
NavDreams: Towards Camera-Only RL Navigation Among Humans

Daniel Dugas, Olov Andersson, Roland Siegwart and Jen Jen Chung

Fig. 1. Testing our proposed camera-based RL policy in (left) simulation
and (right) real world. We find that our high-fidelity simulator allows
sim2real transfer.

Abstract— Autonomously navigating a robot in everyday
crowded spaces requires solving complex perception and plan-
ning challenges. When using only monocular image sensor data
as input, classical two-dimensional planning approaches cannot
be used. While images present a significant challenge when it
comes to perception and planning, they also allow capturing
potentially important details, such as complex geometry, body
movement, and other visual cues. In order to successfully
solve the navigation task from only images, algorithms must
be able to model the scene and its dynamics using only this
channel of information. We investigate whether the world model
concept, which has shown state-of-the-art results for modeling
and learning policies in Atari games as well as promising
results in 2D LiDAR-based crowd navigation, can also be
applied to the camera-based navigation problem. To this end,
we create simulated environments where a robot must navigate
past static and moving humans without colliding in order
to reach its goal. We find that state-of-the-art methods are
able to achieve success in solving the navigation problem, and
can generate dream-like predictions of future image-sequences
which show consistent geometry and moving persons. We are
also able to show that policy performance in our high-fidelity
sim2real simulation scenario transfers to the real world by
testing the policy on a real robot. We make our simulator,
models and experiments available at https://github.com/
danieldugas/NavDreams.

I. INTRODUCTION

The ability to safely move in uncontrolled environments

such as public spaces or offices is a key requirement of

autonomous robots. As a result it is subject to intense interest

from both industry and academia. Due to their unstructured

nature, these spaces pose many challenges which make

planning difficult. One key challenge is the presence of

humans, who display complex and dynamic behaviors.

Though navigation planning is typically done using dis-

tance sensors such as LiDAR or depth, due to the ubiquity

of monocular cameras and their low price, there is increasing

research interest in solving similar problems using images,

This work was supported by the EU H2020 project CROWDBOT under
grant nr. 779942 and a Wallenberg Foundation and WASP Postdoctoral
Scholarship.

The authors are with the Autonomous Systems Lab, ETH Zürich, Zürich
8092, Switzerland. {dugasd; nandersson; rsiegwart;
chungj}@ethz.ch

Fig. 2. Available environments in the NavDreams simulator, and the 2D
navigation environments they are based on.

despite the increased difficulty that this incurs. One interest-

ing property of image-based navigation is that it is typically

higher dimensionality than other low-cost options such as 2D

LiDARs or proximity sensors, having the potential to capture

more information from the scene, such as body motion cues.

Since crowd navigation is fundamentally about selecting

the best action and reinforcement learning (RL) has shown

success on other vision-based planning tasks [1], using RL

for crowd navigation from monocular camera is an avenue

of research with considerable potential. In this paper we

make multiple contributions to aid research in this area, with

the goal of serving as a stepping stone towards realizing

efficient RL-based solutions to the crowd navigation problem

using only monocular camera. These contributions range

from a proposed simulator (Fig. 1), to exploring alternatives

to standard end-to-end baselines, as well as sim2real transfer

capabilities. We further explore the use of the recently

proposed world-models [2] architecture on this problem,

and show that it learns useful representations for navigation

and improves performance over the baseline end-to-end

approach.

Our contributions are:

1) We design an open-source simulator for camera-based

robot navigation among humans. Included are several

environments ranging from classic path planning base-

lines to realistic human environments (Fig. 2).

2) We show that world-model-based RL approaches are

able to navigate successfully around humans using only

monocular vision.

3) We show that state-of-the-art world-model approaches

can be used to generate dream-like navigation se-

quences and encode features useful for planning.

4) We apply sim-to-real methods and show that the

learned policies are able to transfer successfully from

simulation to a real robot (Fig. 1).

II. RELATED WORK

Recent works in deep reinforcement learning have pro-

posed solutions for image-based navigation, producing poli-

cies that can traverse simulated and real-world environ-

ments. Typically these methods exploit additional structural

elements such as auxiliary task learning [3] or explicitly

incorporate the idea of landmarks into the navigation learning

architecture [4] to improve performance. In terms of applying

these methods to real-world environments, [5] leveraged the

vast amount of Google StreetView data to enable end-to-end

learning for mapless navigation (albeit still in the StreetView

environment and not in reality), while [6] demonstrated

that fine-tuning policies trained in high fidelity simulations

resulted in the best performance transfer to a real robot.

A related class of methods has also focused on learning

camera-based exploration of unknown environments [7]. For

example, [8] proposed an end-to-end approach that applies

map coverage as the learning signal. As an alternative to

end-to-end learning, [9] combined learned modules within

a classical navigation pipeline to produce the 2019 winning

entry in the Habitat PointGoal challenge [10], [11].

Nevertheless, each of the aforementioned methods only

targets navigation in static environments. Collision avoidance

in dynamic environments, specifically those with human

pedestrians, becomes more challenging, all the more so since

the interactive and social nature of human motion can be

especially difficult to predict. Due to this, most existing

works opt to focus on the pure collision avoidance aspects

which can be adequately captured via lower-dimensional

range-based sensing inputs (e.g. LiDAR) [12]–[18]. Further-

more, works such as [12]–[16], which include aspects of

social compliance, assume that positions of nearby agents

are known. In contrast, our prior work [18] showed that

world-model-based RL could provide the representational

capacity needed to accurately predict, or “dream”, future

LiDAR observations and use these representations to learn

effective autonomous crowd navigation policies without the

need for explicit human pose information.

World-model-based RL separates the prediction (the

world-model itself) and control elements of RL [2]. As such,

the world-model can be pre-trained offline, allowing a lighter

architecture for the controller, which is trained online. An

additional benefit is that once the world-model is trained

to produce accurate dreams, the dreams can be directly

used to train the controller, supplementing or potentially

altogether bypassing the need for expensive data collection in

simulation or the real world. Apart from our use in LiDAR-

based navigation, this concept has also been successfully

applied to learn policies with state-of-the-art performance

on Atari benchmarks [19] as well as for camera-based robot

navigation in static environments [20]. These results were

especially promising and motivated our present work to

investigate the potential of world-model RL with camera-

only inputs for learning the complex task of navigating

among dynamic human crowds.

Like in [18], we compare the WM approach to end-to-

end RL, which has been shown to be applicable to RGB-D-

based navigation among moving (but not animated) humans

in simulation [21]. Previous work [22] also simulates moving

humans seen from the robot’s camera, though the work is

Fig. 3. Example crowded scene in the gallery environment with 50
simulated pedestrians.

designed for evaluation, rather than RL-training purposes.

III. NAVDREAMS SIMULATION ENVIRONMENT

To learn camera-based navigation policies, we require ac-

cess to a representative training environment. However, it is

impractical (and unsafe) to generate robot-crowd navigation

experiences directly in the real world. Furthermore, existing

3D simulators do not provide models of multiple moving

pedestrians [6], [23]–[25], whereas those that do provide

human models are focused on general high-level planning

and manipulation, and do not offer models or scenarios

tailored to robot navigation research [26]. Thus, we create,

and make available, the NavDreams simulation environment

which aims to reproduce typical crowd navigation scenarios.

The simulator allows varying the difficulty level of the

navigation task within a single scenario. This difficulty is

represented as an arbitrary scalar. The higher the difficulty,

(i) the further away goals are sampled from the robot, (ii) the

more humans are spawned into the scene, and (iii) the more

static obstacles are present. We also provide increasing levels

of realism such as camera shake, image post-processing,

robot inertia, increased scene complexity and multiple people

behaviors. Our simulator is provided as open-source code,

and its parameters (camera height, base velocity, camera

shake intensity, FOV) can be varied to reproduce most robot

configurations. It works out-of-the-box with the widespread

RL OpenAI gym API. It can also be used to generate depth

and segmentation labels for the simulated camera images.

Example scenarios can be seen in Fig. 1 and Fig. 3.

A. Scenarios

The full set of simulator scenarios used in this paper are

shown in Fig. 2. They are:

1) simple: A 3D re-interpretation of the classic 2D sce-

nario found in [15], [18]. It includes procedural obstacle

generation and spawning of moving humans, as well as

random initial robot orientation.

2) city: Identical to the simple scenario except that the

walls and background are replaced with a static city scene.

3) office: A reconstruction of the office scene used in [18],

[27]. Unlike in simple and city, the initial positions of the

robot and humans are predetermined for each difficulty level,

and are not procedurally generated. In addition to walls,

Fig. 4. Illustrations of a) the Transformer-based world-model training process. Sequences of images, actions (joysticks) and vector observations are
encoded into their respective features (z, a, v), which the causal self-attention blocks (T) use to emit a predicted feature encoding which is decoded into an
image and vector observation prediction for the next time-step. b) The single-step controller training process for the controller using world-model features
and c) for the end-to-end controller d) illustrates the more complex explicit model-based training process used when testing the Dreamer approach. In
contrast to b) and c) where the policy actions are applied to the environment (planet symbol) to obtain rewards (r) used as training signals, in d) rollouts
are collected in the environment and stored in a database (B). This database is used to train the world-model, which then generates dream sequences.
These sequences, which include rewards, are in turn used to train the controller. The W (world-model) and C (controller) modules are greyed out to denote
frozen weights.

this scenario contains commonplace objects, such as tables,

chairs and plants, which act as static obstacles.
4) modern: An indoor office scene with a museum-like

section. Robot, human spawns and goals are randomly sam-

pled. It is significantly more complex than the previous three

scenarios due to having a figure eight layout, much larger

variety of common objects, higher maximal crowd density

and more complex human behaviors (randomly switching

between talking, walking, idling). We also include real-world

robot effects such as inertia in the robot movement and

camera shake caused by changes in velocity.
5) cathedral: A reproduction of the Cloister Cathedral

of St. Mary of La Seu Vella, from a publicly available 3D

model captured through photogrammetry, using a Sony a7R

II camera [28]. The crowd simulation is identical to modern.
6) gallery: A reproduction of the gallery room of the

Hallwyl museum, also captured through photogrammetry

(Panasonic Lumix GX8 camera) [29]. Though the crowd sim-

ulation is identical, being smaller than the cathedral scenario,

higher crowd densities are reached at lower difficulty levels

as shown in Fig. 3.
7) replica: A hand-made model of our office common

space, reproduced with as much fidelity as possible for

sim2real experiments. Some of the scene objects are ran-

domly moved at the start of each episode. Lighting is

randomly sampled from a set of light conditions (indoor

and outdoor light sources turned off-on, color shifts). Post-

processing is added for photorealism and exposure is approx-

imately tuned to match typical robotics camera sensors (e.g.

Intel RealSense d415). A comparison between the simulation

and reality is shown in Fig. 1.

IV. LEARNING CAMERA-BASED NAVIGATION

A. Problem Definition

1) State space: The state available to the model consists

of the image observation, a single RGB 64x64 image from

the robot’s forward facing camera and a vector observation,

a two-element vector containing the goal’s coordinates in

meters in the robot’s frame.

2) Action space: In preliminary testing with continuous

actions and image inputs, baseline end-to-end approaches

struggled to converge. As a result, unlike in [18], we opt

for a discrete action space of size 3: [LEFT, FORWARD,

RIGHT]. LEFT and RIGHT correspond to rotations around

the vertical axis.

3) Reward function: The stepwise reward is the sum of

four terms: rg is 100 if the goal is reached, 0 otherwise;

rc is -25 if the robot is in collision, 0 otherwise; rp is the

straight-line progress towards the goal in meters since the

last step multiplied by 0.1; rt is -0.05 if the action is LEFT

or RIGHT to penalize superfluous turning.

In modern, cathedral, gallery and replica scenarios, a

simpler reward function is used, where r = rg . We found

that this was a sufficient reward signal for learning successful

crowd navigation policies.

B. World-models

Like in [18] the full architecture is split into several

modules. Here we consider the world-model module W.

1) Architecture: The world-model takes sequences of

images, vector observations, and continuous actions (3-

vector, forward, sideways, and rotational velocity). It learns

a mapping from this input sequence to latent features z, h,

as shown in Fig. 4a, and from these latent features to a

next-image and next-vector observation prediction. Taking

in continuous actions (rather than just the discrete actions

used by the RL controller) allows us to use any available

robot data that includes robot base velocities and camera

images (e.g. ROSbags from joystick-operated runs) to train

the world-model offline. The [LEFT, FORWARD, RIGHT]

motions are simply converted to continuous velocity com-

mands when passed through the world-model.

W is implemented using fully connected layers to encode

the action and vector observation, a CNN to encode image

inputs and a transformer T to compute a prediction from the

sequence. A latent feature size of 64 is used for the image

encodings z as well as for the prediction encodings h.

2) Loss: The loss used to train the transformer-based W

module is,

LW = Lprediction + Lreconstruction + κKL(ẑ). (1)

The prediction Lprediction is defined as the mean-squared-

error (MSE) between target (t+1) and predicted image. The

reconstruction Lreconstruction loss is the MSE between input

image and reconstruction, which is obtained by passing the

z encodings directly into the image decoder. The KL(ẑ)
term is the Kullblack-Leibler divergence between the latent

feature distribution parameterized by the encoder and the

prior latent feature distribution, which we multiply by a

constant coefficient. In practice we use a small value (0.001)

for κ. Together, the reconstruction and KL losses can be

understood as a variational-auto-encoding (VAE) loss for

the unsupervised visual-feature-extraction components of the

world-model.

3) Datasets used: In order to train the world-model

module W, we use both real-world data and data generated

with the simulator. In the real-world dataset, the robot is

either driven manually or by a conventional planner. In

the generated data, we use a simple stochastic heuristic

policy, which on average drives towards the goal, but may

deviate from these actions at random (noise on the velocity

commands drawn from a Gaussian distribution).

Rather than train a single world-model on all available

data, we split the data into subsets and train several world-

model variants. This allows us to examine the impact of

dataset scope on final performance. These variants are re-

ferred to as S, SC, SCR, and R, based on the scenario data

they were trained with. S was trained only on data from the

simple scenario. SC from the simple, city and office scenarios.

R on data from real recordings plus data from the modern

scenario. SCR was trained on all of the above scenarios.

4) Architecture variants: In addition to the transformer

world-model architecture mentioned above, we experiment

with other SOTA world-model architectures: A Recurrent

Stochastic State Model (RSSM) architecture, as proposed in

[30] and used in [19]. A Transformer Stochastic State Model

(TSSM) as proposed by [31] is also evaluated in this work.

The RSSM and TSSM are trained using the same loss

functions as was used in [19], where the loss is the sum

of the reconstruction loss, and the KL divergence between

posterior and prior stochastic state distributions.

The same layer and latent feature dimensions were used as

in the original works. When not otherwise stated, we use the

same transformer latent feature, embedding, attention heads

and layer dimensions as in [18]. We also test a transformer

world-model with a larger embedding and latent feature size

of 1024 to match that of the RSSM, and TSSM.

C. Controller

The controller module C, takes as input the world-model

latent feature vector for a single timestep, and outputs a

single action for that timestep. It is implemented as an MLP

with two fully connected layers of size 1024. All policies

take the given goal vector v as input in addition to the

different world encodings below.

1) Pre-trained world-model (WM+PPO): For most exper-

iments, we use the straightforward controller training method

from [18], in which the most recent state zt of a pre-trained

world model W is used as input to the policy, which is trained

in simulation with Proximal Policy Optimization (PPO).

2) End-to-end controller baseline (End-to-end): We also

implement a baseline controller whose architecture consists

of a feature encoder followed by an MLP, which are trained

end-to-end (shown in Fig. 4c). To allow for fair comparison,

the encoder is identical to W, while the MLP is identical to

the one used in C. The end-to-end controller is also trained

from single timestep observations.

3) Explicitly model-based learning (WM+Dreamer): We

also test the explicitly model-based training method proposed

by [19]. In this method, an actor-critic policy is trained

using world-model dream prediction sequences. In order to

collect a rollout dataset, this policy is iteratively applied to

the environment, which is in turn used to train the world-

model (illustrated in Fig 4d). As a consequence, the world-

model W is not exclusively trained on a previously collected

offline dataset (as is the case with the single-step controller

experiments), but rather trained on-policy.

When using this method, we stay as close as possible to the

original work, using the same architecture, hyperparameters

and optimization procedure.

V. EXPERIMENTS & RESULTS

We first analyze the single-step controller training meth-

ods, comparing the end-to-end learning baseline to using

the world-model features which are trained offline. Then,

in Sections V-E and V-F we compare the performance of

the different world-model architectures (transformer-based

vs. Dreamer). Finally, in Section V-G we show sim-to-real

policy transfer performance on a real robot.

A. Comparison with End-to-end Baseline

We train the end-to-end controller models on all simulation

environments for 5 million steps, at which point we observe

that training stops improving. The training was done with

PPO, which we found to perform better on this problem

than competing approaches in preliminary testing. We used

a curriculum approach to adapt the environment difficulty

to the model performance, increasing it by 1 increment

after each successful episode, and decreasing it by 1 after

each failed episode. An increase in difficulty of 1 increment

involves adding one additional pedestrian and increasing the

maximum initial distance to goal by 1m. Training is repeated

with 3 random seeds, to confirm statistical relevance of the

learning results.

Fig. 5. Comparison of end-to-end and world-model controller training
performances in each simulated environment. Shaded area around each curve
shows the min-max spread between seeds. In this comparison, all controllers
use the same world-model, trained on SCR.

Fig. 6. Test-time performance of End-to-end and World-model policies in
each scenario. Min-max performance across seeds shown in black. In this
comparison, all controllers use the same world-model, trained on SCR.

We apply the same training process to learn a controller us-

ing the transformer-based world-model features. The world-

model was trained off-policy on a dataset collected from the

SCR environments as described in Section IV-B.3.

Fig. 5 shows that the world-model approach is consistently

able to reach a higher average difficulty setting during

training. We also test the trained models on a fixed difficulty

level (the highest level reached by either model during

training) and find the that controller trained using world-

model features outperforms the end-to-end baseline in every

scenario (see Fig. 6).

B. Impact of World-model Dataset

To quantify the impact of dataset scope, we train each

variant in and out of their respective evaluation scenarios.

More precisely, for each W variant (S, SC, SCR, R) we

also train several separate C controllers, one on each target

scenario (simple, city, office, modern).

The results given in Fig. 7 show two unexpected results: 1)

Variants can outperform the end-to-end baseline when trained

on scenarios that the world-model has never seen, and 2) we

find that more general variants (W trained on a larger subset

of data) outperform specific variants (W trained only on the

subset relevant to the target scenario). The performance of

world-models trained with less data (S, R) can generally be

improved by supplying more data even if that data does not

reflect the target environment (SC, SCR).

C. Impact of Controller Scope

To test the impact of controller scope on generalization

ability, we train controllers on a mix of several scenarios,

corresponding to the S, SC, and SCR scenario subsets.

Fig. 8 shows both benefit and cost when training generalist

controllers: i) Generalist controllers (e.g. trained on SCR)

perform better on average than less or non-generalist con-

trollers in unseen environments (top row). ii) Generalisation

comes at a price, generalist controllers are not able to

perform as well in seen environments as their specialist

counterparts, even after training converges (bottom row).

These results indicate that overfitting is a larger issue for

monocular-based navigation than for LiDAR-based naviga-

tion. This motivates the need for varied scenarios in deep-

learning research for image-based navigation.

D. Multi-task Experiment

One hypothesis for the better performance of the world-

model feature controller models is that the self-supervised

learning leads to ‘richer’ latent features, which can be

leveraged by the controller. By ‘richer’ we mean that the

prediction task leads to a more efficient compression of the

world state information into the latent features.

In order to test this hypothesis, we ask whether the

latent features of the pre-trained W module can be used

for other tasks. We pick the tasks of pixel-wise semantic

segmentation and depth-prediction, in order to quantify how

much semantic and geometric understanding is distilled into

latent features by the model.

To perform this experiment, we first generate a dataset

of semantic and depth ground truth in the simulator. Then,

we train three versions of the same decoder architecture to

predict the semantic and depth labels, one taking as input

the latent features from the world-model, the second the

latent features from the same layer of the end-to-end baseline

network. To serve as a best-case, we also train the third

decoder jointly with an encoder (identical to the end-to-

end and world-model encoder modules) to predict the labels

from images directly. In all cases the latent feature size and

decoder architecture is identical.

For the segmentation task, the prediction error is calculated

as the mean per-pixel binary cross entropy error between the

predicted classes and the ground truth. For the depth task,

the prediction error is the per-pixel mean square of the pro-

portional error, where the proportional error is the difference

between predicted and ground truth distance divided by the

ground truth distance.

On the test set for both tasks, the decoder based on world-

model latent features achieves a per-pixel average error

which is half that of the end-to-end latent features decoder.

These results, shown in Fig. 9, support the latent-feature

‘richness’ hypothesis above.

E. World-model Architectures

To find out which world-model architectures are better

suited to the navigation problem, we compare the quality of

their predictions, and their impact on controller performance.
1) Dream quality: One of the assumptions in the world-

model approach is that a model which is better able to

predict future states or sensor data can better capture the

world dynamics, and that this ability is inherently useful

for planning, which the C module is meant to put into

practice. We experiment with the three architectures for the

world-model described in Section IV-B.4. The transformer

architecture used in [18], the RSSM architecture used by

[19], and the TSSM architecture from [31].

As shown in Fig. 10, the trained world-models are able

to generate dreams which appear to capture dynamics which

matter for navigation (robot and people movements).

Fig. 7. World-models trained with different datasets show varied training performance. The scenario dataset scopes corresponding to each W variant (S,
SC, SCR, R) are shown on the right.

Fig. 8. When tested outside of their training environments, controller
performance is greatly reduced. We see that training ‘generalist’ controllers
(trained on S, SC, SCR scenario subsets) can improve generalization ability,
at the cost of reduced performance when compared to scenario-specific
controllers.

To measure both immediate and longer-term prediction

ability, we calculate n-step prediction error, which compares

the dream image predictions to the real sequence. What we

refer to as ‘dreams’ are sequences of predicted observations

where the latest prediction is used as input for the next, and

so-on. As such, the 1-step prediction error is the immediate

prediction from the model given the input sequence, the 2-

step prediction error is the prediction from that sequence

with the 1-step prediction appended to it, and so on. Actions

are taken from the ground truth sequence.

To give an upper bound on the errors, we calculate i) the

prediction error if a model outputs constant grey images (all

values 0.5), ii) the prediction error if a model just outputs

the last image in the input sequence (static assumption).

This ensures that models which perform better than the

upper-bound are doing better than random guessing, or

predicting stillness. The same SCR dataset is used to train

all architectures, with a subset withheld for validation.

Qualitative results in Fig. 10 show that the RSSM and

64-feature transformer better capture general dream dynam-

ics (performance over several frames), but the large trans-

former creates higher-fidelity dreams (more coherent frame-

to-frame, higher resolution)1.

However, the quantitative results in Fig. 11 do not show

a similar trend; the pixel-wise error lead to lowest error for

the blurriest predictions (Transformer z = 64). This shows

that proper evaluation of long-term prediction quality is not

straightforward, though simple metrics are able to capture

1TSSM produced similar quality dreams compared to RSSM and so we
do not include their qualitative results here due to space restrictions but
include them in the associated video.

Fig. 9. Quantitative (Right) and qualitative (Left) comparison of world-
model and end-to-end features for the class segmentation and depth predic-
tion tasks in the multitask experiment. Note that the E2E features tend to
‘lose’ pedestrians.

the general ability of a model, there are aspects we might

consider more important than pure prediction accuracy (e.g.

coherence, object permanence, etc.).

2) Impact on controller performance: We compared the

impact of using RSSM, TSSM, and our standard transformer

world-models for training the controller and found no signif-

icant difference in performance (similar mean and variance).

We speculate that these architectures are all general enough

that hyperparameter search, training scaling effort and engi-

neering effort likely play a bigger role in final performance

than network architecture for this problem.

F. Variations in Controller Training

1) Sequence Input to Controller: Several SOTA end-to-

end RL approaches use sequences of images as input to the

controller model [31]. In our experiments, using sequences

(length 10) of encoded feature vectors instead of only the

latest z vector as controller input led to reduced performance

in all simulated scenarios.

2) Explicit Model-based Training: We test the explicitly

model-based learning of world-models from [19], incorpo-

rating the larger architectures, and on-policy world-model

training. Model-based approaches are known to be more

Fig. 10. Predicted dream-sequences for three of the tested world-model architectures, given the same action inputs, and context. We see that the world-
model approach successfully captures the appearance and dynamics necessary for navigation. Transformer and RSSM architectures with z=1024 output
dreams of similar apparent quality, tracking the goal well, and with moving shadows resembling people. The small transformer creates blurrier predictions,
and has a stronger tendency to remove people from its predictions.

Fig. 11. Mean test-set error between dreamed world-model trajectories and
ground truth is computed for various world-model architectures. On the left
for trajectory images, and on the right for vector observations (goal position
in robot frame).

data efficient, but also very compute heavy since the policy

is optimized from roll-outs of the world-model, which in

turn has to be continuously updated.Due to the increased

computational cost, these models are trained to convergence

only on the simple, modern, and replica environments, which

takes more than 1 week per model on a 16GB Tesla T4 GPU.

Results are shown in Table I.

We find that sizeable performance gains can be obtained

from incorporating methods used in latest model-based RL

approaches. These results indicate that there is likely still

significant performance gain to be achieved on this problem

through scaling and model tuning. This makes us hopeful

that we can bring navigation models even closer to reality

and ultimately achieve human-level planning performance.
TABLE I

SUCCESS RATES

Scenario Simple Modern Replica Replica Replica
people 10 25 0 3 10

WM+PPO 57 % 30 % 94 % 55 % 17 %
Dreamer (WM) 82 % 50 % 96 % 65 % 17 %

Fig. 12. Robot trajectories during real-world tests (people are not shown).

G. Sim-to-real

Since the controller generalization experiments in Sec-

tion V-C demonstrated the benefit of training controllers on

the target environment, here we use the proposed NavDreams

simulator to create the replica simulation environment shown

in Fig. 1, reproducing the chosen real test conditions as

realistically as possible. We trained a world-model-based

controller in this environment and deployed the learned

controller in the real world on a Pepper robot.In the simulated

tests our policy achieved 94% success rate in the empty case,

55% in the 3-human case and 17% in the 10-human scenario.

In real-life tests, 36 out of 54 (66%) goals were reached

successfully (see Fig. 12). In those tests, the number of

people varied between 0 and 9, similar to the simulator train-

ing conditions. People displayed various behaviors, some

ignoring the robot and others blocking its way.Out of all real

tests, only two failures involved a collision of any kind. Once

was with a chair leg and the other with a poster stand leg. All

other failures were due to an inability to reach the goal in the

allotted time (60s per waypoint). These encouraging results

demonstrate the benefit of photorealistic 3D simulation with

the proposed NavDreams simulator for transferring camera-

based navigation policies to the real world.

VI. CONCLUSION

In this work we explored the problem of RL-based navi-

gation among people from only monocular camera. We find

that the proposed world-model approaches achieve promising

results. We also find that world-models trained on navigation

data are able to capture part of the dynamics of navigation

and human movement. Our multi-task experiment results

showed that the world-models encodings are comparatively

rich; they can be used to recover not just image data but also

geometric understanding (depth) and semantic understand-

ing. In our small-scale sim-to-real experiments, we showed

that the learned policy performs similarly in the real world

as in the simulation, which validates the appropriateness of

our proposed simulation environment.

Future work on the method side should increase the variety

of navigation scenarios in order to ensure that overfitting is

avoided. In general, we observe that RL approaches struggle

to understand the full scene context, model the future impacts

of their actions and use this information to plan ahead.

As a result, human-performance is still unmatched on these

navigation tasks. We believe that the world-model prediction

quality is key to making the planning task tractable and

improving it will be critical in future research.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” in Advances in Neural Information Processing Systems,
2018, pp. 2450–2462.

[3] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning
to navigate in complex environments,” in International Conference on

Learning Representations, 2017.
[4] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-

ical memory for navigation,” in International Conference on Learning

Representations, 2018.
[5] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. An-

derson, D. Teplyashin, K. Simonyan, A. Zisserman, and R. Hadsell,
“Learning to navigate in cities without a map,” in Advances in Neural

Information Processing Systems, vol. 31, 2018.
[6] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and

A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in IEEE international conference on

robotics and automation, 2017, pp. 3357–3364.
[7] S. K. Ramakrishnan, D. Jayaraman, and K. Grauman, “An exploration

of embodied visual exploration,” International Journal of Computer

Vision, vol. 129, no. 5, pp. 1616–1649, 2021.
[8] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for

navigation,” in International Conference on Learning Representations,
2019.

[9] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural SLAM,” in International

Conference on Learning Representations, 2020.
[10] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,

J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat:
A platform for embodied AI research,” in IEEE/CVF International

Conference on Computer Vision, 2019, pp. 9339–9347.

[11] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee,
M. Savva, S. Chernova, and D. Batra, “Sim2Real predictivity:
Does evaluation in simulation predict real-world performance?” IEEE

Robotics and Automation Letters, vol. 5, no. 4, pp. 6670–6677, 2020.
[12] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-

communicating multiagent collision avoidance with deep reinforce-
ment learning,” in IEEE international Conference on Robotics and

Automation, 2017, pp. 285–292.
[13] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion

planning with deep reinforcement learning,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2017, pp. 1343–1350.
[14] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among

dynamic, decision-making agents with deep reinforcement learning,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2018, pp. 3052–3059.
[15] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:

Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in International Conference on Robotics and Automa-

tion, 2019, pp. 6015–6022.
[16] L. Q. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot

navigation in crowded environments using deep reinforcement learn-
ing,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2020.
[17] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision

avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, pp. 856–
892, 2020.

[18] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “NavRep: Unsuper-
vised representations for reinforcement learning of robot navigation in
dynamic human environments,” in IEEE International Conference on

Robotics and Automation, 2021, pp. 7829–7835.
[19] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering Atari

with discrete world models,” in International Conference on Learning

Representations, 2021.
[20] A. Piergiovanni, A. Wu, and M. S. Ryoo, “Learning real-world

robot policies by dreaming,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2019, pp. 7680–7687.
[21] N. Yokoyama, Q. Luo, D. Batra, and S. Ha, “Benchmarking aug-

mentation methods for learning robust navigation agents: the winning
entry of the 2021 igibson challenge,” arXiv preprint arXiv:2109.10493,
2021.

[22] N. Tsoi, M. Hussein, J. Espinoza, X. Ruiz, and M. Vázquez, “Sean:
Social environment for autonomous navigation,” in Proceedings of the

8th International Conference on Human-Agent Interaction, 2020, pp.
281–283.

[23] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
Env: Real-world perception for embodied agents,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9068–9079.

[24] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3D: Learning from RGB-
D data in indoor environments,” in International Conference on 3D

Vision 3DV, 2017, pp. 667–676.
[25] V. Tolani, S. Bansal, A. Faust, and C. Tomlin, “Visual navigation

among humans with optimal control as a supervisor,” IEEE Robotics

and Automation Letters, vol. 6, no. 2, pp. 2288–2295, 2021.
[26] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba,

“VirtualHome: Simulating household activities via programs,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 8494–8502.
[27] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “IAN: Multi-behavior

navigation planning for robots in real, crowded environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2020, pp. 11 368–11 375.

[28] Calidos, “Cloister of Cathedral of St. Mary of La Seu Vella,” in
Photogrammetry - Terrestrial, Data Derivatives - 3D Photogrammetry,
2020.

[29] Capturing Reality and E. Lernestål, “Museum at your fingertips,”
https://www.capturingreality.com/Article-Hallwyl-Museum-3D, 2019.

[30] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International Conference on Machine Learning, 2019, pp. 2555–2565.

[31] C. Chen, Y.-F. Wu, J. Yoon, and S. Ahn, “TransDreamer: Rein-
forcement learning with transformer world models,” arXiv preprint
arXiv:2202.09481, 2022.

