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Fig. 1. The IAN planning approach combines multiple interactive robot behaviors, which implement gestures, speech and assertive motion in order to
interact with humans and move efficiently through dense crowds.

Abstract— State-of-the-art approaches for robot navigation
among humans are typically restricted to planar movement
actions. This work addresses the question of whether it can be
beneficial to use interaction actions, such as saying, touching,
and gesturing, for the sake of allowing robots to navigate
in unstructured, crowded environments. To do so, we first
identify challenging scenarios to traditional motion planning
methods. Based on the hypothesis that the variation in modality
for these scenarios calls for significantly different planning
policies, we design specific navigation behaviors as interaction
planners for actuated, mobile robots. We further propose a
high level planning algorithm for multi-behavior navigation,
named Interaction Actions for Navigation (IAN). Through both
real-world and simulated experiments, we validate the selected
behaviors and the high-level planning algorithm, and discuss
the impact of our obtained results on our stated assumptions.

I. INTRODUCTION

From vacuum cleaner to store assistant: industry is ex-
ploring the idea of bringing robots into our daily lives. More
ubiquitous robots implies more robust robots, but also more
intuitive and interactive, more mobile, more lifelike robots. It
also means being surrounded by humans, in partially known
environments and contexts.

This has given rise to an increase in research interest in
autonomous navigation among humans, and as pioneering
work of many our predecessors show, has led to the discovery
of plenty of hard-to-solve challenges.

Though navigation among humans can be treated as a
geometrical problem, where the robot is considered as a
fixed shape moving through a dynamic world, we examined
whether imitating life with gestures, speech, and interaction
can lead to new ways of approaching the navigation problem.
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Here, we focus especially on robots with movable bodies,
though not necessarily human-like.

Adding gestures and speech to the already complex navi-
gation problem implies further increasing the dimensionality
of the configuration, and planning space that we operate
in. It follows that a single navigating, gesturing, interactive
planner requires a tremendous amount of complexity. For
clarity, we use the term navigation behaviors to refer to the
interactive, motion + gesture + speech actions which a robot
might perform in the context of navigation. An intuitive look
at how humans solve such problems led to the hypothesis
that it is beneficial to be able to switch between distinct,
expert planners, which specifically target different situations.
This raised the following questions, which we address in
this work: When is multi-modal navigation useful? How is
the performance of multi-modal navigation in comparison to
classical planning? Which navigation modes are necessary,
and in what situations?

Our contributions are:
i) We identify useful interaction behaviors and implement
them as motion, gesture and speech planners.
ii) We present the IAN planning approach: A high-level,
multi-behavior, interaction-aware planning framework for
navigation in unstructured, human-populated environments.
iii) We evaluate the presented framework in real-world
environments.

To precisely describe the characteristics of challenging
scenarios, we define the terms of crowd perceptivity, per-
missivity and crowdedness, which describe the ability of
participants in the crowd to perceive the robot’s intended
motion, the willingness of those participants to allow the
robot to achieve its goal, and the overall density of the crowd.

We refer to our multi-behavior planning approach as IAN-
—Interaction Actions for Navigation.

We implement and test three navigation behaviors: an
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Fig. 3. Crowd density during the unstructured crowd experiment. Interested,
unaware participants are obstructing the robot’s path. Nevertheless, the robot
was able to reach its goal by using our assertive ‘nudge’ behavior.

optimistic behavior, referred to as Intend, a communicative
behavior referred to as Say, and an assertive behavior,
referred to as Nudge.

II. RELATED WORK

Navigating robots alongside humans has been a goal and
topic of research for several decades. One of the earliest mo-
tion planning approaches designed for dynamic environments
is the velocity obstacles (VO) planner [1]. VO generates
paths for a holonomic robot under the assumption that other
agents in the space will continue to move with their current
velocity. The planner behaves predictably and works well in
simple environments. Nevertheless, VO is a reactive method
and does not model the behavior of obstacles and agents in
a realistic way. In addition, it cannot account for mutually
beneficial behavior between agents, such as joint planning
and communication. Indeed, several studies [2–7] have high-
lighted the potential for cooperative planning to improve not
only the navigation efficiency but also human acceptance of
the robot. In particular, Trautman et al. [8] observed that the
baseline Dynamic Window Approach (DWA) [9] for local
planning fails at crowd densities above 0.55 p/m2, whereas
their cooperative planning approach was capable of operating
in densities of up to 0.8 p/m2. Yet, beyond these densities,
even cooperative planning begins to break down.

To improve upon this, several works turn to human
modeling and reciprocal planning. Alonso-Mora et al. [10]
proposed reciprocal velocity obstacles (RVO), an extension
of the VO approach to holonomic agents, implementing
reciprocal planning with the assumption that agents share the
collision-avoidance effort. Some use hand-crafted models,
such as Rudenko et al. [11], who presented a prediction
framework based on Monte Carlo simulation of various
possibilities, where agent behaviors are computed using the
social force model [12]. However, this requires known goals
for the simulated agents, which is not necessarily available
to a robot moving in an organic human crowd.

Recently, data-driven approaches have used real-world
demonstrations to learn motion planners. For example, Pfeif-
fer et al. [13] train a long short-term memory (LSTM) neural
network on several pedestrian datasets [14] to predict human
trajectories. The assumption here is that the learned models

are able to capture useful patterns in human behavior without
having to specifically bake in social norms or human motion
models, which might be incomplete or partially superfluous.
Other approaches have used interacting Gaussian processes
(IGP) [15], apprenticeship learning [16] as well as maximum
entropy reinforcement learning (RL) [17, 18]. However, a
persistent challenge for data-driven methods is to ensure the
prediction of reasonable paths, or to indicate uncertainty,
when an agent’s trajectory history is only partially known.
This can occur frequently in a crowd when agents occlude
one another from the robot sensors, leading to lost tracks.

Deep RL approaches have also demonstrated the ability
to learn control policies for navigating in human crowds.
Some favor an end-to-end approach [19], while others first
process the robot sensor data to extract pedestrian tracks,
which form part of the input state [20]. Further, RL methods
are able to incorporate social norms, such as the left-right
passing rule mentioned in [21], by designing reward func-
tions that encourage socially acceptable behavior [22–24].
Nevertheless, these methods focus on generating policies that
only control the motion of the robot base. In our work, we
hypothesize that the incorporation of multi-modal behaviors,
beyond simply the movement of the base, can enable more
meaningful robot-crowd interactions that ultimately allow the
robot to reach its goal faster.

Recent works have begun to consider the problem of
navigating among humans as a multi-behavior planning
task. Approaches combine a learned navigation policy with
manually designed recovery procedures for use when, for ex-
ample, localization fails [25–27]. Chen et al. [28] introduced
multiple travel modes, such as a follow mode or a probing
mode, using a heuristic approach for the mode selection.
In addition, each of these methods have only been tested in
scenarios where the crowd participants, while not necessarily
cooperative, still move in a goal-seeking fashion, without
any active interaction with the robot. Yet, we have observed
that compared with pedestrian-pedestrian interactions, when
faced with a navigating robot, humans exhibit quite different,
and sometimes antagonistic, behaviors such as aggressively
blocking the robot’s path [18]. In our work, we investigate
the efficacy of more assertive robot behaviors, and the use
of other interaction modalities, such as gestures, touch and
verbal communication, for crowd navigation.

III. NAVIGATION BEHAVIORS

Previous work identified several scenarios that pose im-
portant challenges to planners when navigating robots in
crowded environments. Among those are: i) Static crowds
with non-cooperative agents blocking the robot path, which
can lead to the frozen robot problem. ii) Cooperative but
clueless agents that can result in mismatched trajectories due
to a lack of communicated intent from the robot. iii) Crowds
presenting dense flow characteristics in which the neutral
behavior should involve constant motion.

In this work, we focus on the first two scenarios, which
already present significant variation in robot-crowd interac-
tions. This motivates the need for separate movement and
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Fig. 4. Predicted trajectories for the Intend behavior, which targets
scenarios with few, goal-driven pedestrians.

interaction modalities over a monolithic navigation method.
To explore this, we identified a subset of simple navigation
behaviors that can efficiently cover as much this scenario
space as possible. These are made available to our high-level
behavior planning algorithm which selects behaviors based
on the observed state.

It’s worth noting that the behaviors we investigate here are
designed primarily for robots capable of speech and gesture.
However, taking inspiration from [29], one can devise other
interaction modalities to extend this work to other (e.g. non-
humanoid) robotic platforms.

A. Intend: Smooth Sailing in Sparsely Occupied Space

In order to handle the general case, the first selected
behavior consists in ordinary motion planning. To navigate
to the goal, the planning model assumes a static or sparsely
dynamic environment and returns safe trajectories. We use
the term crowdedness to refer to the local crowd density
from the point of view of state estimation and behavior
selection. Many basic navigation approaches are relevant for
this case and can be used to implement the behavior. Here
we generate a local velocity field from instantaneous LiDAR
data for static obstacles, and model dynamic agents using the
RVO approach—setting their tracked velocities as desired
velocities—to get predicted trajectories for the agents and to
compute a corresponding trajectory for the robot.

B. Say: Communicating the Robot’s Goal

In order to help cooperative agents anticipate the robot’s
actions and intent, verbal and physical communication can
be used. We use the term perceptivity to refer to the level of
awareness that an agent has of the robot’s goals and inten-
tions. The goal of this behavior is therefore to increase this
perceptivity, in order to decrease the likelihood of coopera-
tion failures. In the Say mode, the robot verbally announces
that it wants to move (“excuse me, I’m coming through”),
indicates the direction with its hand while moving the base
in the announced direction. The base motion planning used
to implement this behavior is fundamentally the same as for
the Intend behavior but with modified parameters, such as
a lower velocity and a more optimistic estimation of nearby
agent cooperation through smaller agent radii in the RVO
calculation.

C. Nudge: Unfreezing the Robot

Cooperative planning approaches such as [8, 10, 13]
typically expect that other agents will assume part of the
avoidance responsibility. However, an often observed be-
havior is for humans to react with curiosity to the robot’s
presence by standing in front of it and interacting with it,
effectively blocking its path. In this work, we refer to this
behavior as ‘playing’ with the robot.

Due to these observations, we hypothesize that an exten-
sion to the cooperative/non-cooperative distinction is useful
for navigating in dense crowds: Non-cooperative agents
might have high permissivity. That is, a human might ‘play’
with the robot, blocking it (non-cooperative), and yet be
willing to let it through once the robot shows clear intent
to pass. Conversely, non-cooperative agents might be non-
permissive. In which case, the Intend and Say behaviors
will still be ineffective in allowing the robot to get past
the agent. We propose an assertive behavior, Nudge, which
targets scenarios of high crowdedness, and/or low (non-zero)
permissivity.

Due to planning in close proximity to dynamic agents,
we picked a low-latency reactive approach, where motion
planning depends only on instantaneous LiDAR information.
The DWA is used to select forward/lateral velocities, based
on a mixed objective of distance keeping and progress
towards goal: JDWA = po + 0.1pg , where po is the increase
in minimum distance to obstacles in the LiDAR scan and
pg is the decrease in distance to goal in meters. Constraints
are added such that po and pg must be non-negative. When
no non-zero solution is found, and humans are detected
in front of the robot, the robot verbally announces “I’m
passing through, thank you,” while bringing one arm forward,
reaching over its own base footprint. The velocity is greatly
reduced (0.1m/s) and the po constraint is temporarily lifted,
allowing the robot to ‘push-through’ nearby obstacles. The
result is shown in Fig. 7 and the accompanying video.

IV. IAN: INTERACTION ACTIONS FOR NAVIGATION

In this section, we formulate the planning problem where
the robot must not only decide the physical path that it will
traverse but also the sequence of behaviors that it will execute
along the path.

A. Problem Formulation

The navigation objective is modeled as a search problem:
starting from an initial state (a combination of measured
crowd state and robot position), find the sequence of tran-
sitions ending at the desired state, which minimizes some
cost function. In practice the state can rarely be fully ob-
served. For this reason, we model the state as a probabilistic
distribution over possible states p(S).

In the case of navigation behaviors, the transition to a new
state S′ can be modeled as depending on three aspects: i) the
initial state S, ii) the selected behavior b, and iii) the selected
path Ξ, where the latter two are determined by the high-level
planner. Note that we are also specifically interested in the
outcome probability p(o) of executing b along Ξ given the
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Fig. 5. Example of sampled path options from the IAN planner. The robot
starts in the top left and must move to the bottom. For each path, the optimal
behavior sequence selected by the IAN algorithm is shown. Green, blue and
red segments denote using the Intend, Say or Nudge planner, respectively.

initial state S. This can be computed as an intermediate step
of the transition and aids in the computation of the transition
cost.

With the state and transitions defined, Monte Carlo Tree
Search (MCTS) can be applied to randomly sample transi-
tions from the current state. Each trial explores one branch
of the possibility tree, ending when the goal, or some
termination condition, is reached. The final cost of a single
plan, from root to leaf node, can be obtained by adding the
costs for each sequential transition. The result is a tree of
explored states, as represented in Fig. 6, along with trial
statistics (i.e. how often a behavior achieves a successful
outcome) for each node and transition in the tree. This allows
us to compute, for any node or transition in the tree, the
ratio of goal-reaching plans vs. total plans passing through
this node/transition, and the average final cost of all goal-
reaching plans passing through this node/transition.

Given some objective function for comparing the expected
final cost distribution of possible transitions, it is possible to
greedily select a sequence of transitions which approximates
the optimal plan as the sampling size increases.

Fig. 6. Tree representation of the POMDP states explored through MCTS
(transparent). States where the goal is reached are shown with a star
marker. The horizontal axis measures the mean final cost of all trials which
transitioned through a given state. Overlaid is the final plan, consisting of the
subset of the explored tree which is pruned by greedily picking a behavior
at each state based on the MCTS statistics.

B. Our Implementation

1) State representation: In this work, the state representa-
tion was selected empirically based on our set of behaviors,
as well as available sensor modalities. It consists of the
current (x, y) position of the robot and what we term the
local state features si, which represents the crowdedness,
perceptivity and permissivity at each cell i in the discretized
grid map, where each feature is modeled independently as a
normal distribution.

2) Discrete Paths, Behaviors, Outcomes: While the ideal
spaces of possible paths, behaviors, outcomes, and thus
transitions are continuous, in this work we reduce them
to discrete approximations, for tractability. The space of
paths was reduced to a discrete sampling of several path
options, obtained based on the estimated state features of
the initial map. This allows for reduced computational cost,
but constrains the planning to only considering local effects
of actions. For more general problems it is necessary to re-
sample paths after each transition.

Our approach for generating the path options was to
use Fast marching with a Euclidean signed distance field
cost near static obstacles. We mark regions where selected
features are below a certain threshold as non-traversable (i.e.
treat them as static obstacles). The different path options
were generated by varying these threshold values. This
results in, for example, the ‘naı̈ve’ path option, where only
the static map is considered, or the ‘permissive’ path option,
which treats only static obstacles and low permissivity re-
gions as non-traversable, and so on. Examples of such path
options are shown in Fig. 5. To reduce confusion, we make a
distinction between the path options Ξ, which are computed
once for each planning loop, and the path segments or
subpaths ξ on which behaviors are applied. These subpaths
are re-sampled at every transition.

The set of possible behaviors B = {b1, b2, b3} contains
those described in Section III. However, the execution dura-
tion for each behavior is not fixed. Thus, at every state and for
each behavior, a discrete set of subpaths must be defined to
indicate the transition from one behavior to another. Rather
than sample randomly, to obtain this set, we compute the
regions along the set of path options (from the robot’s
current position in the state) where the behavior’s estimated
success probability is above a defined threshold. As a result,
behaviors are only considered in regions of the state where
they are relevant.

The possible outcomes for a given S, b, and ξ are
discretely modeled as a Bernoulli process, drawing from a
distribution of two outcomes (success/failure) with proba-
bility psuccess , (1 − psuccess). While it may be interesting
to allow for a more complex representation of outcomes, we
note that in practice it implies the ability to differentiate those
outcomes based on measurement. This is rather straightfor-
ward with a success/failure distinction: our approach consists
of predicting a behavior duration (which is also reused to
predict behavior cost), and assuming the success outcome if
the behavior reaches its subpath destination within this time.

11371



Otherwise, we assume the failure outcome.
3) Behavior Transition Model: At this point the deter-

ministic transition function T (S, b, ξ), the transition cost
co(S, b, ξ) and the outcome probability p(o|S, b, ξ) need to be
defined for each behavior. To reduce the cost, and probability
functions along the subpath, we can consider transitions to
the local state si at each discrete location i in the map. The
local cost function uses an addition of local costs along the
subpath,

co(S, b, ξ) =
∑
i∈ξ

co(si, b), (1)

while the local outcome probability along the subpath is
computed as,

p(o|S, b, ξ) =
∏
i∈ξ

p(o|si). (2)

The probability of the next state p(S′) can then be computed
in two steps. First, given a state estimate p(S), a behavior
and a sampled outcome, we can apply a Bayesian update to
obtain a posterior estimate of the state,

p(S|o) ∝ p(o|S) · p(S), (3)
which allows us to reuse terms from (2). Then the transition
function can be directly applied,

p(S′|S, o) = T (S, b, ξ)p(S|o). (4)
Using these reductions, we can fully define the transitions
for every behavior by determining only (1), (2), and (4).
The tuple 〈co(S, b), p(o|S, b, ξ), T (S, b, ξ)〉 is referred to as
the behavior transition model.

Behavior transition models are a critical part of the im-
plementation. Building them requires, for example, testing a
navigation behavior in various scenarios and measuring the
outcome. However, one advantage of the proposed frame-
work is that as it tracks state and executed behaviors, by
executing the planner one naturally obtains state transition
data for each behavior which can be used to refine the
behavior transition models.

4) MCTS: With the behavior transition model defined,
Monte Carlo sampling a transition at a single state S consists
of first sampling a behavior and subpath from the discrete
sets using uniform random sampling. Then sampling an
outcome using the outcome probability p(o|S, b, ξ) from (2).
We then get the new state S′ by applying (3) and (4). Finally,
the cost is computed from (1). As stated in Subsection IV-
A, MCTS yields the explored tree and final cost distributions
over N trials. Due to the fact that not reaching the goal has
a theoretically infinite, yet in practice unknown cost, it is
necessary to define how to treat trials that do not reach the
goal. We use a simple penalty heuristic where the objective
is the mean expected final cost weighted by the ratio of trials
that reached the goal state.

5) Hardware System Description: The algorithm was run
on a humanoid robot platform: a modified version of the
Pepper model by Softbank Robotics. We used two 2D
LiDARs, mounted 17 cm from the ground, providing 360◦

range measurements for static obstacle detection, and Simul-
taneous Localization and Mapping (SLAM). A RealSense
D435 RGB-D camera positioned on the robot’s forehead

was used exclusively to detect and track humans in front
of the robot. These detections were used to compute the
crowdedness, perceptivity and permissivity of the state. For
state estimation, a uniform prior is used to initialize p(S).
For each sensor measurement, such as detection of humans,
p(S) is updated through Bayesian inference using a manually
designed likelihood model. For example, the probability of
a successful outcome after executing the Intend1 behavior is
computed as,

p(o|S, bIntend, ξ) =
∏
i∈ξ

permissivityi · perceptivityi
2 · crowdednessi

. (5)

In addition, to account for the fact that the state of unob-
served areas can change, in the absence of measurement
a ‘forget’ update was executed, updating p(S) towards
the uninformed prior. Finally, we consider the outcome of
executing behaviors in the crowd as evidence, and update
perceptivity and permissivity according to (4).

V. EXPERIMENTS AND RESULTS

A. Preliminary Tests Using Nudge in a Real Human Crowd
One of our motivations for multi-behavior navigation plan-

ning was the hypothesis that real human-populated environ-
ments present different situations where specific behaviors
are advantageous. For example, that a planner such as Nudge,
which uses gestures and assertive motion planning, will
successfully navigate in situations where planning to avoid
contact provides no feasible solution, or plans inefficiently.
To verify this hypothesis, we deployed our robot using the
Nudge navigation behavior in a real, uncontrolled crowd
presenting a density of approximately 2 p/m2. Figure 3
shows an image of the crowd during the experiment.

The tests were set up as follows: Each run consisted of the
robot starting at an arbitrary location and being given a goal
at another arbitrary location. The robot was then allowed to
navigate autonomously through the crowded scene until it
either reached the goal or timed-out. 24 runs were executed,
for a total run time of 37 minutes. To capture a meaningful
average velocity, we compute the average progress towards
goal for each run by applying a filter on the robot trajectory,
thus removing local oscillations, then dividing the total
filtered trajectory length by the total time. This metric is
referred to as the average progress-towards-goal velocity,
and is measured in m/s. To obtain the weighted mean and
standard deviation of average velocities over all runs, each
run is assigned a weight proportional to its duration.

TABLE I
ASSERTIVE PLANNER RESULTS IN REAL SCENARIO

µw σ2
w min max

Progress towards goal [m/s] 0.074 0.0011 0.047 0.39
Velocity (unfiltered) [m/s] 0.105 0.002 0.065 0.53

All 24 runs were successful with the robot eventually
reaching its goal. As shown in Table I, the Nudge planner

1Details of our other likelihood models can be found in our open
sourced code at https://github.com/ethz-asl/interaction_
actions_for_navigation.
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Fig. 7. Our robot autonomously executing the Nudge behavior in a dense, crowded environment. In the first frame, the controller constraints yield no
acceptable velocity, but humans are detected directly in front of the robot. In the second and third frame, a gesture is performed to gently ‘nudge’ and
indicate the robot’s intended direction. In the fourth and fifth frame, the robot advances towards its goal at a constant yet severely reduced velocity.

was able to reliably progress to the goal, at a reduced, albeit
consistent velocity, despite both voluntary and involuntary
blocking of its path by bystanders. In comparison, the coop-
erative planner in [8] could not safely make progress at crowd
densities above 0.8 p/m2. No discomfort was reported during
human-robot interaction, most crowd participants reacted
with surprise and interest to the robot’s assertive planning.
This is however a qualitative observation.

Fig. 8. Top: from left to right, simple map, complex map, realistic map
used in simulation experiments. Bottom left: realistic map, Scene 4. Bottom
right: realistic map, Scene 3.

B. Simulation Experiments

In this work, a simulation environment based on [30]
was developed that models crowd response to the planning
behaviors using simple, probabilistic interaction models.
These models are based on observations from our real-world
preliminary tests. During these experiments, detections are
simulated directly for all agents which are within the robot’s
RGB-D sensor field-of-view.

Simulation scenarios were generated for the three maps
shown in Fig. 8. For each map, six scenes were designed,
varying the crowd, robot and goal configuration (see Ta-
ble II). Thirteen trials were performed for each combination

TABLE II
SCENE DEFINITIONS USED IN OUR SIMULATION EXPERIMENTS

Scene Description

1 Empty map, static obstacles only
2 Mixed with both static and dynamic agents
3 Harder mixed scenario with more agents
4 Dense, static crowd
5 Agents move perpendicularly to the robot (both directions)
6 Agents move parallel to the robot (both directions)

of planner, map and scene, giving a total of 1404 runs.
For comparison, we tested a baseline timed elastic band
(TEB) planner, which is a widely used dynamic obstacle-
aware planner implemented in the ROS navigation stack.
We also compare to Collision Avoidance with Deep Re-
inforcement Learning (CADRL) [23] as a state-of-the-art
RL solution for navigating in crowded environments. We
used the authors’ open source implementation2 with minimal
hand-tuning of parameters. We chose CADRL and not, for
example, CrowdMove [19] due to the availability of an
original implementation. In addition, a single-behavior policy
is evaluated for each of the proposed behaviors. Finally,
the proposed IAN multi-behavior planning framework is
evaluated. All planners were given the same velocity and
acceleration limits, and simulated sensor data to operate with.

We consider three main metrics, the time-to-goal, the
planner success rate, and the time spent in discomfort. The
latter is measured as the ratio between the time the robot
spent below a certain distance threshold to another agent,
and the total time for the trial. The distance thresholds for
intimate (di = 0.45m) and personal space (dp = 1.2m)
are selected based on the definitions by Rios-Martinez et al.
[31]. Each of these metrics are averaged for each scene, and
the overall average across all scenes is also reported.

TABLE III
PER-SCENE MEAN TIME-TO-GOAL IN SECONDS

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Overall

IAN (ours) 76.11 116.43 123.12 95.45 38.14 91.45 89.68
TEB 118.60 154.33 - - 49.29 142.53 115.64

CADRL [23] 91.26 209.05 - - 55.11 110.29 97.81
Intend 74.54 106.53 245.57 - 37.78 85.40 79.26

Say 99.85 128.39 228.35 - 46.32 99.39 96.03
Nudge 140.81 148.96 97.90 62.81 53.72 100.70 100.82

TABLE IV
PER-SCENE MEAN SUCCESS RATE

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Overall

IAN (ours) 1.00 1.00 0.95 0.85 1.00 1.00 0.97
TEB 0.92 0.95 0.00 0.00 1.00 1.00 0.65

CADRL [23] 1.00 0.33 0.00 0.00 1.00 0.97 0.55
Intend 1.00 1.00 0.08 0.00 1.00 1.00 0.68

Say 1.00 1.00 0.08 0.00 1.00 1.00 0.68
Nudge 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Results of the simulation experiments are shown in Tables
III3, IV, and V. Only the IAN planner and Nudge are able to

2https://github.com/mfe7/cadrl_ros
3Note that the overall time-to-goal includes only successful runs, as the

time cost of not reaching the goal is undefined.
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TABLE V
PER-SCENE RATIO OF TIME SPENT BELOW DISTANCE THRESHOLD VS. TOTAL TIME FOR EACH PLANNER

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Overall
tdi tdp tdi tdp tdi tdp tdi tdp tdi tdp tdi tdp tdi tdp

IAN (ours) 0.00 0.00 0.07 0.40 0.14 0.68 0.22 0.53 0.04 0.33 0.10 0.43 0.11 0.47
TEB 0.00 0.00 0.04 0.34 - - - - 0.04 0.27 0.13 0.45 0.07 0.35

CADRL [23] 0.00 0.00 0.11 0.40 - - - - 0.12 0.33 0.26 0.49 0.18 0.41
Intend 0.00 0.00 0.10 0.50 0.25 0.82 - - 0.08 0.34 0.15 0.56 0.11 0.47

Say 0.00 0.00 0.09 0.41 0.31 0.79 - - 0.06 0.33 0.08 0.42 0.08 0.40
Nudge 0.00 0.00 0.08 0.31 0.18 0.47 0.40 0.77 0.05 0.31 0.12 0.38 0.17 0.45

find solutions for all scenes. However, it is worth noting that
for most scenes, Intend achieves the best mean-time-to-goal,
yet it performs very poorly in the harder mixed crowd (Scene
3) and fails altogether in the dense static crowd (Scene 4). In
those scenes with the highest crowd density, Nudge performs
best. This result supports the idea that, given knowledge
about the modality of a scene, an expert planner for that
modality will tend to outperform general-purpose planning
approaches. Nevertheless, the IAN planner achieves second-
best or equal top scores on all scenes for both time-to-goal
and success-ratio metrics, demonstrating that its ability to
reason over the crowd state to select the best expert behavior
for the current situation is advantageous for planning across
all types of crowds.

Furthermore, although Nudge has a perfect success rate
across all scenes, Table V shows that it scores second
worst overall for the time-spent-in-intimate-space metric.
This result highlights the fact that despite a higher success
rate, using an assertive-planning-only approach can be a poor
choice if aspiring to design socially-acceptable robots. To
that end, it is in principle simple to add social or discomfort
awareness to the IAN planner, by adding a term to the
relevant behavior cost function. In doing so, it makes it
possible to tune how often the high-level planner selects
assertive behaviors.

C. Real-World Planner Validation

As proof-of-concept, we ran the entire planning framework
on a humanoid robot platform in real scenarios. These
scenarios included several encounters with pedestrians, some
purposefully blocking the robot’s path. No special modifica-
tions were made to the test environments, any objects and
furniture in the scene were as found. Footage from these
experiments can be found in the accompanying video.

The first trial was performed in an office environment
(same office floor from which the realistic simulation map
was drawn). Twelve runs were executed for a total runtime of
around 12 minutes. The planner was tested in both prompted
and natural interactions with participants and passers-by, with
the robot successfully reaching its goal in all runs. The Intend
behavior was executed 24 times, of which 18 resulted in
successful behavior outcomes. For Say, these counts were
12 and 6, while Nudge was successfully used 9 times out of
9. The average progress-to-goal velocity was 0.13m/s. For
comparison, in the simulation experiments, the same metric
for the IAN planner in a similar environment was measured
as 0.14m/s (Scene 3, realistic map).

Fig. 9. Map and executed behavior trajectories during one of the real-life
validation experiments of the IAN planning approach.

The second trial was performed in a university hall.
The map and executed behavior trajectories for this trial
are shown in Fig. 9. Most interactions were with unaware
pedestrians, moving longitudinally to the robot trajectory.
Six runs were executed for a total runtime of over 14
minutes. Again, the robot reached its goal successfully in
all runs. Most pedestrians stopped for only a short time
to interact with the robot or not at all. As a result of
this, the high-level planner only selected Intend and Say
behaviors. The Intend behavior was executed 33 times, of
which 29 resulted in successful behavior outcomes. Say was
executed 6 times with 5 successful behavior outcomes. The
average progress-towards-goal velocity was 0.25m/s. For
comparison, we note that in a similar simulation scenario
(Scene 6), the average-progress-towards-goal velocities were
0.26m/s, 0.24m/s, and 0.18m/s for the simple map, the
complex map, and the real map, respectively.

Failure modes: A perfect high-level planner is as fast
as the fastest behavior and as reliable as the most reliable
behavior. In simulation and real-world experiments however,
IAN sometimes falls short when it picks the wrong behavior
to execute. This is observed to occur when the underlying
model of the environment and its dynamics is wrong. Im-
proving the perception pipeline, as well as the hand-tuned
state and transition models would reduce the planning error.

Performance: The entire pipeline, including person detec-
tion and tracking, LiDAR-based SLAM, high-level planning,
and controllers was able to run on an onboard laptop in real-
time (Intel core i7-4810MQ CPU, 8 threads, 3.8GHz, and
Quadro K2100M 2GB GPU used for person detection). Each
high-level planning loop was measured to take on average
0.54 s with 1000 MCTS trials (non-parallelized).
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VI. CONCLUSION

We proposed the IAN planner for navigating robots
through human crowds using multi-modal behaviors. Our
results showed that the planner, which selects behaviors to
execute based on the observed state of the crowd, was able to
successfully navigate in natural human crowds in excess of
1 p/m2. In particular, we demonstrated the need for assertive
planning behaviors such as Nudge in cases of high crowd
density where classic planners such as TEB and learned
controllers such as CADRL are unable to find solutions to
navigate through the crowd.

In this work, we introduced three behavior modes Intend,
Say and Nudge. However, there is certainly potential to
explore additional behaviors that may target specific crowd
behaviors not explored here. For example, following another
pedestrian in a dense flowing crowd could be a viable
navigation strategy. In this way, the multi-behavior planning
approach can be considered modular since it is simple
to introspect on the usefulness of individual behaviors in
different crowd scenarios.

Finally, many of the parameters associated with the in-
dividual behaviors are currently hand-tuned. In the future,
data driven methods can be used to learn the behavior
transition model parameters online or to directly learn a
feature representation of the crowd state. What’s more, the
costs of applying certain behaviors, in metrics such as social
acceptance, comfort, and reactions of nearby persons are still
poorly understood and necessitate additional research into
human-crowd interactions.
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