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Abstract— Robot navigation is a task where reinforcement
learning approaches are still unable to compete with traditional
path planning. State-of-the-art methods differ in small ways,
and do not all provide reproducible, openly available imple-
mentations. This makes comparing methods a challenge. Recent
research has shown that unsupervised learning methods can
scale impressively, and be leveraged to solve difficult problems.
In this work, we design ways in which unsupervised learning
can be used to assist reinforcement learning for robot naviga-
tion. We train two end-to-end, and 18 unsupervised-learning-
based architectures, and compare them, along with existing
approaches, in unseen test cases. We demonstrate our approach
working on a real life robot. Our results show that unsupervised
learning methods are competitive with end-to-end methods. We
also highlight the importance of various components such as
input representation, predictive unsupervised learning, and la-
tent features. We make all our models publicly available, as well
as training and testing environments, and tools1. This release
also includes OpenAI-gym-compatible environments designed
to emulate the training conditions described by other papers,
with as much fidelity as possible. Our hope is that this helps
in bringing together the field of RL for robot navigation, and
allows meaningful comparisons across state-of-the-art methods.

I. INTRODUCTION

Robot navigation in complex environments and in the pres-

ence of humans is a challenging problem due to complexity

in human behavior and the unpredictability of unstructured

environments (see Fig. 1). Though popular planning ap-

proaches work well in many scenarios, edge cases complex

enough to cause planning failures abound, and the engineer-

ing work which is necessary to address one edge case does

not necessarily translate to another. As a result, designing a

planner that is able to perform in any environment is still a

monumental engineering task.

Outside of robot navigation, reinforcement learning (RL)

approaches have led data-driven controllers to reach expert

and even super-human performance at game-play tasks [1].

Data-driven methods, at least in theory, present a potential of

unlimited scale, where a planner can be improved indefinitely

so long as more data can be gathered. For this reason,

several research efforts have focused on the use of data

driven-methods for robot navigation [2–4]. Yet, the question

remains of whether similar performance can be achieved for

the problem of navigation among humans, and how.
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Fig. 1. Timelapse of an example target environment for autonomous
navigation, snapshot of the corresponding LiDAR measurements on the right

Fig. 2. We make NavRepSim openly available, a simulator which contains
efficient, gym-compatible environments for end-to-end navigation, allowing
all to reproduce scenes from (a) [2, 3], (b) CADRL and SOADRL [5–7],
CrowdMove [4] (not shown), (c) IAN [8], and (d) real data.

When planning in the presence of humans, it is often

necessary to provide estimates for the position and state of

humans around the robot [5–7, 9, 10]. To make planning

tractable, these estimates are typically reduced to position,

velocity, and radius of the whole human. Subtleties in

how individual legs move in LiDAR, or full body cues in

3D/camera measurements, are therefore lost. However, with

end-to-end learning, since the data-driven model has access

to the raw sensor input, it could theoretically infer actions

based on such subtle information modalities.

For end-to-end learning, having to train the entire per-

ception component of a policy from sparse rewards can be

inefficient. An alternative is to use features from perception

models which have been extensively trained with supervised

training. This however, requires large quantities of labeled

data. Using unsupervised training, it is possible to learn rich

encodings from unlabeled data. These rich encodings can be

shared across tasks. In addition, these unsupervised models

can be used to generate synthetic reproductions of the world,

which can assist or replace simulation. The question is, using

current methods, can we train unsupervised representations

which are practical for robot navigation?

We address this through the following contributions:

• We provide an open-source simulation environment,

trained models, and useful tools for future end-to-end

navigation benchmarking (see Fig. 2).

• We design several unsupervised learning architectures

for the task of robot navigation among humans.



• We compare existing approaches to each other and to

ours, in seen and unseen environments, and demonstrate

our approach on a real robot.

II. RELATED WORK

Several state-of-the-art RL methods for robot navigation

make use of exact pedestrian positions in the input: CADRL

and following works [5, 9, 10] trained an RL-based policy to

avoid simulated agents with no static obstacles, though real

obstacles are handled out-of-policy in real testing. SARL [6]

target the same domain as CADRL, with an architecture that

focuses on pairwise interactions in order to model a useful

value function. SOADRL [7] extends the SARL architecture

to also take into accounts static obstacles, in some cases with

a limited field of view.

End-to-end methods avoid the need for detection and

tracking of humans by using sensor data as input directly.

Pfeiffer et al. [2] explore using end-to-end supervised learn-

ing for robot navigation given 2D LiDAR measurements.

Example trajectories are taken from an expert planner.

In [3] imitation learning is used, followed by end-to-end

RL, allowing for better performance and harder navigation

problems. Both [2, 3] have a static environment, with no

dynamic agents. CrowdMove [4] shows a robot navigating in

a crowded space using an end-to-end RL policy. The learning

agent is trained to solve a joint planning problem, where

multiple instances of itself all simultaneously navigate past

each other and obstacles to reach their goal.

Ha and Schmidhuber [11] raise the question of whether

unsupervised learning can assist end-to-end RL. Their world

models approach is able to beat state-of-the-art performance

on the CarRacing openAI gym environment by splitting the

end-to-end task into an unsupervised latent feature learning

task and a control policy learning from latent features RL

task. A stated potential of this approach is the ability

to use the unsupervised model to replace simulation, and

they demonstrate a proof of concept for this idea on the

Doom gym environment. Piergiovanni et al. [12] applies

this “dream” idea to real-world robot navigation, in the

limited scope of navigating to or avoiding an object based on

camera images. GameGAN [13] pushes the neural simulation

concept further by approximating the pac-man game through

unsupervised learning of a generative adversarial network

(GAN) architecture. Recent work [14–16], also demonstrated

that the unsupervised learning of sequences can deliver

impressive results simply through increase in scale. They

demonstrate state-of-the-art performance in various natural

language processing tasks, using their approach.

III. NAVIGATION SIMULATION ENVIRONMENT

The NavRepSim environment is designed with RL appli-

cations in mind. It aims to apply to any range-based sensor

navigation problem. The goal of open-sourcing this simulator

is to make it easier for anyone to reproduce state-of-the-art

solutions for learning-based navigation.

The simulator offers 23 fixed maps as well as the pos-

sibility to procedurally generate maps containing random

Fig. 3. The state representation obtained from the world (left) combines
both the LiDAR observation (sl), and goal/velocity observation (sr). The
LiDAR observation is either represented as a 64× 64 matrix of occupancy
probability (rings) or a 1080 vector of distances (1D).

polygons (see Fig. 2 for examples of the available maps).

The offered maps were designed to imitate those used

in prior work. Note that pre-made gym environments are

made available to reproduce the specific training domains

of other paper. We also created several new maps from real

LiDAR data. Overall, we provide environments that range

from simplified and highly synthetic to more realistic maps

containing real-world sensor noise.

In addition to having different maps, the learning environ-

ments can also vary in terms of the simulated robot(s), the

simulated human agents as well as the learning curriculum.

The simulated robot can be either holonomic or differential-

drive. The inertial physics of the robot base can be simulated

with high fidelity or simplified as instantaneous velocities.

Further, collisions can either lead to damage (reflected as a

negative reward) or instant episode termination. Users can

also specify the number of robots in the environment, since

joint training of several robots in the same simulation is also

possible. The number and behavior of the simulated human

agents can also be adjusted. Agents in the environment may

be static or dynamic, they may be rendered as moving legs or

ellipses, and they can be controlled using different policies

(constant velocity, ORCA [17], global planning). Finally,

we offer two learning curricula. The first uses a constant

episode set-up, picking different maps and agent locations

for every episode, while the second varies the environment

difficulty (more human agents and more obstacles in the

case of procedurally generated maps) based on the policy’s

success.

Care is taken to maintain simulation efficiency, with most

environments running at more than 100 iterations per second

in a single thread (on a laptop, Intel Core i7-6600U CPU

@ 2.60GHz x 4). For comparison, the CarRacing gym

environment used in [11] runs at the same speed on the same

machine.

IV. LEARNING-BASED NAVIGATION

A core purpose of this work is to study the possible

variants of learning-based robot navigation. The basic setup

common across many state-of-the-art methods is a ground

robot equipped with a range sensor (often a 2D planar

LiDAR). The state space used in the learning formulation is

derived from the incoming range data. As discussed in Sec-

tion II, several works also assume that live pedestrian tracks

are available to the robot, however in our work we do not



Fig. 4. Visualization of the V auto-encoding module’s inputs and outputs.
The LiDAR observation sl and reconstruction ŝl can be either in the rings
or 1D representation.

make this assumption. The robot action space is continuous

and is represented as a vector in R
3, a = [vx, vy, ω]. Each of

vx, vy , ω ∈ [−1, 1] correspond to the robot’s translational and

rotational velocity in its base-link frame. Here we consider

a holonomic robot, however the work can be extended to

diff-drive robots by simply requiring vy = 0.

The scalar reward function for time-step t is rt = rts +
rtc+ rtd+ rtp. The first term, rts, is the success reward, which

is 100 if the goal is reached and 0 otherwise. The collision

reward, rtc, is -25 if the robot collides and 0 otherwise. The

danger reward, rtd, is equal to -1 if the robot is closer than

0.2m to an obstacle or agent, and 0 otherwise. Finally, rtp is

the progress reward, which is equal to the difference between

the previous distance to goal and new distance to goal.

A. State space variants

The state representation st is a combination of the LiDAR

observations s
t

l
and the robot velocity and goal position in

the robot frame s
t

r
(see Fig. 3). In this work, we consider two

methods for representing LiDAR measurements and compare

their effects when used as inputs to a learned navigation

policy. The first representation is simply a 1-dimensional

vector of the 1080 raw distance values from the LiDAR

normalized to [0, 1]. We refer to this as the 1D representation.

We also consider a probabilistic representation for the input

LiDAR data. This representation maps the space around

the robot as a polar grid (R64×64), with evenly distributed

discrete angular sections and exponentially distributed dis-

crete radius intervals, leading to a greater resolution closer

to the robot compared to regions that are farther away.

Given the LiDAR scan, each grid cell is assigned a value

p ∈ {0, 0.5, 1} for being unoccupied, unknown or occupied,

respectively. We refer to this two-dimensional probabilistic

LiDAR representation as the rings representation.

B. NavRep: Unsupervised representations for navigation

In contrast to end-to-end learning approaches, NavRep ex-

ploits unsupervised representations. Following the approach

of [11], we make use of three main modules,

• V (LiDAR encoding): a variational auto-encoder (VAE)

trained to reconstruct the LiDAR state (Fig. 4),

• M (prediction): a sequence-to-sequence model trained

to predict future state (Fig. 5),

• C (controller): a 2-layer fully connected network (FCN)

trained to navigate using sr and the latent representa-

tions of V and M, as input. Its output is the probability

of taking action a.

For brevity, we refer to the latent encoding of V as z, and

the latent encoding of M as h.

Fig. 5. Visualization of the M prediction module’s inputs and outputs. The
z latent features for each observation in the sequence are first encoded by
the V module. These are passed to M along with the sequence of actions
a. Each predicted ẑ

t+1 in the sequence is then decoded by V.

Fig. 6. Overview of the architectures trained in this work. For all ap-
proaches there are 2 LiDAR input variants. In addition, the 3 unsupervised-
learning-based approaches each have 3 latent feature variants. Simplified
schema of the components are detailed for 3 arbitrarily selected variants.

1) Modular training: From this set of modules, we offer

our first NavRep learning variant. The V, M, and C modules

are all trained separately, an LSTM is used for M, as in [11].

2) Joint training: Our second NavRep learning variant is

designed to provide insight into the effect of training V and

M jointly or separately. In [11], the authors first train V to

minimize reconstruction loss before training M to minimize

the z prediction loss while keeping the V network weights

fixed. Here we compare their modular training regime with

one that trains V and M jointly. An LSTM is used for M.

3) Transformer architecture: Rather than an LSTM, we

use the attention-based Transformer architecture [18] in M

to generate predictions of the future LiDAR encodings.

4) Input features to C: We consider the effect of the inputs

used by the controller to compute the robot action, splitting

each NavRep variant into three. We compare between using

z, h or [z, h]. An overview of all the learning architecture

and training variants that we study is provided in Fig. 6.

C. Network implementation and training

1) Hyperparameters: All V modules are composed of a 4-

layer convolutional neural network (CNN) encoder, followed

by 2-layer FCN, and 4-layer CNN decoding blocks. z latent

features are of size 32, h latent features are of size 64.

The LSTM-based M module has 512-cells. The Transformer-

based M module is composed of 8 causal-self-attention

blocks with 8 attention heads each. The modular V and

M modules have respectively 4.3 million and 1.3 million



trainable parameters. The V+M transformer model has 4.8

million trainable parameters. More details available in the

open-source implementation.

2) V: was trained using minibatch gradient descent, with

a typical VAE loss,

LV = Lrec +KL(zt),

where KL(zt) is the Kullblack-Leibler divergence between

the latent feature distribution parameterized by the encoder

and the prior latent feature distribution. The reconstruction

loss Lrec is the mean squared error between input and output,

Lrec = H(ŝt, st), (1)

where H denotes the binary cross entropy, st denotes the

observed state (LiDAR representation) at time t in the

sequence.

3) M: was trained on batches of sequences. We define the

loss function as the latent prediction loss,

LM = H(ẑt+1, zt+1) +H(ŝr
t+1, st+1

r ). (2)

This adds the binary cross entropy loss between the predicted

(ẑt+1) and the true (zt+1) latent features to that of the

predicted (ŝr
t+1) and the true (st+1

r ) goal-velocity states.

4) Joint V+M: was trained with a loss function composed

of the sum of the reconstruction and prediction losses from

(1) and (2). However in this case, for the rings variant the

prediction loss is

LV+M = H(ŝt+1, st+1),

the binary cross entropy loss between the reconstructed state

prediction ŝt+1 = V (ẑt+1) and true next state st+1. For the

1D LiDAR variant we used the mean squared error instead of

the cross-entropy loss as the predictions are not distributions,

but direct values.

5) C: was trained using the proximal policy optimization

(PPO) algorithm [19, 20]. Each C module was trained up

to 3 times with varying random seeds in order to mitigate

initialization sensitivity in the results. Training was stopped

after 60 Million training steps.

6) Training data: The V and M modules were trained

with data extracted from the same environment in which the

C module was later trained. To generate training sequences,

the ORCA [17] policy was used to control the robot, and the

number of agents in the scene was increased to ensure suffi-

cient observations of dynamic objects and prevent imbalance

in the dataset. A simple model of leg movement was used

to render dynamic agents as moving legs in the generated

LiDAR data and a time-step of 0.2s was used for updating

the agents’ positions.

The C module itself was trained in the SOADRL-like

environment (shown in Fig. 2), with randomly generated

polygons and agents (every episode is unique). A bounding

obstacle had to be added to prevent the policy from learning a

simple risk-averse heuristic which consists in going around

the entire area. During training, actions for the C module

were limited to x-y movement, with 0 rotation. However,

the robot’s initial angular position was randomized for each

episode.

Curriculum learning was used to improve the training of

the policy: every failed episode lead to a lower number of

Fig. 7. Comparison of the worldmodel error for the joint, modular and
transformer architectures, for their (top) rings LiDAR state representation
variant, and ((bottom) 1D variant. This error is calculated and shown
separately for the LiDAR state sl (left) and goal-velocity state sr (right).

polygon obstacles and agents, conversely, every successful

episode lead to an increase. The maximum number of agents

and polygons was capped to 5 agents and 10 obstacles.

D. End-to-end learning baselines

As a baseline, we implement a typical end-to-end RL

approach. This approach attempts to learn a navigation policy

π(a, s) predicting action probabilities directly from LiDAR

inputs.

Two variants of end-to-end learning are implemented:

the first taking the 1-dimensional LiDAR representation as

the state input, and the second taking 2-dimensional rings

representation as the state input. For the value and policy

model, we use a CNN for feature extraction, followed by

fully connected layers. To make comparisons fair, the same

CNN architecture and dimensions are used as in the V and

C models described in the following subsection.

V. EXPERIMENTS AND RESULTS

A. Worldmodel error for unsupervised learning architectures

The six joint, modular and transformer architectures

(Fig. 6) have differing loss functions, which makes it difficult

to compare their losses during training. To this end, we define

the “worldmodel error”, a next-step prediction error term that

allows meaningful comparison across architectures,

Eworldmodel = MSE(ŝt+1, st+1).

However, this error function does not produce comparable

results for the rings vs. 1d LiDAR inputs, as they do not have

the same dimensions and scale. Instead, these comparisons

are shown separately in Fig. 7. The worldmodel errors shown

here are calculated for the training sets, which compares each

architecture’s ability to learn in an unsupervised manner. It

can also be understood as the accuracy of ’Dreams’ generated

by each architecture. In our results (Fig. 7) modular outper-

forms joint training, and Transformer outperforms LSTM.

B. Controller training performance

Though the training environment features curriculum

learning through adaptive difficulty, a separate validation

environment with fixed difficulty is used to quantify the ab-

solute progress of each model every 100’000 training steps.

This validation is similar to the training environment, except



Fig. 8. 3 training sessions were performed for each of the two end-to-
end and 18 NavRep architectures to account for the influence of network
initialization on the results (legend as in Fig. 7). Horizontal lines mark the
maximum success rate of each curve. The SOADRL success rate allows for
comparison with methods that use exact human locations as input.

that it remains on the maximum difficulty, i.e. maximum

number of agents and obstacles, and that it consists of

100 episodes with arbitrary but deterministic initializations.

Success rates (number of validation runs in which the robot

reaches the goal without collision) are shown in Fig. 8.

1) Discussion: Looking at the modular, joint and trans-

former models, it seems that the worldmodel error and

learned controller performance are correlated. This suggests

that better reconstruction and prediction performance in the

V and M modules leads to latent features which are more

useful for the control task. Nevertheless, it can also be

seen that the end-to-end approaches perform better in the

validation tasks than the NavRep controllers. Finally, none of

the models are able to surpass the performance of SOADRL,

which has access to exact positions of pedestrians.

C. Test performance

Each model was tested in 27 unseen scenarios (3 maps,

9 scenarios each). At least 300 episodes were run in each

scenario, for a total of 10’000 test episodes per model. These

scenarios are designed to represent a wide range of possible

real-life situations that can help to identify specific issues

with the learned controller, such as global planning, agent

avoidance and crowd aversion. For each map, the first 6

scenarios are taken from [8], and the remaining 3 are (7)

a trivial scenario where the robot is close to the goal with

no obstacle in between, (8) an easy scenario with a close

goal, and a single obstacle between robot and goal, and (9) a

typical dynamic avoidance task where all agents are placed

on a small circle with goals on the opposite side and no

obstacles in between. The scenario definitions and selection

was fixed before any testing took place to avoid bias.

1) Discussion: In general it can be seen that the end-to-

end models perform suffer a greater drop in performance

from training to testing, whereas the NavRep models have

more consistent performance. In particular, the 1D LiDAR

end-to-end model fails completely in the realistic map even

though it is a top performer during training. In addition,

when investigating the low performance of SOADRL, we

saw that most failures were due to crashes into obstacles

and not agents.

Fig. 9. Mean performance of each model in the testing environments.
Legend as in Figs 7, 8, with error bars denoting the minimum and maximum
score across random seeds. Overall performance is shown (left), as well as
per-map performance from the simple, complex, and realistic maps.

Fig. 10. Comparison of trajectories executed by the best performing models
during testing in unseen environment. From left to right, the scenarios are 1)
simplest scenario in realistic map, 2) global planning task in realistic map,
3) full planning task (global, static, dynamic avoidance) in complex map,
4) global planning in simple map. Orange trajectories are trajectories which
resulted in failure to reach the goal, through collision or time-out. Blue
trajectories are successful trajectories. Grey circles indicate the positions of
dynamic agents. Overlaid is the percentage of successful trajectories.

In the same test environment, a traditional planner based

on the timed elastic band (TEB) approach from the widely-

used ROS navigation stack achieves 76% success rate.

The low success rates of all models on long-range navi-

gation scenarios (Fig. 10) indicates that global navigation is

a challenge for RL-based methods. We also see that several

works [5, 7, 10] avoid this problem by dealing with local

navigation only. Looking at other failures, we see that in

several cases, the end-to-end and unsupervised models don’t

learn to proceed slowly in the presence of “danger” (other

dynamic agents). Instead they move as fast as possible,

or are stuck when available space becomes narrow. This

can perhaps be improved through reward design. Finally, in

the challenging dense static crowd scenario, though most

attempts fail, a few are able to succeed by avoiding the

dense area, which implies taking a significantly longer route.

As shown in [8], this is a challenging situation even for

traditional planners.

D. Analysis of learning variants

1) Impact of rings: Rings encodes the space around the

robot as values between 0 and 1 in a pseudo-probabilistic rep-

resentation of occupancy. It seems that allowing the NavRep

model to infer from and predict occupancy uncertainties

explicitly makes its task easier than inferring directly from



the raw LiDAR scan. In addition, rings provides a higher-

level abstraction for the CNN to operate in, meaning that

it requires less depth, while scaling the spatial resolution

information to focus on regions close to the robot. This is

in line with how sensors typically work and also matches

the way that, in obstacle avoidance, more attention should

usually be paid to close objects. The difference in resolution

sensitivity between the 1D and rings representations could

also explain the dramatic performance drop observed in the

realistic map for the end-to-end model. Local features in the

LiDAR representations for the simple vs. realistic maps vary

more in the 1D case than in the rings. Moreover, rings more

easily allows using the same model with different sensors of

varying resolution.

2) Joint vs modular training: Previous work [11] rec-

ommends modular training, that is, training V, M and C

separately, and to use both z and h as inputs to the C

module. However, in this work we find that jointly trained

V+M models provide superior performance in almost all

tasks. The computational cost of joint training is furthermore

not significantly greater than for modular training, though

memory usage does increase due to having to store sequences

of rich observations rather than compressed latent features.

3) Latent feature usefulness: When looking at model per-

formances both in seen and unseen environments, our results

do not support the idea that using both z and h latent features

is advantageous. Though in some cases models trained with

z + h features performed slightly better, this improvement

is not significant when compared to the variance between

random seeds. In our experience, the performance cost of

including h latent features in the C training regime is great:

training a z+h C model takes approximately 9 times longer

than for an equivalent z-only C model. h-only models have

it worst, with low test performance and slow training times.

E. Real-robot trials

We took our Transformer architecture (rings, z-only) and

implemented it on a Pepper robot (Fig. 11). Our robot has

a quasi-holonomic base and two 270◦ LiDARs merged to-

gether to form a 1080-vector combined range scan. The robot

was given several waypoints in a space mixed with people

and obstacles, and tasked to patrol between waypoints.

The learned controller achieved 100% success in the real

environment, reaching its goal for all trajectories. However,

we observed issues which show a need for improvement.

(i) Smoothness: the commands selected by the controller are

aggressive, leading to jerky motion. (ii) Reluctance to go into

tight spaces: when faced with narrow but traversable areas,

the controller oscillates around the entrance but eventually

makes it through. (iii) Getting stuck: we observed the planner

spend several seconds oscillating in front of an obstacle

before finally passing on one side.

These issues appear to be in part due to the following

causes: (i) Inertia in the dynamics of the robot is not

modelled in the training environment, which causes sub-

optimal control in the policy. (ii) Sensor noise is not present

in the simulated environment. As a result, when it occurs

Fig. 11. We test the proposed method on a real robot, where the learned
policy is repeatedly able to avoid obstacles and people and reach its goals.
Goals are shown in red, successful trajectories in blue, images taken during
the experiment are displayed next to the locations they were taken in. Each
sequence was run three times in a row.

in the real scenario, the controller can react unpredictably.

We surmise that there are further unknown reasons. Such

“unknown unknown” effects could possibly be addressed via

continual learning by refining the model in the real world.

VI. CONCLUSION

Training robust sensor-to-control policies for robot navi-

gation remains a challenging task. NavRep methods do not

dominate over end-to-end methods, but we do see interesting

properties and trade-offs between the two. Though less

suited to learning specific tasks, unsupervised representations

display several benefits, such as more consistent perfor-

mance across general tasks, modularity, and the potential

to generate “Dream” environments [11], which could assist

or replace simulation. The popularity of these methods is

additionally propelled by the continued increase in compute

and memory availability. Moving forward we expect to see

larger unsupervised models with richer modalities, that create

more convincing approximations of reality and provide more

useful and discerning features.

Nevertheless, navigation-RL still has a long way to go,

should one aim to replace traditional planners. Among the

current issues are global planning, sim-2-real constraints, and

safety. Potential avenues include more rigorous exploration

of reward functions, more realistic training environments,

and continual learning. Given that standardized gym-like

environments could help harmonize future research, we hope

that by making NavRep and NavRepSim publicly available

and easy to use, progress in this domain can be accelerated

and to improve collaboration between researchers.
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