
fulfill preconditions for the goal-achieving actions. We tackle this
PreconditionDiscovery (Algorithm 3) by simulating a discov-
ered successful sequence and observing any predicate changes
that are not modeled as action effects (side effects).

The function FindRelevantPredicates determines the
predicates ρ to be considered, by finding all possible instantia-
tions of the predicates P known to the system with all possible
combinations of objects O. For example, assume that a predicate
‘‘on’’ is defined in the given symbolic description, and there
are multiple potential supporting and supported objects in the
domain. For every combination of supporting and supported
object, an instantiation of the ‘‘on’’ predicate would be added to
ρ. The grounding functions of the instantiated predicates ρ can be
evaluated using MeasurePredicates. In turn, DetectChanges
returns the difference between two lists of measured predicates,
ignoring all changes that are expected according to the symbolic
description of the current action.

As shown in Algorithm 3, the successful sequence discovered
by the exploration algorithm (Section 4.2) is executed action

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

f
f
d
a
u
g
a

o
r
a
c
a
t
t
d
s
t
f
S

4

t
j
l
e
t
a
e
a

t
c
t
t
c
g
(
S
g

i
s
w
e
f
t

t
t

i

w

f
a
t
f

5

b
b
d
t
a
e
w
p
S

Algorithm 3: Precondition discovery
Input : Sequence S, param. P , relevant objects O
Output: Precondition candidates C

1 Function PreconditionDiscovery(S, P, O)
2 C ← []; // precondition candidates
3 ρ ←FindRelevantPredicates(O);
4 ppost ←MeasurePredicates(ρ);
5 for a, θ ∈ S, P do
6 ppre ← ppost;
7 Execute(a, θ);
8 ppost ←MeasurePredicates(ρ);
9 pnew ← DetectChanges(ppre, ppost, a, θ);

10 C ← C + pnew;
11 C ←FilterToggling(C);
12 return C;

by action, interleaved with discovering side effects using the
functions introduced above. Each detected change is considered a
candidate for a precondition of the final key action that achieves
the goal.

However, to avoid adding superfluous preconditions and thus
ragmenting the discovered sequence more than necessary, we
ilter the candidates (with FilterToggling), removing candi-
ates that get toggled throughout the sequence execution, i.e. set
nd later unset or vice versa, because any toggled predicates look
nchanged to the last action which achieves the user-defined
oal. Thus, toggled predicates cannot be preconditions for that
ction.
Finally, if precondition discovery is used, the operating mode

f the function ExtendSymbolicDescription (used in Algo-
ithm 1 and described in Section 4.2) changes. Instead of creating
single new meta action for the whole sequence, precondition
andidates are consolidated per key action, and new meta actions
re created for each key action, adding the discovered precondi-
ion candidates as effects. The final meta action, corresponding
o the last key action that achieves the goal gets the precon-
ition candidates as preconditions. This has the effect that the
ymbolic planner will only schedule actions from this sequence
hat are necessary because the corresponding precondition of the
inal goal-fulfilling actions is not yet set. An example is given in
ection 5.5.

.7. Generalization and reuse of previous experience

It is common in mobile manipulation applications that over
ime, similar goals need to be achieved, but for different ob-
ects and circumstances. In such a case, we want our system to
everage previous experience in order to find a solution without
xploration from scratch. Assume that in our running example,
he agent already knows how to place the cup inside the drawer
nd now wants to place the plate inside the drawer. Ideally, the
xisting experience should be used when figuring out how to
chieve the new goal.
In this work, we achieve this by first temporarily relaxing the

ype specifications of entities that are part of the goal specifi-
ation, allowing them to generalize to all available types and
hus fit any parameter of any action, see example in Fig. 6. If
he symbolic planner succeeds in finding a plan under these
onditions, the actions forming that plan may help to achieve the
oal. After extracting the action that actually achieves the goal
called the generalization candidate), exploration continues as in
ection 4.2. However, every time SampleSequence is called, the
eneralization candidate is taken as a given part of the sampled
 c

6

sequence. This has the purpose of finding auxiliary actions and
parameterizations that, together with the extracted action, form
a successful sequence.

Once this sequence is found, the symbolic description is
adapted. If the generalization candidate turns out to be part of the
goal-reaching sequence, the corresponding action description and
the types of the goal entities are adjusted to be compatible with
one another. Apart from making the exploration more efficient by
generalizing previous experience, this procedure has the advan-
tage that it contributes to making the action space in the symbolic
description as large as necessary, but simultaneously keeps it as
small as possible.

5. Experiments and results analysis

5.1. MCTS baseline

We compare our approach against MCTS. MCTS successively
builds a tree, where nodes represent world states and edges
represent actions. To ensure fair comparison, the baseline shares
the action implementations and the simulation for determin-
ing action outcomes with our method. Our implementation of
MCTS is inspired by [7]. At every iteration, a decision is made
on whether to expand the current node (i.e. try a new action
from the node’s state) or to select a child of the current node
and continue from there. The decision is based on a progressive
widening law [28], which is a feature of the Upper Confidence
Tree (UCT) algorithm, and operates as follows: The node is ex-
panded if ⌊Nα

⌋ > ⌊(N−1)α⌋, where ⌊.⌋ is the floor operation, N is
the number of times the current node was visited, and α ∈ [0, 1]
s a parameter controlling the balance between expanding and
electing a child (the higher α, the more we expand). In this
ork, we use α = 0.6 for a good balance between expanding and
xploring existing child nodes. When expanding, we only select
rom actions that are feasible from the current state according to
he actions’ preconditions.

When selecting an existing child of the current node to con-
inue from (instead of expanding the current node), we determine
he child according to the following rule:

c = argmax
i∈1,...,K

S̄i,mi + γ

√
logN
mi

, (6)

where ic is the index of the selected child, K is the number of
children of the current node, S̄i,mi is the average reward after
selecting this child until now, γ is an exploration constant (we
use γ =

√
2 in this work), and mi is the number of times child i

as selected.
A node is terminal if the corresponding action execution

ailed, a maximum search depth is reached, or the resulting state
chieves the goal specification. Once a terminal node is reached,
he algorithm resumes from the root node until a solution is
ound or the time budget is used up.

.2. Domains and setup

To evaluate the proposed method and to compare it to the
aseline, we ran experiments in two domains. For the PDDL
enchmark domain we make use of the well-known Rovers
omain description, which has been used in editions of the In-
ernational Planning Competition [29] for decades. To simulate
situation in which the symbolic description does not capture
verything the agent can do in the world, we initialize the agent
ith shortened descriptions from which we progressively remove
reconditions and effects, simulating case (C2) as described in
ection 3. The original descriptions (which the agent has no ac-
ess to) are used to determine the true executability (depending

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

o

o
t

m
P
p
t
u
h
r
t
F
M
m
/
t
(
f

m
r
w

Fig. 1. Simulation environment setup that is used to demonstrate the proposed automatic skill set extension method. The unstructured environment is designed for
bject rearrangement tasks.
n preconditions) and effects of actions taken by the agent. In
he Rovers domain, which is conceptually visualized in Fig. 7, the
objective is to collect planetary data using a rover. Specifically
we make use of the actions needed for collecting soil data, which
include sampling soil, emptying the soil storage, navigating be-
tween adjacent nodes of the undirected graph which represents
the terrain, and finally communicating the soil data back to the
lander. The scenarios we considered in the rover domain are
listed in Table 1. Experiments (r-a)–(r-d1) and (r-e) require the
discovery of sequences of increasing length with no experience
from previous scenarios. In contrast, experiments (r-d2) and (r-
d3) are designed to demonstrate the generalization capabilities
of our algorithm and so here the planner is initialized with the
knowledge it gained by solving (r-d1).

The rearrangement task domain is used to evaluate our
ethod in a realistic robotics use case. A key difference to the
DDL benchmark domain is the existence of continuous action
arameters, making it a TAMP problem. Action outcomes are de-
ermined using a PyBullet-based physics simulation [30]. The sim-
lation environment is shown in Fig. 1. Since this work focuses on
igh-level planning, we used simplified implementations of the
obot skills. The navigation skill teleports the robot in simulation
o the collision-free location closest to the desired goal location.
or the grasping skill, grasp poses are pre-defined for all objects.
ore details on robot skills and predicates used for the experi-
ents can be found in our open source implementation at https:

/github.com/ethz-asl/high_level_planning. The tasks evaluated in
he rearrangement task domain are shown in Table 2. Scenarios
c2)–(c4) as well as (d2) test the benefit of our generalization step
rom prior knowledge.

We found that for most tasks in the rearrangement task do-
ain, target objects and objects spatially close to them may be

elevant to solving a task. Therefore, for all experiments both
ith our method and the baseline, the set of relevant objects O

includes target objects and all objects within Euclidean distance
7

drel from any target object. For this work, we set drel = 10 cm.
In the PDDL benchmark domain, we do not limit the number
of objects, so all objects from the domain are included in the
exploration.

All experiments were conducted using an Intel Core i7-9750H
laptop CPU. As symbolic planner, we use Metric-FF [31]. Our algo-
rithm writes symbolic description files (domain and problem as
introduced in Section 3), calls the planner on them and parses the
planner’s output for further processing. All code is implemented
in Python.

5.3. Procedure

We conducted experiments with our algorithm (with and
without demonstrations) and the MCTS baseline on the scenarios
shown in Tables 1 and 2. Each algorithm was run 10 times for
each of the PDDL benchmark domain scenarios and 50 times
for each of the rearrangement task scenarios, each run with a
time budget of 900 s. Before every run, the simulated scene was
reset to its initial state, depicted in Fig. 1 for the rearrangement
task domain. For our method, the symbolic description available
to the agent in the beginning of a run was also reset. For the
rearrangement task domain, it was reset to the four basic skills
plus any initial knowledge resulting from a previous success-
ful exploration if given. For the PDDL benchmark domain, each
run was reset to the symbolic description as listed in Table 1.
Upon hitting the time budget, a run was aborted and marked
as failed. For both our method and the MCTS baseline, a max-
imum sequence length lmax needs to be specified to constrain
search depth. With the intention to overestimate the truly needed
length, we chose a length of 4 key actions for scenarios (a)–(c4)
and (r-a)–(r-e) and 6 for scenarios (d1)–(d2) for our method. We
observed that on average, there are 4 actions per key action in
the expanded sequence, leading to selecting a maximum search
tree depth of 16 and 24, respectively, for MCTS. For runs of our
method with demonstrations, the demonstration was given in the
form of key actions and parameters for each scenario as shown
in Table 3. Note that only selected parameters are supplied as
demonstration. Parameters not mentioned in Table 3 needed to
be discovered by our method.

5.4. Results: PDDL benchmark domain

The results of the experiment scenarios in the PDDL bench-
mark domain are shown in Fig. 8. We report the distribution of

https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

p
d
T
t
c
n
h
s

Fig. 2. Overview of the exploration for skill set extension with inputs , proposed algorithm components , a physics simulator and intermediate results . Note
that the user demonstration is an optional input. For better readability, data flows from the inputs are consolidated. In reality, not all algorithm components require
all inputs. For more details, refer to the descriptions in Section 4.
Fig. 3. Process of combining multiple actions of a sequence into a single meta action, visualized using our running example of grasping and placing an object. The
resulting meta action contains preconditions of actions that are not fulfilled by actions earlier in the sequence, as well as effects of actions that do not get undone
by actions later in the sequence.
time spent until a successful solution was found for successful
runs as well as the number of unsuccessful runs.

For scenarios (r-a)–(r-c), which feature increasingly incom-
lete symbolic descriptions (i.e. longer key action sequences to be
iscovered), our method’s performance is comparable to MCTS.
he slightly higher runtimes of our method can be attributed
o the overhead of calling the symbolic planner for sequence
ompletion. From (r-d1) onwards, the larger search space that
eeds to be covered causes higher failure rates for MCTS (30% and
igher). For our method, sequence completion allows sampling
horter sequences and completing them, enabling us to scale to
8

longer sequences, and leading to no failures in this scenario. The
significantly more difficult problem (r-e), which requires finding
a sequence of length 15, can also be solved using our method with
a success rate of 70%. In contrast, already in scenario (r-d2), which
requires finding a sequence of length 9, MCTS never succeeds and
this carries through to scenario (r-e).

In the scenarios discussed until now, our method rediscovered
the preconditions and effects we removed. For each key action, a
newmeta action was created that is functionally equivalent to the
respective unabridged basic action, with the missing precondition
and/or effect information added.

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

i
a

m
l
t

f
t

Fig. 4. Types and entities assigned to them, before and after extending the symbolic description adding new sub-types (bold) for ‘‘cup1’’, ‘‘drawer’’ and a newly
ntroduced position sample. Entities not involved in the exploration (‘‘cup2’’ and ‘‘bottle’’ in this example) can be assigned to the new types later if the new meta
ction is tested with them.
Fig. 5. Schematic example of the SequenceRefinement procedure that is carried out after a successful sequence is found. The procedure tests sequences with
odified key actions. Finally, the shortest sequence with the least remaining key actions is returned. In this example, the goal is to place an object at a target

ocation. The sequence found during exploration contains superfluous key actions (charging and re-grasping) which are removed using sequence refinement, bringing
he number of key actions down to 2 and the sequence length down to 3.
Table 1
Experiment scenarios in the PDDL benchmark domain (Rovers). The goal for every scenario is to communicate soil data (c.s.d.) of a specified waypoint. ‘‘ID‘‘ stands
or experiment ID, l is the minimum length of a successful sequence, lk refers to the minimum number of key actions in a successful sequence, and ‘‘Prior’’ refers
o the information available to the algorithm at planning time, consisting of the agent’s experience after the specified scenario ID.
ID Goal Domain modification l lk Prior

(r-a) c.s.d. waypoint0 Removed effect communicated_soil_data from the communicate_soil_data action 4 1 None
(r-b) c.s.d. waypoint0 In addition to (r-a): removed have_soil_analysis precondition and effect 4 2 None
(r-c) c.s.d. waypoint0 In addition to (r-b): removed empty precondition and effect 5 3 None
(r-d1) c.s.d. waypoint3 waypoint3 is one hop further away than waypoint0 7 3 None
(r-d2) c.s.d. waypoint5 waypoint5 is one hop further away than waypoint3 9 3 (r-d1)
(r-e) c.s.d. waypoint8 waypoint8 is three hops further away than waypoint5 15 3 None
(r-d3) c.s.d. waypoint8 Same as (r-e) 15 3 (r-d1)
Table 2
Experiment scenarios in the rearrangement task domain. Explanations of abbreviations and symbols can be found in the caption
of Table 1.
ID Goal Initial state l lk Prior

(a) Cube on cupboard Cube lying on table 4 1 None
(b) Tall box inside shelf Tall box standing on table 4 1 None
(c1) Cube inside container1 Cube on table, container1 covered with lid 8 2 None
(c2) Duck inside container1 Duck on table, container1 covered with lid 8 2 After (c1)
(c3) Cube inside container2 Cube on table, container2 covered with lid 8 2 After (c1)
(c4) Duck inside container2 Duck on table, container2 covered with lid 8 2 After (c1)
(d1) Cube inside container2 Cube inside container1, both containers covered with lids 12 3 None
(d2) Duck inside container2 Duck inside container1, both containers covered with lids 12 3 After (d1)
9

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

i
d
a
e
l

g
p
s
r
i
g
p
t
t
e
i

s
y
d
w
r
d

Table 3
Demonstrations supplied to our method for the experiment IDs defined in Tables 1 and 2.

ID Sequence Demo Parameter Demo

PDDL benchmark domain

(r-a) ["communicate_soil_data1"] [{"p1": "waypoint0"}]
(r-b) ["sample_soil",

"communicate_soil_data1"]
[{"p": "waypoint0"}, {"p1": "waypoint0"}]

(r-c) ["drop", "sample_soil",
"communicate_soil_data1"]

[{}, {"p": "waypoint0"}, {"p1": "waypoint0"}]

(r-d1) ["drop", "sample_soil",
"communicate_soil_data1"]

[{}, {}, {}]

(r-d2) ["drop", "sample_soil",
"communicate_soil_data1"]

[{}, {}, {}]

(r-e) ["drop", "sample_soil",
"communicate_soil_data1"]

[{}, {}, {}]

(r-d3) ["drop", "sample_soil",
"communicate_soil_data1"]

[{}, {}, {}]

Rearrangement task domain

(a) ["place"] [{"obj": "cube1"}]
(b) ["place"] [{"obj": "tall_box"}]
(c1) ["place", "place"] [{"obj": "lid1"}, {"obj": "cube1"}]
(c2) ["place", "place"] [{"obj": "lid1"}, {"obj": "duck"}]
(c3) ["place", "place"] [{"obj": "lid2"}, {"obj": "cube1"}]
(c4) ["place", "place"] [{"obj": "lid2"}, {"obj": "duck"}]
(d1) ["place", "place", "place"] [{"obj": "lid1"}, {"obj": "lid2"}, {"obj": "cube2"}]
(d2) ["place", "place", "place"] [{"obj": "lid1"}, {"obj": "lid2"}, {"obj": "duck"}]
Fig. 6. Example for type constraint relaxation at the beginning of the general-
zation procedure. The existing meta action to place a cup into a drawer was
iscovered with ‘‘cup1’’. To extend it to ‘‘plate’’, the new entity is temporarily
llowed to generalize to available types (violet dotted lines), thus fitting the
xisting meta action. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Experiments (r-d2) and (r-d3) show that our method can
reatly benefit from such experience collected in a previous ex-
loration run. Both experiments leverage knowledge gained from
olving (r-d1) and achieve 100% planning success with explo-
ation times that are reduced by several orders of magnitude
ndependent of the sequence length. The exploration efficiency
ain from our generalization step is directly observable by com-
aring the runtimes of (r-e) and (r-d3), which are both attempting
o solve the same planning problem. (r-d3) is given access to
he updated domain description after solving (r-d1) whereas (r-e)
xplores from scratch. The resulting reduction in exploration time
s on the order of 104.

The results also indicate that supplying a simple user demon-
tration speeds up the exploration procedure significantly, and
ields a success rate of 100% for all the experiments we con-
ucted. In Table 4, we report averaged success rates and runtimes,
hich highlight our observations described above. Note that the
untime numbers ignore instances where the methods timed out
ue to failing to find a solution within the time budget.
10
5.5. Results: Rearrangement task domain

In Fig. 9, we report the results of experiments in the re-
arrangement task domain. Here, the performance of the MCTS
baseline is consistently worse in all experiments, both in success
rate and execution time, which is also confirmed by average
success rates and runtimes reported in Table 4. Compared to
experiments in the PDDL benchmark domain, simulating candi-
date sequences takes a significant time proportion, making our
method’s overhead of calling the symbolic planner negligible.

The results demonstrate the benefits of our sequence com-
pletion and generalization routines. Our approach exploits the
underlying PDDL planner for sequence completion, thereby only
needing to explore over the shorter key action sequences. By de-
sign, this is more efficient compared to MCTS, which must search
over the full sequence of actions. Runtime results for scenarios
(a)–(c1) and (d1) directly show this increase in exploration cost
between our method and MCTS.

In addition, our method has a chance to find a successful
sequence at every iteration during exploration. This is possible
since a successful sequence can be discovered as a part of the full
sequence we sample to have a fixed and overestimated length.
Sequence refinement allows our system to extract the shortest
sub-sequence required to achieve the goal. In contrast, MCTS is
limited to sequentially building up its search tree from short
sequences to longer ones.

MCTS also offers no mechanism to leverage previous experi-
ences over tasks and thus always has to explore from scratch. Our
approach explicitly encodes new meta actions into the domain
description and provides a framework for generalization to new
tasks. This allows for shorter runtimes in scenarios (c2)–(c4) and
additionally a greatly improved success rate in (d2), where MCTS
fails in 37/50 runs whereas our approach only fails in 1/50 runs.
The remaining computation needed to generalize is mainly due to
sampling continuous parameters, since these cannot be assumed
to generalize between entities (e.g. a new placement pose is
needed to place the cube from (c1) into a different receptacle).

The results shown in Fig. 9 indicate that being provided with a
user demonstration, our algorithm finds solutions faster, and with
a success rate of 99%. The only scenario in which failures occurred
is (b), as a very accurate place position, which is not provided as
part of the demonstration (see Table 3 for which parameters were
supplied as demonstrations), needs to be discovered. This leads
to the exploration timing out before a feasible place parameter-

ization was found. Overall, the results show that leveraging user

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

c

N

N

Fig. 7. In the rover domain, one (or several) rovers are tasked with collecting samples. For this, the rover can navigate between waypoints, sample soil, and
ommunicate results back to the lander, for which it needs to be at a waypoint the lander is visible from.
Fig. 8. Runtimes and success rates of our method (without and with demonstrations) and the MCTS baseline for experiments in the PDDL benchmark domain.
umbers in the top row indicate the number of failed runs out of 10. Only successful runs are included in the boxplots.
Table 4
Success rate and timing results, averaged over successful runs for each method. n is the total number of runs with the specified
method in the specified domain.
Domain Method n Avg. success rate [–] Avg. runtime [s]

PDDL benchmark
ours 70 0.96 60.92
ours, from demo. 70 1.0 0.08
MCTS 70 0.53 96.15

Rearrangement task
ours 400 0.88 111.60
ours, from demo. 400 0.99 110.31
MCTS 400 0.74 337.70

Combined
ours 470 0.89 103.46
ours, from demo. 470 0.99 93.75
MCTS 470 0.71 310.86
Fig. 9. Runtimes and success rates of our method (with and without demonstrations) and the MCTS baseline for experiments in the rearrangement task domain.
umbers in the top row indicate the number of failed runs out of 50. Only successful runs are included in the boxplots.
11

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

d
i
o

w
a
p
a
t
w
t
a
t
i
a
f
t

s
i
t
T
i
s
f
e
t
a
a
o
o
b
o
s
s

d
(
b
t
D
l
c
c
o
l
t

Fig. 10. PDDL descriptions of actions that were automatically added to the symbolic description after exploration for task (c1) (see Table 2). Dependency-inducing
predicate is highlighted in bold.
emonstrations are a viable avenue for effectively and efficiently
mproving a mobile manipulation system (MMS) skill set with
nly a small added need for manual input.
Qualitatively, the meta actions discovered by our algorithm

ere as expected. As an example, Fig. 10 shows two actions our
lgorithm added to the symbolic description after the exploration
rocedure for task (c1) completed. The action shown on the left
chieves the user-defined goal of placing the cube inside the con-
ainer. It has the precondition that the lid is not on the container,
hich can be achieved by the action shown on the right. Splitting
he actions in this way through precondition discovery allows the
gent to skip the action on the right if no lid is initially present on
he container. For shorter tasks ((a) and (b)), a single meta action
s added. For tasks requiring multiple steps ((c1)–(d2)), one meta
ction is added to achieve the goal, and additional ones are added
or fulfilling preconditions. Thanks to the precondition discovery,
he set of meta actions is thus kept modular.

Furthermore, in Fig. 11 we show an exemplary qualitative re-
ult for the generalization occurring in scenario (c4). As described
n Section 5.2 and in Table 2, the goal of scenario (c4) is to place
he duck into a container, given the experience from scenario (c1).
his previous experience consists of having learnt to place a cube
nto a different container. It is encoded by the action description
hown in Fig. 11 and the new types added to the cube and the
irst container in the list of entities before running (c4). During
xploration for scenario (c4), our method then discovered that
he same sequence of actions can be used to successfully place
different object into a different container, thanks to the gener-
lization component introduced in Section 4.7. Therefore, instead
f creating a new symbolic action for this second exploration run,
ur generalization procedure causes the new objects’ type lists to
e extended, such that the existing action is applicable to the new
bjects. Apart from speeding up the exploration significantly (as
hown in Fig. 9), the generalization procedure helps to keep the
ymbolic description small and thus efficient.
The experiments also showed that the complexity increases

ramatically for longer sequence lengths. For example, in scenario
d1), the success rates are low, indicating that no solution could
e found within the available time budget. With the motivation
o improve efficiency, we evaluated variations of our method.
uring exploration, our method samples key action sequences of
ength lmax. Intuitively, to find a successful sequence faster, we
ould constrain sampling to the correct sequence length for the
urrent task. However, this length is generally unknown a pri-
ri. Nevertheless, we can increase attention to shorter sequence
engths through custom sampling strategies. Experiments varying
he sequence length schedule (e.g. exploring a fixed number of 1
12
key action plans, followed by plans with 2 key actions, etc., or
looping through sampling plans with 1, then 2 key actions, and
so on) showed that such strategies can perform better in certain
cases compared to the general version of our method (which only
ever samples plans with the specified maximum number of key
actions). However, we conclude that the performance benefit is
not worth sacrificing general applicability nor is it worth the addi-
tional overhead introduced by manually specifying the sampling
schedule. A full description of the tested sampling strategies and
the associated results are available in Appendix.

6. Conclusion and future work

In this work, we propose an important component needed
to deploy an autonomous agent in open-ended domains. Due to
high complexity, many entities in the environment, and changing
demands of system operators (users), encountering unseen tasks
is inevitable. In consequence, an agent’s model of its interaction
with the world, which is required by symbolic planning or TAMP,
needs to grow and evolve to meet these diverse challenges.

Instead of relying on manual adaptation, we presented a sym-
bolic planning system that automatically extends its abstract
skill set to achieve goals for which either the symbolic planning
or the plan execution failed. Our results show that the pro-
posed algorithm extends the symbolic description only as much
as necessary to achieve the goals, to make sure that planning
stays sound and tractable, mainly thanks to generalization and
precondition discovery. Furthermore, our measures to run the
exploration more efficiently, i.e. sequence completion and gener-
alization, greatly reduce the computational complexity, outper-
forming the MCTS baseline we compared against, thus increasing
our method’s value in practice. The exploration for new tasks can
optionally be further accelerated through partial demonstrations,
which strike a balance between being easy for a user to supply,
and effectively improving success rate and runtime.

In the future, to avoid the need for manually grounding pred-
icates, we plan to learn models of predicates based on demon-
strations and interactions with the environment. Furthermore, we
aim to leverage data gathered in multiple encounters of a task
to increase the accuracy of preconditions and effects of action
abstractions.

To apply our method in a real-world scenario, two main addi-
tions would be required. First, a perception module as mentioned
in Section 4.2 is needed. Second, we need implementations for
the basic skills that our method is relying on. The skills we
chose in this work can be implemented with state-of-the-art
tools such as, e.g. grasp synthesis and motion planning both for

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

r
a
r

r
e
n
a
t
u
m
e
i
e
t

D

r
t
A
w

D

a

Fig. 11. Qualitative result for the generalization occurring in scenario (c4) (see Table 2). The action description (middle left) and the entities before generalizing (top
ight) stem from previously solving scenario (c1). From that initial state, planning for the goal (top left) initially fails, since the new action’s type restrictions do not
llow it to be applied to duck and container2. However, our generalization procedure is able to discover that the action is applicable to the new objects, this is
eflected in the entities after generalizing by adding the respective types to the new objects (middle right).
obot navigation and manipulation. Given these components, we
nvision the whole system to operate as follows: upon receiving a
ew goal defined by a user, the symbolic planner attempts to find
solution with the current symbolic description. If successful,

he solution sequence is executed and its success is monitored
sing the perception system and the learned predicate definitions
entioned above. Upon failure, either during planning or during
xecution of the sequence, the exploration algorithm is executed
n simulation to identify a successful sequence, which can then be
xecuted on the real robot. In future work, we plan demonstrate
his integrated system.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing in-
erests: Julian Foerster reports financial support was provided by
BB Corporate Research. Julian Foerster reports financial support
as provided by Huawei Technologies Co Ltd.

ata availability

The code for this work is published at https://github.com/ethz-
sl/high_level_planning.
13
Acknowledgments

This work was supported in part by ABB Corporate Research,
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 955356, and the ETH Foun-
dation with an unrestricted gift from Huawei Technologies.

Appendix. Sequence sampling variations

The general configuration of our method that is discussed in
the main paper will from now on be referred to as ‘‘ours, full
length, all actions’’ (OFLA). As stated in Section 5.5 of the main
paper, we investigate methods for reducing the search space that
needs to be covered during exploration. We use the rearrange-
ment task domain for this set of experimental evaluations.

The first simplification we introduce in this vein is limiting
the set of actions we sample from in line 3 of Algorithm 1.
Specifically, the navigation and grasp skills are excluded from key
action sampling. The rationale for this is that sequences with
these two skills as key actions only rarely lead to achieving the
goal, while they can be inferred during sequence completion from
other key actions in most cases.

https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning
https://github.com/ethz-asl/high_level_planning

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

k
t

p
s
m
a

c
q
p
t
i
l
n
q
b
b
e
u
w
t
l
c
i

Fig. A.12. Runtime comparison of all sequence exploration methods for the scenarios shown in Table 2. Each method was run 50 times for each scenario, with a
time budget of 900 s. The numbers at the top of the diagram indicate how many of the 50 trials timed out before finding a feasible solution (lower is better). Only

the times taken by successful runs are included in the plot.

v
i
g
N
f
E
o
l
a
l

r
O
m
a
m
e
l
o

(
s
O
s

R

In addition to this, we investigate focusing search on shorter
ey action sequences. We introduce the following three alterna-
ives to OFLA.

1. Full length, labeled as ‘‘ours, full length’’ (OFL). Similar to
OFLA, a sequence of maximum length is sampled in every
iteration, i.e. l = lmax, . . . , lmax, the only difference being
that this variant (same as the following two) samples from
the reduced action set described above.

2. Alternating sequence length, labeled as ‘‘ours, alternating’’
(OA). In every iteration, a different length is selected ac-
cording to the order l = 1, 2, 3, . . ., lmax, 1, 2, This leads
to sampling each sequence length equally often within the
time budget.

3. Increasing sequence length, labeled as ‘‘ours, no alternating’’
(ONA). Each sequence length is tested for a fixed duration
tseq = Tmax/lmax, i.e. l = 1, 1, ..., 1, 2, 2, ..., lmax, lmax. This
leads to sampling each sequence for an equal duration.

The sequence length is selected in every iteration of the ex-
loration algorithm by the respective method and passed to the
equence sampler in line 3 of Algorithm 1. All three of these
ethods sample actions from the reduced action set described
bove. Results are reported in Fig. A.12.
For all methods, the computational complexity tends to in-

rease and the success rate tends to drop with increasing se-
uence length. An exception is experiment (b), where a precise
lacing location has to be found by all methods, which increases
he average duration until success. We expected ONA to fare best
n this case since it starts by exclusively sampling sequences of
ength 1, which is exactly the minimum number of key actions
eeded in this case. However, the results show that longer se-
uence lengths during sampling are not disadvantageous. We
elieve the reason for this is that a successful action can also
e found as part of a longer sequence. Sequence refinement
nsures that unnecessary parts of a sequence are discarded before
sing it for extending the symbolic description. For problems
here sampling longer sequences is required, ONA performs
he worst as expected, because its sampling budget for shorter-
ength sequences must be exhausted before longer sequences are
onsidered. For OA, OFL and OFLA, this is not the case, resulting
n better performance in scenarios (c1) and (d1).
14
Comparing OFLA to the other variants shows that the ad-
antage of sampling from fewer skills is not as pronounced as
nitially expected. This is positive, indicating that our method can
eneralize to other skill sets without selecting skills to exclude.
evertheless, the option to exclude skills could still be beneficial
or very long scenarios or an exceptionally large basic skill set.
xcluding skills could either be handled by a domain expert,
r more elegantly using an automated system to judge how
ikely certain skills are key actions based on past experience, and
djusting the sampling scheme accordingly. Investigating this is
eft to future work.

Overall, it is beneficial to know the exact sequence length
equired to solve the task as this reduces the exploration effort.
f course, this information is not available at planning time in
ost cases. Since it is possible to extract a shorter sequence from
longer one via our precondition discovery and sequence refine-
ent, OFL and OFLA may be preferential to the other sequence
xploration variants. OFL and OFLA are the most successful for
ong sequence lengths while only incurring a small planning time
verhead at short sequence lengths.
In scenarios where prior knowledge is available ((c2)–(c4),

d2)), performance is improved for all variants of our method,
howing the benefit of generalization. Note that OA, ONA, OFL and
FLA perform similarly in these scenarios, since the considered
equence length is the same for all when generalizing.

eferences

[1] G. Ajaykumar, M. Steele, C.-M. Huang, A survey on end-user robot pro-
gramming, ACM Comput. Surv. 54 (8) (2021) 1–36, http://dx.doi.org/10.
1145/3466819.

[2] D. Long, M. Fox, Progress in AI planning research and applications,
UPGRADE: Eur. J. Inform. Prof. 3 (5) (2002) 10–25.

[3] E. Karpas, D. Magazzeni, Automated planning for robotics, Ann. Rev.
Control, Robot. Autonom. Syst. 3 (2019) 1–23.

[4] D. Leidner, A. Dietrich, F. Schmidt, C. Borst, A. Albu-Schäffer, Object-
centered hybrid reasoning for whole-body mobile manipulation, in: IEEE
International Conference on Robotics and Automation, 2014.

[5] S.S. Srinivasa, D. Ferguson, C.J. Helfrich, D. Berenson, A. Collet, R. Diankov,
G. Gallagher, G. Hollinger, J. Kuffner, M.V. Weghe, HERB: A home exploring
robotic butler, Auton. Robots 28 (1) (2010) 5–20, http://dx.doi.org/10.1007/
s10514-009-9160-9.

http://dx.doi.org/10.1145/3466819
http://dx.doi.org/10.1145/3466819
http://dx.doi.org/10.1145/3466819
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb2
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb2
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb2
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb3
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb3
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb3
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb4
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb4
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb4
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb4
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb4
http://dx.doi.org/10.1007/s10514-009-9160-9
http://dx.doi.org/10.1007/s10514-009-9160-9
http://dx.doi.org/10.1007/s10514-009-9160-9

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428
[6] C.R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L.P. Kaelbling,
T. Lozano-Pérez, Integrated task and motion planning, Ann. Rev. Con-
trol, Robot. Auton. Syst. 4 (1) (2021) 265–293, http://dx.doi.org/10.1146/
annurev-control-091420-084139.

[7] T. Ren, G. Chalvatzaki, J. Peters, Extended task and motion planning of
long-horizon robot manipulation, 2021, arXiv:2103.05456.

[8] Z. Wang, C.R. Garrett, L.P. Kaelbling, T. Lozano-Pérez, Learning composi-
tional models of robot skills for task and motion planning, Int. J. Robot. Res.
40 (6–7) (2021) 866–894, http://dx.doi.org/10.1177/02783649211004615.

[9] C.R. Garrett, T. Lozano-Pérez, L.P. Kaelbling, PDDLStream: Integrating sym-
bolic planners and blackbox samplers via optimistic adaptive planning, in:
Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 30, (no. 1) 2020, pp. 440–448.

[10] R.S. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning, Artificial
Intelligence 112 (1–2) (1999) 181–211, http://dx.doi.org/10.1016/S0004-
3702(99)00052-1.

[11] A. Bagaria, G. Konidaris, Option discovery using deep skill chaining, in:
International Conference on Learning Representations, 2020.

[12] P. Morere, L. Ott, F. Ramos, Learning to plan hierarchically from curriculum,
IEEE Robot. Autom. Lett. 4 (3) (2019) 2815–2822, http://dx.doi.org/10.1109/
LRA.2019.2920285.

[13] L. Chrpa, M. Vallati, T.L. McCluskey, On the online generation of effec-
tive macro-operators, in: 24th International Joint Conference on Artificial
Intelligence, 2015, pp. 1544–1550.

[14] V. Sarathy, M. Scheutz, MacGyver problems: AI challenges for testing
resourcefulness and creativity, Adv. Cogn. Syst. 6 (2018) 31–44.

[15] D. Angelov, Y. Hristov, M. Burke, S. Ramamoorthy, Composing diverse
policies for temporally extended tasks, IEEE Robot. Autom. Lett. 5 (2)
(2020) 2658–2665.

[16] B. Kim, L. Shimanuki, Learning value functions with relational state
representations for guiding task-and-motion planning, in: Conference on
Robot Learning, PMLR, 2020, pp. 955–968.

[17] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, C. Schmid, Learning
to combine primitive skills: A step towards versatile robotic manipulation,
in: IEEE International Conference on Robotics and Automation, 2020, arXiv:
1908.00722.

[18] A. Curtis, M. Xin, D. Arumugam, K. Feigelis, D. Yamins, Flexible and
efficient long-range planning through curious exploration, in: International
Conference on Machine Learning, 2020, pp. 2238–2249.

[19] T. Silver, R. Chitnis, J. Tenenbaum, L.P. Kaelbling, T. Lozano-Perez, Learning
symbolic operators for task and motion planning, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2021, pp. 3182–3189, URL
https://ieeexplore.ieee.org/abstract/document/9635941.

[20] V. Sarathy, D. Kasenberg, S. Goel, J. Sinapov, M. Scheutz, SPOTTER: Extend-
ing symbolic planning operators through targeted reinforcement learning,
in: International Conference on Autonomous Agents and Multiagent
Systems, 2021, pp. 1118–1126, Online.

[21] A. Arora, H. Fiorino, D. Pellier, M. Métivier, S. Pesty, A review of learning
planning action models, Knowl. Eng. Rev. 33 (20) (2018) 1–25, http:
//dx.doi.org/10.1017/S0269888918000188.

[22] G. Konidaris, L.P. Kaelbling, T. Lozano-Perez, From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning, J. Artificial
Intelligence Res. 61 (2018) 215–289.

[23] E. Ugur, J. Piater, Bottom-up learning of object categories, action effects
and logical rules: From continuous manipulative exploration to symbolic
planning, in: IEEE International Conference on Robotics and Automation,
IEEE, 2015, pp. 2627–2633.

[24] S. James, B. Rosman, G. Konidaris, Learning portable representations for
high-level planning, in: International Conference on Machine Learning,
2020, pp. 4682–4691.

[25] M. Diehl, C. Paxton, K. Ramirez-Amaro, Automated generation of robotic
planning domains from observations, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2021, pp. 6732–6738, http://dx.doi.org/
10.1109/IROS51168.2021.9636781.

[26] M. Fox, D. Long, PDDL2.1: An extension to PDDL for expressing temporal
planning domains, J. Artificial Intelligence Res. 20 (2003) 61–124, http:
//dx.doi.org/10.1613/jair.1129.

[27] M. Grinvald, F. Furrer, T. Novkovic, J.J. Chung, C. Cadena, R. Siegwart,
J. Nieto, Volumetric instance-aware semantic mapping and 3D object
discovery, IEEE Robot. Autom. Lett. 4 (3) (2019) 3037–3044, http://dx.doi.
org/10.1109/LRA.2019.2923960.
15
[28] D. Auger, A. Couëtoux, O. Teytaud, Continuous upper confidence trees
with polynomial exploration – consistency, in: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Vol. 7908,
Springer, 2013, pp. 194–209, http://dx.doi.org/10.1007/978-3-642-40988-
2_13.

[29] D. Long, M. Fox, The 3rd international planning competition: Results
and analysis, J. Artificial Intelligence Res. 20 (2003) 1–59, http://dx.
doi.org/10.1613/jair.1240, URL https://www.jair.org/index.php/jair/article/
view/10351.

[30] E. Coumans, Y. Bai, Pybullet, a Python module for physics simulation for
games, robotics and machine learning, 2016, http://pybullet.org.

[31] J. Hoffmann, The metric-FF planning system: Translating ‘‘ignoring delete
lists’’ to numeric state variables, J. Artificial Intelligence Res. 20 (2003)
291–341, http://dx.doi.org/10.1613/jair.1144.

Julian Förster received his bachelor’s degree in me-
chanical engineering at ETH Zurich (2015) as well
as a master’s degree with distinction in mechanical
engineering with a specialization in robotics and con-
trol systems at ETH Zurich (2018). Currently, he is a
doctoral student at the Autonomous Systems Lab at
ETH Zurich, with research interests in planning for
robotics, scene understanding and machine learning.

Lionel Ott is a senior researcher in the Autonomous
Systems Lab at ETH Zürich. Prior to this, he was a
research fellow in the School of Computer Science at
the University of Sydney. He obtained his Ph.D. at the
University of Sydney in 2014.

His research lies at the intersection of machine
learning and robotics, intending to develop methods,
techniques, and systems that allow an autonomous
agent to build and maintain a representation of the
ever-changing world in which the agent operates to
achieve the given task. Thus a recurring theme in his

research is the focus on model learning and decision-making in frameworks that
can account for and reason about uncertainties.

Juan Nieto is a Principal Research at the Mixed Reality
and AI Zurich Lab working with a team of scientists and
engineers to develop advanced perception capabilities
for HoloLens at Microsoft. Before joining Microsoft he
was Deputy Director at the Autonomous Systems Lab
(ASL) at ETH Zurich. In ASL, together with Roland
Siegwart, he led a team of Ph.D. students, engineers
and postdocs to bring new concepts for mobile robots,
and to develop new algorithms for robot autonomy. He
obtained his Ph.D. at the University of Sydney in the
Australian Centre for Field Robotics. He is best known

for his work in perception and simultaneous localization and mapping for mobile
robots. More recently, his research was focused on developing new ideas for
building tighter connections between perception and control to enable robots
to perform physical interaction in a safe and autonomous manner. In Microsoft,
his research is focused in building new perception capabilities for Mixed Reality
applications involving both people and robots.

Nicholas Lawrance is a senior research scientist in
the Robotics and Autonomous Systems Group at CSIRO
Data61 in Queensland, Australia. His research focuses
on adaptive planning, particularly in the presence of
environmental uncertainty. Research interests include
stochastic reasoning, adaptive sampling, and model-
ing of uncertain, continuous phenomena. Applications
include aerial and underwater domains, particularly
for long-duration robotic missions including wind es-
timation and autonomous soaring for fixed-wing aerial
vehicles. He completed his Ph.D. at the Australian

Centre for Field Robotics at the University of Sydney (2011), and worked
as a postdoctoral scholar in the Robotic Decision Making Laboratory (RDML)
at Oregon State University (2013–2017), and as a senior researcher at the
Autonomous Systems Lab (ASL) at ETH Zürich (2018–2022).

http://dx.doi.org/10.1146/annurev-control-091420-084139
http://dx.doi.org/10.1146/annurev-control-091420-084139
http://dx.doi.org/10.1146/annurev-control-091420-084139
http://arxiv.org/abs/2103.05456
http://dx.doi.org/10.1177/02783649211004615
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb9
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb11
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb11
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb11
http://dx.doi.org/10.1109/LRA.2019.2920285
http://dx.doi.org/10.1109/LRA.2019.2920285
http://dx.doi.org/10.1109/LRA.2019.2920285
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb13
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb13
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb13
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb13
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb13
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb14
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb14
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb14
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb15
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb15
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb15
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb15
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb15
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb16
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb16
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb16
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb16
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb16
http://arxiv.org/abs/1908.00722
http://arxiv.org/abs/1908.00722
http://arxiv.org/abs/1908.00722
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb18
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb18
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb18
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb18
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb18
https://ieeexplore.ieee.org/abstract/document/9635941
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb20
http://dx.doi.org/10.1017/S0269888918000188
http://dx.doi.org/10.1017/S0269888918000188
http://dx.doi.org/10.1017/S0269888918000188
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb22
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb22
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb22
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb22
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb22
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb23
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb24
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb24
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb24
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb24
http://refhub.elsevier.com/S0921-8890(23)00067-2/sb24
http://dx.doi.org/10.1109/IROS51168.2021.9636781
http://dx.doi.org/10.1109/IROS51168.2021.9636781
http://dx.doi.org/10.1109/IROS51168.2021.9636781
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.1007/978-3-642-40988-2_13
http://dx.doi.org/10.1007/978-3-642-40988-2_13
http://dx.doi.org/10.1007/978-3-642-40988-2_13
http://dx.doi.org/10.1613/jair.1240
http://dx.doi.org/10.1613/jair.1240
http://dx.doi.org/10.1613/jair.1240
https://www.jair.org/index.php/jair/article/view/10351
https://www.jair.org/index.php/jair/article/view/10351
https://www.jair.org/index.php/jair/article/view/10351
http://pybullet.org
http://dx.doi.org/10.1613/jair.1144

J. Förster, L. Ott, J. Nieto et al. Robotics and Autonomous Systems 165 (2023) 104428

T
C
o

Roland Siegwart is a Professor for autonomous mobile
robots with ETH Zurich, Founding Co-Director of the
Technology Transfer Center, Wyss Zurich and Board
Member of multiple high-tech companies. From 1996
to 2006, he was a Professor with EPFL Lausanne,
held visiting positions with Stanford University and
NASA Ames and was Vice President of ETH Zurich
from 2010 to 2014. His research interests include the
design, control, and navigation of flying, and wheeled
and walking robots operating in complex and highly
dynamic environments.

Prof. Siegwart received the IEEE RAS Pioneer Award and IEEE RAS Inaba
echnical Award. He is among the most cited scientists in robots world-wide,
o-Founder of more than half a dozen spin-off companies, and a strong promoter
f innovation and entrepreneurship in Switzerland.
16
Jen Jen Chung is an Associate Professor in Mecha-
tronics within the School of Information Technology
and Electrical Engineering at The University of Queens-
land. Her current research interests include perception,
planning and learning for robotic mobile manipulation,
algorithms for robot navigation through human crowds,
informative path planning and adaptive sampling. Prior
to working at UQ, Jen Jen was a Senior Researcher
in the Autonomous Systems Lab (ASL) at ETH Zürich
from 2018–2022 and was a postdoctoral scholar at
Oregon State University researching multiagent learn-

ing methods from 2014–2017. She completed her Ph.D. on information-based
exploration–exploitation strategies for autonomous soaring platforms at the
Australian Centre for Field Robotics in the University of Sydney. She received
her Ph.D. (2014) and B.E. (2010) from the University of Sydney.

	Automatic extension of a symbolic mobile manipulation skill set
	Introduction
	Related Work
	Definitions and Problem Formulation
	Exploration for Skill Set Extension
	Overview
	Exploration
	Sequence Completion
	Sequence Refinement
	User Demonstrations
	Precondition Discovery
	Generalization and Reuse of Previous Experience

	Experiments and Results Analysis
	MCTS Baseline
	Domains and Setup
	Procedure
	Results: PDDL Benchmark Domain
	Results: Rearrangement Task Domain

	Conclusion and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Sequence Sampling Variations
	References

