
FlowBot: Flow-based Modeling for Robot Navigation

Daniel Dugas, Kuanqi Cai, Olov Andersson, Nicholas Lawrance, Roland Siegwart and Jen Jen Chung

Abstract— Autonomous navigation among people is a com-
plex problem that also exhibits considerable variation depend-
ing on the type of environment and people involved. Here
we consider navigation among crowds that exhibit flow-like
behavior like people moving through a train station. We propose
a novel pseudo-fluid model of crowd flow for such problems.
These have an intuitive physical interpretation and do not
require much tuning. We further formalize an observation
model to infer flow properties from discrete sensor observations,
including support for partial observability, and pair it with
a flow-aware planner. We demonstrate the potential of the
approach in simulated navigation scenarios. We achieve state
of the art results on the CrowdBot navigation benchmark, and
also compare favorably against a standard ROS planner on a
partially observable environment, demonstrating that the flow-
aware planner successfully estimates and plans around counter-
flows in the crowd in real time. We conclude that flow-based
planning shows great promise for crowded environments that
may exhibit such flow-like behavior.

I. INTRODUCTION

Autonomous navigation among people is both an ubiqui-
tous and complex problem. One thing which emerges from
the many efforts to operate robots in various public spaces
is that they present a variety of situations, which can require
switching between different specific planning methods [1],
[2].

One specific scenario which is often observed in, for
example, train stations and other public spaces which serve
a mass-transit function, is the presence of medium to high
density homogeneous masses of people moving together.
These flows can be either clearly separated or turbulent. In
the field of crowd-modeling, analogies to fluid flow are often
employed when describing such dynamics [3]–[5]. Generally
speaking, this is on the opposite end of the spectrum from
individual or group modeling, which is often dominant in
navigation planning work [6].

Examples of navigation planning in crowd flow environ-
ments include [7], which proposes a group-surfing planner
that computes and matches the local flow by explicitly detect-
ing moving groups of pedestrians. Henry et al. [8] propose
an approach which is shown to avoid areas of counter-flow.
However, rather than model crowd flow-robot interaction
explicitly, their approach uses inverse reinforcement learning
to imitate human navigation behavior.

Prior work by [9] described a deep-learning-based con-
troller to regulate pedestrian flows through robot interaction.

This work was supported by the EU H2020 project CROWDBOT under
grant nr. 779942 and a Wallenberg Foundation and WASP Postdoctoral
Scholarship.

The authors are with the Autonomous Systems Lab, ETH Zürich,
Zürich 8092, Switzerland. {dugasd; nandersson; lawrancn;
rsiegwart; chungj}@ethz.ch, kayle.ckq@gmail.com

Fig. 1. Left: flow planner being tested in a simulated environment
(CrowdBot-Challenge). Right: example of a corresponding real-life situa-
tion.

The controller takes a pedestrian flow estimate as input, and
may only move the robot along a pre-determined trajectory.
Fan et al. [10] similarly used deep learning methods to
explore whether crowd-flow modeling can be used to help
with mapping and localization. This crowd-flow map is also
used to influence trajectory planning. To model the flow, K-
means clustering is used to compute static velocity patterns
in a discrete grid.

While data-driven methods have enjoyed some success on
this problem, they can be opaque and require considerable
data for training. In this work we instead propose an inter-
pretable crowd-model based on pseudo-fluid simulation, and
pair it with a planner for flow-aware crowd navigation. Our
contributions are:
• We propose and design a navigation planner for robots

in crowded environments based on pseudo-fluid models.
These have a physical interpretation and require little
tuning.

• We validate that this model is able to estimate crowd
flow in simulated scenarios, and use this estimate to
plan trajectories which avoid regions of counterflow.

• We show that adding flow awareness to classic lo-
cal planning approaches results in improved success
rates, efficiency and safety in the CrowdBot Challenge
navigation benchmarks. We show that the planner can
work in realistic conditions, including partial crowd
observations, in real time.

II. CROWD FLOW MODELING CONSIDERATIONS

There is a range of possible ways to formalize the problem
of modeling a crowd as a fluid. Depending on assumed flow
properties, the equations for approximating fluid dynamics
contain many differential terms for physical quantities or
phenomena which are not relevant to actual crowds and make
them difficult to apply in practice.

Here we want to find an interpretable but simplified model
sufficient for crowd navigation. To do so, we make a few
observations based on empirical data and previous work:

1) Walking against a flow of people is harder than going
with the flow. At the macroscopic level this is similar to

the effect of viscosity in fluids, which models the forces
acting against objects moving within the fluid, as well as
those forces within the fluid itself that affect its flow.

2) In denser crowds it is harder to deviate from the
crowd velocity without causing collisions. This suggests a
relationship between viscosity and density.

3) Obstacles tend to slow down crowd movement. The
local slow-down can affect nearby flow, analogous to the
shear stress equations in fluids.

4) Crowd masses can move homogeneously or chaotically.
A crowd where individuals are moving randomly and a
crowd where they are standing still may have the same
density and average velocity. However, intuitively we expect
that a robot traversing these crowds will be impacted in
dissimilar ways. We propose to model this using the concept
of turbulence in fluids.

Finally, we recognise that flow modeling is macroscopic
in nature. While very local person-robot interactions should
be individual-based in order to avoid collisions, flow-based
planning should ideally target a higher-level planning ab-
straction, reasoning at the level of global trajectories to a
goal in a flow map. Each of these considerations motivate
our crowd flow modeling and planning formulation below.

III. FLOW MODELING

In this section we present the details of our approach for
modeling a crowd as a pseudo-fluid.

A. State Representation

Given the desired pseudo-fluid properties outlined in Sec-
tion II, we select the following variables to model flow-like
properties of the crowd flow state over space and time:

Density ρ(x, t) : R2 × R+ → R+

Velocity v(x, t) : R2 × R+ → R2 (1)

Turbulence τ(x, t) : R2 × R+ → R+

Where x is a spatial (x, y) coordinate and t denotes the
timestep. Density corresponds to the amount of people per
unit area. Velocity is the mean (vx, vy) velocity of the crowd
(e.g. 0 if everyone moves chaotically). Turbulence is defined
as the mean particle speed minus the magnitude of the
mean crowd velocity. It represents the absolute deviation in
velocity,

τ(x, t) = E(‖v(x, t)‖)− ‖E(v(x, t))‖. (2)

These virtual fields can be thought of as terms controlling
the distributions from which individual people detections are
independently sampled when measurements are made.

B. Fluid Mechanics-inspired Model

Here we discard many of the terms present in equations for
real fluids, and focus on the effect which is most important to
our navigation objective. As outlined in Section II, the main
flow aspect we care about is viscosity, which approximates
the tendency of humans to move at similar speeds when close

Fig. 2. An example set of observation areas Za = {(A1, t1), (A2, t2)}
and associated detections Zp = {(x1,v1, t1), (x2,v2, t1), (x3,v3, t2)}
which result from two consecutive sensor measurements.

together. As a result, we simplify viscosity to a constraint on
the second derivative of velocity,

∂2vx
∂y2

<
1

µ
,

∂2vy
∂x2

<
1

µ
(3)

Viscosity µ could be modeled as a varying quantity itself,
which could depend on ρ, or space, or even other properties
such as crowd mood, etc. In this preliminary work, we
consider µ to be a constant, though it may be valuable to
model this term in more detail in further research. Unlike the
viscosity model above, pressure terms lead to computation-
ally expensive differential equations, while providing only
a slight increase in how well the model fits actual crowd
behavior at the time-scales we are interested in, and is much
less relevant to robot behavior. For this reason, in this work
we disregard explicit pressure terms. However, we do assume
that a continuity in the flow field (which is implicitly related
to pressure) leads to constraints on the variation of velocity
along the velocity direction.

∂2vx
∂x2

<
1

ω
,

∂2vy
∂y2

<
1

ω
(4)

As the time-based dynamics of crowd flows are not well
understood, we opt for a quasi-static flow model. We assume
that quantities may change over time, and that this change
is continuous, and the rate of this change bounded. But we
make no further assumptions about this rate of change (no
∂2v
∂t2 constraints, etc). Effectively, this allows the robot to
adapt to changes in the overall flow of the crowd.

We use this fluid mechanics-inspired model to estimate
the effects of the crowd on the robot’s trajectory. These
considerations are explicitly dealt with in Section IV on
robot planning. Here we assume that the effect of the
robot’s motion on the crowd is insignificant compared to
the dominant crowd flow characteristics and therefore do not
explicitly model any robot-crowd interactions.

C. Partial Observability

Since we consider the crowd as a fluid, although the
density can vary, we consider it as having no holes. This
means the velocity is not zero where there are no people, it
is simply not measured at that moment. Only where there are
people standing still is the velocity measured as zero. This
has the consequence that our flow-based planner operates in
the space of smooth velocity fields, not individuals.

However, although we assume a continuous fluid, due to
practical constraints, measurements are discrete in nature. So,
as inputs to the measurement model we consider the set of
detected people Zp = {(xj ,vj , ti)}, and the set of observed

Fig. 3. Allowed (green) and disallowed (red) values of the scalar field
vy(x) around a measurement (xi,vi), according to the constraint set by
∂2vy
∂x2

< 1
µmax

. Left is the linearized case where ∂vy
∂x

= 0. Middle is

where ∂vy
∂x

is an arbitrary non-zero value. Right is the relaxation from hard
to soft constraint.

areas Za = {(Ai, ti)} over all measurement timesteps, see
Fig. 2. The observed areas Za are important to quantify how
frequently a given region has been observed. This allows us
to distinguish between situations where we detect no people
in a region and situations where we just have no (or very
few) observations of the region.

D. State Estimation
1) Density Estimator: We assume that ρ(x) is a smooth

function, which when integrated over a measurement area
Ai gives us the expected amount of detections obtained from
that measurement.

For a set of detections and measurements Zp, Za, we use
the following density estimator:

ρ̂(x) =
1

2πσ2

1

Nobs(x)

∑
j∈Zp

e−
1
2 ((

x−xj
σ)2+(

y−yj
σ)2), (5)

where Nobs(x) is the number of times x was observed, i.e.
Nobs(x) = |{∀Ai ∈ Za|x ∈ Ai}|.

The parameter σ controls the spatial smoothness of our
recovered estimate. We approximate it as a constant.

2) Velocity Estimator: We soften the viscosity constraints
so that they become error terms, which can then be min-
imized (see Fig. 3). For tractability, we linearize around
the measurement, i.e for a single measurement we assume
∂v
∂x = 0, which leads to a well-defined error function. Despite
this linearization, over many measurements we are able to
recover the true derivative, as shown in our results.

For this error function ξj : R2, R2 → R2, we choose a
parabolic function as it is analytically differentiable. This
implies the following form,

ξj(x,v) = α(x)((v − vj)� (v − vj)) + β(x) (6)

Where the terms α and β (R2 → R) are functions of x.
For a set of measurements Zp, the total soft-constraint error
is,

ξ(x,v) =
∑

(xj ,vj)∈Zp

ξj(x,v), (7)

which can be minimized to find an estimate of vx,

v̂x = argmin
vx

∂ξ

∂vx
=

∑
j∈Zp αvxj∑
j∈Zp α

. (8)

Similarly for vy . While any weight function could be se-
lected for α, we have the additional smoothness requirement
required by (4). For this, we choose,

α = e−γ(‖x−xj‖)
2

, (9)

where γ estimates the crowd flow ‘viscosity’ µ.
Note: a shortcut taken here is the assumption that ω = µ.

For different values of ω and µ (described in Eq 3 and 4,
α in (6) would need to take matrix form.

3) Turbulence Estimator: To compute turbulence, we em-
ploy the same estimator, but apply it to the magnitude of the
velocity vector, which can then be used to compute τ ,

τ = ˆ‖v‖ − ‖v̂‖, (10)

where,

ˆ‖v‖ =
∑
j∈Zp α‖vj‖∑
j∈Zp α

. (11)

The resulting state estimation procedure is described in
Algorithm 1.

Algorithm 1 Discretized state estimation
while 1 do

t
if Detection (xj ,vj , t) then

Zp ← (xj ,vj , t)

if Observation Ai then
Za ← (Ai, t)

Zsampled
p ← sampling(Zp, t) . (12)

Zsampled
a ← sampling(Za, t) . (13)

for x ∈ Grid do
ρ̂(x) =

1
2πσ2

1
Nobs(x)

∑
j∈Zsampled

p
e−

1
2 ((

x−xj
σ)2+(

y−yj
σ)2)

v̂x =

∑
j∈Zsampled

p
αvx,j∑

j∈Zsampled
p

α

v̂y =

∑
j∈Zsampled

p
αvy,j∑

j∈Zsampled
p

α

ˆ‖v‖ =
∑
j∈Zsampled

p
α‖vj‖∑

j∈Zsampled
p

α

τ = ˆ‖v‖ − ‖v̂‖

E. Temporal Measurement Model

Due the quasi-static state assumption mentioned in Sec-
tion III-B, the underlying flow state could be changing
over time. Given this uncertainty, we use a naive method,
where we sample a subset of the complete measurements
set (Zp, Za), decreasing the probability of sampling past
samples the older they are. Due to current timestep t,

Zsampled
p = {(xj ,vj , ti) ∈ Zp|binomial(λti−t)}. (12)

This time-decay sampling rate λ is an empirically chosen
parameter which represents our prior over the flow dynamics.

In order to keep the ratio of measurement to observation
unbiased, Za must be sampled using the same formula,

Zsampled
a = {(Ai, ti) ∈ Za|binomial(λti−t)}. (13)

Fig. 4. Left: Illustration of the cost-optimal v∗ velocity along a chosen
direction. The total cost (green) is the sum of the resistance cost term
(orange) and the time cost term (blue). The fluid-resistance constraint limits
the possible choice of robot velocities (white). Right: The same terms shown
in a top-down view of the velocity-space (bottom-left corner is origin), for a
given robot position. The velocities satisfying the fluid-resistance constraint
are now a white circle around the current crowd velocity at that position.
Velocities minimizing each cost term along the given direction are shown
as black circles.

F. Static Obstacles

A practical approach for taking into account static obsta-
cles such as walls and pillars in our state estimation is to
generate 0-velocity detections at their positions. These 0-
velocity detections are only considered when calculating the
velocity and turbulence estimates, not density.

IV. PLANNING

Our desired planner should take as input a fluid state
estimate and robot state, and find an optimal trajectory
through the environment.

A. Cost Function

To do so, we must first define a cost function. We return to
our previous focus on fluid viscosity and define a resistance
term at any robot position and velocity in the field as,

r(xrobot,vrobot) =
1

κ
‖vrobot − v̂(xrobot)‖. (14)

where κ can be thought of as the ‘allowed’ deviation from
the current crowd velocity, in m/s,

κ =
1

ρµ
+ τ. (15)

We can select a simple heuristic cost, which minimizes
the resistance and travel time for any trajectory T ,

J(T) =
∑

(xt,vt)∈T

r(xt,vt) + Jtime(xt,xt+1,vt). (16)

Jtime is the time required to traverse the distance between
xt and xt+1 at velocity vt. Note that when the fluid state
is unknown or there are no humans present, the resistance
term r goes to 0 and the planner reverts to a standard time-
optimizing navigation planner.

B. Velocity Constraints

Apart from the obvious physical limits of the robot, i.e
‖vrobot‖ < vmax, we also define constraints which limit the
space of possible velocity commands.

1) Fluid-robot constraints: We restrict the robot to select
velocities which do not deviate too much from the crowd
flow. This maximum deviation is calculated by defining a
maximum allowable resistance which prevents unsafe or
unacceptable behaviors,

r(xt,vt) < rmax, ∀(xt,vt) ∈ T. (17)

This constraint can be visualized in Fig. 4.
2) Cost-optimality constraint: Along a given direction

(d), we constrain the velocity to a single possible value, v∗,
the velocity for which the cost equation (16) is minimized,
subject to (17). See Fig 4 for an illustration.

v∗(x,d) = argmin
v

1

κ
‖dv − v̂(x)‖+ 1

v
. (18)

This constraint allows us to greatly reduce the space of
possible actions that need to be considered for planning. At
a given coordinate (x, t), our planner only needs to select a
direction (d, unit vector) and a distance to move.

3) Slow Movement: We consider stopping to be an excep-
tion to the fluid-robot viscosity constraint. (In this regime,
the robot could be considered a static obstacle.) Inspired by
[11], for robots which are light enough not to present a safety
risk, we can extend this region slightly by allowing very
slow movement in any case (crawl behavior), ‖v‖ < vcrawl.
Though this may not apply to the most extremely packed,
static crowds, previous work [2] shows that up to relatively
high-density (2peoplem2 scenarios, a value of 0.1ms may be used
for vcrawl.

C. Optimization Algorithm
The above definitions in principle allow use of any con-

ventional planning method, such as rapidly-exploring random
trees [12] or gradient-based approaches [13], to minimize
navigation costs on the flow-model. Here we demonstrate the
approach using Dijkstra’s algorithm to minimize the naviga-
tion cost. We define each node as an (x, y) coordinate in a
discrete grid of fixed resolution and we use an 8-connected
scheme to define the edges between nodes. According to the
quasi-static state assumption mentioned in Section III-B, we
consider the fluid state as constant at the planning stage, this
allows us to drastically reduce the number of nodes in the
graph. Due to the nature of velocities, the graph is a directed
graph. For each graph edge, a unique velocity is calculated
using (18). Edge costs are then calculated with (16). The
result is a trajectory containing the desired nominal velocity
at every timestep T ∗ = {(xt,vt)}.

D. Low-level Control
The flow-based planning algorithm outputs a recom-

mended immediate velocity, and a trajectory to the goal
which is flow-aware. However, by design, this nominal
velocity does not take into account individuals around the
robot, which in short-term planning can lead to undesired
collisions. For this reason, the nominal velocity tracking the
flow-aware trajectory can be given as input to a short-term
collision-avoidance planner, such as RVO. We benchmark
these alternatives in Section V-B.

Fig. 5. Simulated testing of the state estimation model. True velocity field
(dashed), sampled measurements (crosses), and state estimates for various
values of the parameter γ. We see how different values directly affect the
resulting ‘viscosity’ or ‘smoothness’ of the state estimate.

V. EXPERIMENTS

A. Validity of the Measurement Model

Assuming a true velocity field over space, we draw
samples of person detections stochastically by sampling
velocities from a normal distribution around the modeled
‘true’ velocity value at that point. This simulates detection
and tracking errors as well as turbulent crowd movement.

We find that for a high enough value of the parameter γ,
the state estimate given by (8) approaches the true value as
the number of samples increase (Fig. 5).

The value of the parameter γ is tied to the expected
viscosity of the crowd pseudo-fluid, too low a value prevents
the estimate from having large curvature in the velocity field,
whereas a very high value can lead to instability in the state
estimate when few measurements are available.

B. CrowdBot Challenge

The CrowdBot Challenge is a simulation benchmark for
comparing the performance of various navigation planning
algorithms in a range of challenging scenarios [14]. These
scenarios take place in a long corridor, while simulated
crowds move in various patterns. The robot must cross the
corridor from one end to the other in order to succeed.

These scenarios can be broadly separated into low-density
and high-density crowds, crowds moving with the robot,
against the robot, both, or sideways, in addition to reactive
vs. non-reactive crowds. There are 40 scenarios in total.

To evaluate our flow-based method, we test it in the
Crowdbot Challenge benchmark, which allows us to compare
its performance to that of already-implemented planners,
such as Dynamic Window Approach (DWA) and Reciprocal
Velocity Obstacles (RVO).

As in [14], each scenario is repeated three times. Each
time, the simulated crowd is controlled using one of three
simulation algorithms (ORCA [15] with 0.5s planning hori-
zon, ORCA 1.5s, and Social Forces [16]).

Given the nature of the crowd flux in this simulation,
we posit the hypothesis that a flow-aware planning method
would perform as well or better than a non flow-aware
equivalent.

In order to test this hypothesis, we run two versions of
the FlowBot planner. The first version, FlowBot (nominal),
executes the nominal velocity predicted by the cost optimizer
directly on the robot as a commanded velocity. This means
that there is no local collision avoidance, though the nominal
velocity tends to match that of the crowd whenever possible.

Fig. 6. Visualization of the detections (circles with arrow) state estimate
(vx, vy , ρ, τ), the resulting Dijkstra cost field superimposed with resulting
optimal velocities (bottom), and the planned trajectory (red, dashed), when
applying the FlowBot planner to a corridor scenario with opposing flows,
in the CrowdBot-Challenge simulator.

We consider that a comparable method to the baseline
algorithm in the original CrowdBot-Challenge benchmarks,
where the robot moves straight towards the goal at all
times, as that method also does not perform local collision
avoidance.

The second version, FlowBot+RVO, does not execute
the nominal velocity directly but updates it based on local
collision avoidance as dictated by RVO. Therefore, we com-
pare the performance of this planner to that of the RVO
algorithm alone, in order to test whether the added flow-
aware trajectory planning leads to better outcomes.

We use the crowd flow parameters γ = 1 and σ = 1,
without any parameter tuning. The per-crowd-simulation
results are shown in Table I, and mean results overall are
visualized in Fig. 7 using the original crowd navigation
metrics from [14], where higher is better for the normalized
time and collision scores (1.00 would be zero collisions).
The results of our flow estimation, and plan, during testing
in an example CrowdBot-Challenge scenario with opposite
flows is shown in Fig. 6. In summary we find that:
• The FlowBot+RVO variant has a higher average success

rate, reaches the goal faster, and collides less than
pure RVO on all crowd-simulators (ORCA 0.5s, ORCA
1.5s, Social Forces). Overall, the success rates are 85%
(FB+RVO) vs 75% (RVO), navigation time is 20%
shorter for FB+RVO, and collisions are reduced by
almost half (55%) for FB+RVO compared to RVO
alone. Note that these significant differences in perfor-
mance are not evident at first glance from the CrowdBot
Challenge metrics alone, due to their unintuitive choice
of scale. For example, as collision scores are 1 minus
the time spent in collision, an improvement from 0.98
to 0.99 implies a 50% reduction in total collision time.
Despite this unintuitiveness, we still include the full

Fig. 7. Radar plot of the metrics obtained from testing the flow-based
planner in the CrowdBot Challenge benchmark. Left: results for the FlowBot
planner combined with RVO, compared to RVO alone. Right: results for
executing the raw FlowBot nominal velocity, compared to the baseline
(heading to the goal with constant velocity). In both comparisons, the
addition of flow-aware planning allows goals to be reached faster and with
fewer collisions. Small differences in the collision metric have a large impact
on the total amount of collsions, due to it being an inverse. Here, the
FlowBot (nominal) planner scores 0.95 in the collision metric vs 0.89 for the
baseline planner, which is a reduction of more than half in total collisions.

CrowdBot Challenge metrics from our experiments in
Table I for the sake of completeness.

• The FlowBot (nominal) variant has the same average
success rate as the Baseline. It is slightly slower in
the two ORCA Simulations and faster in the Social
Forces simulation but importantly collides significantly
less than the baseline in all (ORCA 0.5, ORCA 1.5, and
Social Forces). Overall, success rate is 100% for both
planners, navigation time is 2% shorter for FlowBot.

Overall, the FlowBot (nominal) planner reaches the goal
faster than the baseline (which was the fastest planner tested
in the previous CrowdBot-Challenge benchmark), while still
colliding less on average than RVO (which was previously
the safest benchmarked planner).

These results are evidence that the theoretical benefits of
flow-aware planning translate to practice.

C. ROS Planner

We speculated earlier that one of the ways in which
flow-aware planning can improve efficiency in practice is
by detecting and avoiding areas to be avoided entirely due
to unfavorable flow characteristics (counter-flow), using our
FlowBot modelling, estimation and planning approach to
compute a longer-but-more-efficient trajectory around them.

Another particularity of the simulated experiments in
Section V-B is the fact that the positions of all people are
provided to the planner. This is not realistic, as typical sen-
sors can only detect pedestrians in a limited range around the
robot. Therefore, we set out to create a more realistic test of
the FlowBot planner, incorporating this partial observability
of the crowd, among other things.

Due to unrelated circumstances, we have not had the
opportunity to test the approach in real dense crowds yet.
Despite this, to qualitatively confirm the potential for flow-
aware planning to improve robot navigation in practice, we
design a simulated environment which emulates a dense
real-life flow typical in for example a train station, with
directional crowd flows moving along a corridor. A robot
objective is given, where the shortest route is through the
counter-flow area.

Fig. 8. Qualitative testing of the FlowBot planner in more realistic
conditions. Only pedestrians which are in LiDAR range (red dots) are
detected. Unlike the ROS planners, the FlowBot algorithm plans a trajectory
(orange) which avoids the counter-flow. The flow state estimate is shown
as green arrows.

In this experiment, we implement the FlowBot planner as
a ROS node, simulate a 2D LiDAR sensor, and use it to
provide detections only for the surrounding pedestrians that
are not obscured by obstacles or other pedestrians.

We compare the FlowBased planner to the standard ROS
navigation stack (Global + Timed Elastic Band (TEB) plan-
ner from [17]) on the train-station scenario.

We find that even despite the partial observability of
the crowd, as the robot moves the flow model over time
becomes a more accurate estimate of the true crowd flux. As
a result, the planned trajectory is able to avoid the counter-
flow regions. On the other hand, the standard navigation
planners push through the counter-moving crowd, incurring
high navigation costs such as time, avoidance effort, and
increasing the expected collision risk.

The flow-based planning loop is able to run at 10Hz on a
Intel i5 CPU with little code optimization. Planning time
is mostly proportional to the model grid size (we use a
resolution of 0.5m), and the number of samples used in the
state estimation (we use a max sample size of 2000).

We make all code publicly available on github.com/
danieldugas/flowbot.

VI. CONCLUSIONS

We consider navigation in crowded environments where
the crowd exhibits flow-like behavior, like in a train station.
We propose a novel pseudo-fluid based model of crowd
flow which has an intuitive physical interpretation and does
not require much tuning. We further propose an observation
model for this which we validate empirically. Finally, we
propose a planner operating on the pseudo-fluid crowd-flow
and demonstrate the potential of the approach in simulated
navigation scenarios. Despite the models presented in this
work being proof-of-concept, with little-to-no parameter-
tuning, they achieve state of the art results on the CrowdBot
navigation benchmark, and also compare favorably against
the standard ROS TEB planner on a partially observable
environment, showing how the flow-aware planner suc-
cessfully estimates and plans around counter-flows in the
crowd in real-time. We conclude that flow-based planning
shows promise for navigating efficiently in environments that
exhibit flow-like behavior, with much potential for further
improvement and tuning of the model in future work, to
further improve its performance in a variety of scenarios.

TABLE I
CROWDBOT-CHALLENGE METRICS

Success [%] Time Metric Collision Metric Prox NBR vel. NBR reac. J/Jcr L/Lcr

ORCA 0.5s

Baseline 100 0.90 0.89 0.81 0.97 0.63 0.13 1.00
DWA 82.5 0.60 0.92 0.75 0.93 0.80 0.12 0.67
RVO 75 0.53 0.92 0.78 0.90 0.71 0.03 0.92

FlowBot (nominal) 100 0.87 0.95 0.77 1.00 0.71 0.05 0.95
FlowBot + RVO 87.5 0.62 0.96 0.76 0.94 0.67 0.14 0.84

ORCA 1.5s

Baseline 100 0.91 0.89 0.80 0.96 0.58 0.22 1.00
DWA 87.5 0.58 0.91 0.75 0.90 0.81 0.12 0.67
RVO 72.5 0.49 0.93 0.76 0.89 0.67 0.02 0.94

FlowBot (nominal) 100 0.87 0.96 0.74 0.98 0.73 0.07 0.95
FlowBot + RVO 82.5 0.57 0.97 0.75 0.91 0.63 0.08 0.82

Social Forces

Baseline 100 0.77 0.89 0.81 0.97 0.67 0.03 1.00
DWA 80 0.59 0.92 0.75 0.90 0.83 0.05 0.72
RVO 77.5 0.50 0.95 0.78 0.90 0.83 0.02 1.00

FlowBot (nominal) 100 0.89 0.95 0.77 0.97 0.77 0.19 0.96
FlowBot + RVO 87.5 0.62 0.96 0.74 0.92 0.67 0.03 0.92

REFERENCES

[1] Z. Chen, C. Song, Y. Yang, B. Zhao, Y. Hu, S. Liu, and J. Zhang,
“Robot navigation based on human trajectory prediction and multiple
travel modes,” Applied Sciences, vol. 8, no. 11, p. 2205, 2018.

[2] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “IAN: Multi-behavior
navigation planning for robots in real, crowded environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2020, pp. 11 368–11 375.

[3] X. Zhang, Q. Yu, and H. Yu, “Physics inspired methods for crowd
video surveillance and analysis: a survey,” IEEE Access, vol. 6, pp.
66 816–66 830, 2018.

[4] S. Behera, D. P. Dogra, M. K. Bandyopadhyay, and P. P. Roy,
“Understanding crowd flow movements using active-langevin model,”
arXiv preprint arXiv:2003.05626, 2020.

[5] N. Bellomo and C. Dogbe, “On the modelling crowd dynamics from
scaling to hyperbolic macroscopic models,” Mathematical Models and
Methods in Applied Sciences, vol. 18, no. supp01, pp. 1317–1345,
2008.

[6] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726–1743, 2013.

[7] Y. Du, N. J. Hetherington, C. L. Oon, W. P. Chan, C. P. Quintero,
E. Croft, and H. M. Van der Loos, “Group surfing: A pedestrian-
based approach to sidewalk robot navigation,” in 2019 international
conference on robotics and automation (ICRA). IEEE, 2019, pp.
6518–6524.

[8] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in 2010 IEEE International Confer-
ence on Robotics and Automation. IEEE, 2010, pp. 981–986.

[9] C. Jiang, Z. Ni, Y. Guo, and H. He, “Learning human–robot interaction
for robot-assisted pedestrian flow optimization,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 49, no. 4, pp. 797–813,
2017.

[10] T. Fan, D. Wang, W. Liu, and J. Pan, “Crowd-driven mapping, local-
ization and planning,” in International Symposium on Experimental
Robotics. Springer, 2020, pp. 354–368.

[11] D. Paez-Granados, V. Gupta, and A. Billard, “Unfreezing social
navigation: Dynamical systems based compliance for contact control
in robot navigation,” arXiv preprint arXiv:2203.01053, 2022.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[13] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 489–494.

[14] F. Grzeskowiak, D. J. Gonon, D. Dugas, D. Paez-Granados,
J. J. Chung, J. I. Nieto, R. Siegwart, A. Billard, M. Babel,
and J. Pettré, “Crowd against the machine: A simulation-based
benchmark tool to evaluate and compare robot capabilities to
navigate a human crowd,” in IEEE International Conference on
Robotics and Automation, ICRA 2021, Xi’an, China, May 30 -

June 5, 2021. IEEE, 2021, pp. 3879–3885. [Online]. Available:
https://doi.org/10.1109/ICRA48506.2021.9561694

[15] J. v. d. Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics research. Springer, 2011, pp. 3–19.

[16] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[17] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-
tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, 11 2016.

