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ABSTRACT
Difference evaluation functions have resulted in excellent
multiagent behavior in many domains, including air traf-
fic and mobile robot control. However, calculating differ-
ence evaluation functions requires determining the value of
a counterfactual system objective function, which is often
difficult when the system objective function is unknown or
global state and action information is unavailable. In this
work, we demonstrate that a local estimate of the system
evaluation function may be used to estimate difference eval-
uations using readily available information, allowing for dif-
ference evaluations to be computed in multiagent systems
where the mathematical form of the objective function is
not known. This approximation technique is tested in two
domains, and we demonstrate that approximating difference
evaluation functions results in better performance and faster
learning than when using global evaluation functions. Fi-
nally, we demonstrate the effectiveness of the learned poli-
cies on a set of Pioneer P3-DX robots.
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1. INTRODUCTION
Difference evaluation functions have been shown to sig-

nificantly improve learning in multiagent systems, both in
the speed of convergence and the quality of the converged
policy. They have been successful in many different cooper-
ative multiagent domains, including air traffic control, net-
work routing, multiple mobile robot control, and congestion
games such as the bar problem [2, 9]. These evaluation func-
tions have two key theoretical advantages. First, they are
aligned with the overall system objective [2]. This means
an individual agent acting to increase the value of the dif-
ference evaluation function also acts to improve the value of
the overall system evaluation function. Second, they remove
much of the noise in the feedback signal associated with
other agents, allowing for individual agents to more easily
learn the effects of their actions on system performance [2].

Difference evaluation functions are the difference between
the system objective function and the counterfactual, or the
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value of the system objective function independent from the
agent being evaluated. This gives an approximation of the
value that the agent added to the overall system. While
difference evaluation functions are conceptually simple, they
are often difficult to compute. More specifically, it is difficult
to calculate the counterfactual, or the value of the system
objective function independent of a particular agent.

There are two key reasons counterfactuals are difficult
to compute. First, calculating the counterfactual requires
global knowledge of the system state and the actions taken
by each agent; in practice, agents in multiagent systems
rarely have such knowledge. This makes local computa-
tion of difference evaluation functions difficult in practice.
Second, the system objective function itself is typically un-
available to the agents, meaning that even if agents have
global knowledge, a direct computation of difference evalu-
ations is typically unavailable. One approach to deal with
calculating difference evaluations has been to leverage do-
main knowledge to estimate the system evaluation function.

Recent work has focused on addressing the calculation of
the counterfactual in which the system evaluation function
is unknown [20]. The counterfactual is estimated using a
function approximator that is trained on previous values of
the system evaluation function. This work extended differ-
ence evaluation functions to domains in which the analyt-
ical form of the system evaluation function is unavailable,
and computing difference evaluations requires resimulation
or approximation. However, this technique required that the
designer had expert system knowledge as well as global state
information in order to create the approximation. These are
significant limitations, as the form of the system evaluation
function is often unknown, and global knowledge about the
system is often unavailable. In order for difference evalu-
ations to be applicable in generic multiagent domains, we
must use approximation techniques which do not require
domain knowledge or global knowledge of the system state.

In this work, we present a generic and model-free approach
to approximate difference evaluations. Each agent maintains
a local approximation of the system evaluation functions,
based on their local state and action information and the
value of the system evaluation function. We assume that
the only information available to agents includes their local
state, their action selection, and the instantaneous value of
the system evaluation function. This information is exactly
what is available to agents learning with the global evalua-
tion function, so our approximation technique does not re-
quire more information than is typically available to learning
agents. The only global information needed in this approach



is the value of the system evaluation function, which we as-
sume can be broadcast to each agent. Each agent uses its
private function approximator to estimate the value of the
difference evaluation, in order to provide a feedback signal
based only on local information.

The contributions of this work are to:
• Develop an approach to approximate difference eval-

uation functions using information available to each
agent in a multiagent system.

• Demonstrate that the proposed approximation algo-
rithm results in up to 98% of the performance of di-
rectly computed difference evaluation functions.

• Demonstrate the effectiveness of policies learned using
the proposed approximation algorithm using a set of
Pioneer P3-DX robots.

In Section 2 we briefly discuss background and related
work. Section 3 describes the approximation technique. Sec-
tion 4 presents the two different domains in which our re-
ward approximation method is applied. Section 5 shows the
performance of our algorithm in each domain. Section 6
presents an analysis of learned policies on physicial robots.
Finally, in Section 7 we discuss and conclude the work.

2. RELATED WORK
The following sections introduce difference evaluation func-

tions, as well as related work involving approximating eval-
uation functions to provide agent feedback.

2.1 Difference Evaluation Functions
The agent-specific difference evaluation function Di(si, ai)

is defined as [2]:

Di(si, ai) = G(s, a)−G(s−i ∪ cs,i, a−i ∪ ca,i) (1)
where:

• G(s, a) is the total system evaluation
• s is the joint system state
• a is the system joint-action
• s−i are all the states on which agent i has no effect
• a−i are all the agent actions not involving agent i,
• cs,i and ca,i are fixed states and actions not dependent

on agent i.
Intuitively, the second term (the counterfactual) in Equation
1 evaluates the system without the effects of agent i, so
the difference evaluation gives agent i’s contribution to the
system evaluation [2]. Note that:

∂Di(s, a)

∂ai
=

∂G(s, a)

∂ai
(2)

where ai is the action taken by agent i. Thus, an agent
acting to increase the value of its difference evaluation func-
tion will also act to increase the value of the overall system
evaluation function. This property is termed factoredness
[2]. Also note that Di(s, a) removes all elements of the sys-
tem evaluation function not affected by agent i, decreasing
noise and providing agent-specific feedback which is strongly
coupled to a particular agent’s actions. This property is
termed learnability [2]. In addition to the theoretical prop-
erties of factoredness and learnability, difference evaluations
have been shown to improve the probability of agents find-
ing best response actions in cases where tight coordination
is required to reach optimal Nash equilibria [10].

Although factoredness and learnability allow for difference
evaluations to provide very useful agent feedback during
learning, there are two key limitations to these functions.

First, calculating the counterfactual in difference evaluations
requires global knowledge about the system state and joint
action. In practice, such information is rarely available.
Therefore, calculating Di(s, a) analytically requires a cen-
tralized mechanism to provide agent feedback, which is gen-
erally unavailable. Second, the system evaluation function
is typically unknown to agents, making direct calculation of
the counterfactual term unfeasible in some cases. In order
to extend difference evaluations to general multiagent sys-
tems, techniques for approximating the system evaluation
function using only local information are required.

2.2 Approximation of Evaluation Functions
In cases where the system evaluation function is unknown,

it may be approximated in order to provide better feed-
back to learning agents [3, 5]. In the case of reinforcement
learning, reward functions are modeled; in the case of evolu-
tionary algorithms, fitness functions are modeled. In either
case, approximation of system evaluation functions allows
for agent evaluation functions to be easily shaped.

Function approximation is commonly seen in reinforce-
ment learning applications, where the value function or sys-
tem state is approximated due to limited state information
[11, 12, 16]. Value functions are often approximated when
only partial state information is available, often using neural
networks, maps, or some other type of function approxima-
tor [1, 6, 18]. The conclusion that only partial state in-
formation is necessary to accurately model value functions
suggests these types of approaches can be successfully ex-
tended to multiagent learning problems, where partial state
information is available to each agent.

Fitness functions have also been approximated for use in
evolutionary algorithms [7, 15]. This fitness approximation
is typically used because the number of fitness function eval-
uations dominates the optimization cost in evolutionary al-
gorithms, and fitness approximation typically decreases time
to convergence [13, 17]. However, these approaches can eas-
ily be extended to cases in which the mathematical form of
the fitness function is unknown, as in cases where the differ-
ence evaluation must be approximated. All of the methods
described above are single agent cases, but there has also
been research investigating approximating system evalua-
tion functions in multiagent learning settings.

Difference evaluation functions have been approximated
in air traffic control domains [20]. A tabulated linear func-
tion consisting of neural networks approximates the system
evaluation function. Each neural network approximated a
specific aspect of the air traffic domain (congestion, delay),
and a weighted sum of the network outputs was used to
provide the approximation of the overall system evaluation
function. This approach yielded accurate approximations
of the system evaluation function and allowed for difference
evaluation functions to be accurately estimated to provide
agent-specific feedback during learning.

There are two key drawbacks to this approach. First, ex-
pert domain knowledge was needed to create the approxima-
tion of the system evaluation function, and such knowledge is
not always available. Second, this approach required global
knowledge of the system state, which is often unavailable
in a distributed multiagent system. Although this approach
gave good results for approximating difference evaluation
functions in the air traffic domain, it does not extend to any
generic multiagent domain.



There is a wide range of research involving approxima-
tion in multiagent learning. However, very little research
has been conducted on approximating difference evaluations.
More importantly, the research which has been conducted on
approximating difference evaluations has involved approxi-
mations which were dependent on expert system knowledge
as well as global state and action information. In order for
difference evaluations to be approximated in generic multia-
gent settings, the requirements for expert domain knowledge
must be eliminated, and the approximations must be con-
structed using only local information.

3. DIFFERENCE EVALUATION APPROXI-
MATION

In this section, we introduce a general algorithm for ap-
proximating difference evaluations, and then demonstrate
how this algorithm is implemented in different types of do-
mains. This algorithm was first presented in [8] for con-
tinuous state and action domains, and we now present the
generalized approximation algorithm and explain how it can
be implemented in different types of domains. In general,
multiagent systems may be stateless or stateful, and may
have continuous or discrete state and action spaces. We se-
lect two types of domains to demonstrate implementation
of our algorithm: a stateless, discrete action domain as well
as a continuous state and action domain. For the purpose
of this analysis, we assume a cooperative multiagent system
aims to maximize some system objective function G(s, a),
and that the value of G(s, a) is available to each agent. Re-
call that the difference evaluation is defined as:

Di(s, a) = G(s, a)−G(s−i ∪ cs,i, a−i ∪ ca,i).

Since we assume that the value of G(s, a) is available to
each agent, approximating the difference evaluation func-
tion only requires approximating the G(s−i ∪ cs,i, a−i ∪ ca,i)
term. Given the particular domain, a suitable function ap-
proximator is chosen. For a stateless domain with discrete
actions, this approximator may simply be a vector. For a
stateful domain with continuous actions, this approximator
may be a neural network. Note that these are not the only
possible options for these function approximators, but are
potential choices that match the domains they will be used
in.

The difference evaluation approximation algorithm is pre-
sented in Algorithm 1. At each time step, each agent takes
an action, and G(s, a) is computed and broadcast to each
agent. Each agent i maintains a private approximation for
G(s, a), denoted as Ĝi(si, ai). The only information avail-
able to the agent includes the agent’s state, action choice,
and the broadcast value of G(s, a). Each agent’s approxi-
mation of G(s, a) is a mapping from that agent’s state and
action to the system objective function. This approximation
is initially very noisy, because the state and action infor-
mation used to approximate G(s, a) is limited only to one
agent’s state and action. However, as learning progresses,
the policies of each agent begin to converge; as the poli-
cies of other agents converge, approximating G(s, a) using
only one agent’s state and action becomes less noisy, because
the variance in the joint action for a particular system-level
state is reduced. Given an agent’s approximation Ĝi(s, a),
the difference evaluation function is estimated as:

D̂i(s, a) = G(s, a)− Ĝi(cs,i, ca,i) (3)

Initialize N agents
foreach Agent do

Initialize private function approximator Ĝi(si, ai)
end
foreach Learning Step do

foreach Agent do
collect local state information si
select action ai using agent’s policy

end
Calculate G(s, a) based on joint action
Broadcast G(s, a) to each agent
foreach Agent do

Update Ĝi(si, ai) using si, ai, and G(s, a)

D̂i(s, a) = G(s, a)− Ĝi(cs,i, ca,i)

Update policy/value table based on D̂i(s, a)

end

end

Algorithm 1: Approximation of difference evaluation
functions. The functional form of Ĝ depends on the spe-
cific domain. For example, a stateless discrete action
domain may use a vector, while a continuous state and
action domain may use a neural network.

where D̂i(s, a) is agent i’s approximation of the difference

evaluation function. In order to evaluate Ĝi(cs,i, ca,i), a de-
fault state and default action are chosen for each agent. In
other words, the approximation of the difference evaluation
function determines the difference between the system objec-
tive function and the approximated system objective function
if agent i took a default action.

The implementation of this approximation approach in a
stateless discrete action domain as well as a continuous state
and action domain are detailed in the following sections.
We demonstrate how a multiagent reinforcement learning
algorithm with an approximation of difference evaluations
may be implemented in the stateless discrete action domain,
and how a cooperative coevolutionary algorithm with an ap-
proximation of difference evaluations may be implemented
in a continuous state and action domain. Difference eval-
uations are commonly used in both reinforcement learning
and cooperative coevolutionary algorithms, so we choose to
demonstrate how both types of algorithms may incorporate
approximate difference evaluations.

3.1 Stateless Discrete Action Domains
We now demonstrate how Algorithm 1 may be imple-

mented for a multiagent reinforcement learning algorithm
in a stateless discrete action domain. The implementation
of Algorithm 1 in a multiagent reinforcement learning prob-
lem with a stateless discrete action domain is given in Algo-
rithm 2. Note that such problems may also be solved with
coevolutionary algorithms. In a stateless discrete action do-
main, each agent maintains a value vector Vi(a) containing
the expected value of each possible action. Each agent also
maintains an approximation of G(a), which is simply a vec-
tor containing the estimated value of the system evaluation
function corresponding to each action the agent may take.
At each learning step, each agent i selects an action ai. The
system evaluation function G(a) is then calculated, and this
value is broadcast to each agent in the system. Each agent



Initialize N agents
foreach Agent do

Initialize private value table Vi(a)

Initialize private function approximator Ĝi(a)

end
foreach Learning Step do

foreach Agent do
select action ai using agent’s policy

end
Calculate G(s, a) based on joint action
Broadcast G(s, a) to each agent
foreach Agent do

Ĝi(ai) ← α1 · Ĝi(ai) + (1− α1) ·G(a)

D̂i(ai) = G(a)− Ĝi(a0)

Vi(ai) ← α2 · Vi(ai) + (1− α2) · D̂i(a)

end

end

Algorithm 2: Stateless Discrete-Action Multiagent Re-
inforcement Learning using Di(s, a) Approximation

then updates its approximation Ĝi(ai) according to:

Ĝi(ai) ← (1− α1) · Ĝi(ai) + α1 ·G(a) (4)

Once each agent has updated its approximation of G(a), the
difference evaluation for each agent is estimated as:

D̂i(a) = G(a)− Ĝi(ca,i) (5)

where ca,i is some default action. The value table is updated
using the approximate difference evaluation function:

Qi(ai) ← (1− α2) ·Qi(ai) + α2 · D̂i(a) (6)

3.2 Continuous State and Action Domains
We now demonstrate how Algorithm 1 may be imple-

mented in a cooperative coevolutionary algorithm in a con-
tinuous state and action domain. We assume each agent
has a neural network policy that maps the agent’s state to
an action. Further, each agent has a two-layer feedforward
neural network approximation of G(s, a). Note that neu-
ral networks are not the only form of function approxima-
tion that may be used, but are chosen to demonstrate this
example. At each timestep, each agent keeps track of its
state and chosen actions. The value of the system evalua-
tion function G(s, a) is broadcast to each agent after each
agent has taken an action. Then, each agent updates its
approximation Ĝi(si, ai) using the (s, a,G(s, a)) tuple and
backpropagation, where the error in the approximation is
G(s, a)− Ĝi(si, ai).
The difference evaluation is then approximated using Equa-

tion 3, and the estimated value of D̂i(s, a) is used to assign
the fitness associated with the state-action pairing selected
by the agent’s policy. Agents are selected for survival us-
ing ε-greedy selection. The implementation of Algorithm
1 using a cooperative coevolutionary algorithm is given in
Algorithm 3.

4. EXPERIMENTAL DOMAINS
In this section, we introduce the two test domains utilized

in this work, and provide a detailed description of the sys-
tem dynamics and evaluation functions used in each domain.
The first domain, the El Farol bar problem, is a stateless

Initialize N populations of k neural networks
foreach Population i do

foreach Individual j do

Initialize function approximator Ĝi,j(si, ai)
end

end
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1 → 2k do

randomly select one agent from each population
add agents to team Ti

foreach Simulation Timestep do
each agent j in team Ti finds local state si
each agent j in team Ti chooses action ai

G(s, a) is broadcast to each agent

update Ĝi,j(si, ai) based on si, ai, G(s, a)

D̂i,j(s, a) = G(s, a)− Ĝi,j(cs,i, cs,a)

each agent j increments fitness by D̂i,j(s, a)

end

end
foreach Population do

select k networks using ε-greedy
end

end

Algorithm 3: Continuous State and Action CCEA us-
ing Di(s, a) Approximation

congestion domain with a discrete action space. The second
domain, the rover domain, is a stateful domain with con-
tinuous states and actions. These domains were chosen to
highlight that our approximation approach can be applied
in a wide range of different multiagent problems.

4.1 Bar Problem
The El Farol Bar Problem [4] is a frequently-used abstrac-

tion of congestion problems. We use a multi-night modifi-
cation of the El Farol Bar Problem. In this problem there
is a capacity c that provides the most enjoyment for every-
one who attends the bar on that particular night. This is
a stateless one shot problem where agents choose the night
they attend the bar, and receive a reward based on their
enjoyment. The traditional bar problem local reward is a
function of the attendance of that night:

Li = e
−xi(ai)

c (7)

where xi(ai) is the attendance on the night agent i went to
the bar. The system-level reward is a simple summation of
these local rewards across all agents:

G(a) =

K∑

k=0

xk(a)e
−xk(a)

c (8)

where k is the index of the night, and xk(a) is the number
of agents who attended on the kth night.

4.2 Rover Domain
In the rover domain [2, 9], a set of rovers on a two di-

mensional plane must coordinate in order to observe points
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Figure 1: Rover Domain Representation. Each
rover senses the POIs and other rovers within an
observation radius in each of its four sensing quad-
rants.

of interest (POIs) scattered across the domain (Figure 1).
Each POI has an associated value, and each observation of
a POI made by a rover yields an observation value which
is inversely proportional to the distance that the rover is
from the POI. The distance metric used in this domain is
the squared Euclidian norm, bounded by a minimum obser-
vation value to prevent division by zero:

δ(x, y) = min
{||x− y||2, δ2min

}
(9)

The objective of the rovers is to maximize the observation
values of the POIs over an episode, given by:

G =
∑

t

∑

j

Vj

miniδ(Lj , Li,t)
(10)

where Vj is the value of POI j, Lj is the location of POI j,
and Li,t is the location of the ith rover at time t.

Although any rover may observe any POI, the system eval-
uation only takes into account the closest observation made
for each POI. The POI locations are static throughout each
experiment. The rovers have eight total sensors, two sen-
sors per quadrant. The first sensor for quadrant q returns
the sum of the values of POIs divided by their squared dis-
tance to the rover:

s1,q,i =
∑

j∈Iq

Vj

δ(Lj , Li)
(11)

where Iq is the set of POIs in quadrant q. The second sensor
returns the sum of square distances from a rover to all the
other rovers in the quadrant:

s2,q,i =
∑

i′∈Nq

1

δ(Li′ , Li)
(12)

whereNq is the set of rovers in quadrant q. The eight sensors
give an approximate representation of the world, reducing
the location and number of rovers and POIs in each quad-
rant to an average number. This representation of the rover
domain is used as a low-fidelity model of a set of differential
drive robots. Section 6 discusses how policies found in this
domain can be mapped to a physical robotic system.

Figure 2: Bar problem results. When approximat-
ing Di(a), the learning rate is slower than when using
Di(a), but the converged performance is nearly iden-
tical. Di(a) performs almost 10 times better than the
overall system evaluation function G(a).

5. EXPERIMENTAL RESULTS
The following sections detail the experimental results in

the bar problem and the rover domain. One bar problem
experiment was conducted, with 1000 agents in the system.
Two rover domain experiments were conducted, varying be-
tween 10 and 100 agents to determine the effects of system
size on the performance of our approximation algorithm.

5.1 Bar Problem Domain Results
The bar problem was initialized as follows. There are 1000

agents and 10 nights, where each night has a capacity of 10.
The learning rate α1 for the approximation of the system
evaluation function was set to 0.1. The learning rate α2

for the value table was set to 0.1. Each experimental run
lasted for 500, 000 timesteps, and 100 statistical runs were
conducted. The experimental results are shown in Figure 2,
and the reported error bars are error in the mean σ/N2.

As seen in Figure 2, approximating the difference evalua-
tion function results in almost 10 times better performance
than using the system evaluation function G(a). When ap-
proximating Di(a), the solution takes much longer to con-
verge than when analytically computing Di(a). However,
converged performance of actual and estimated difference
evaluation functions is nearly identical.

It is of note that although the analytical calculation of
Di(a) results in faster learning, it is often impossible to an-
alytically compute the system evaluation function in mul-
tiagent learning systems. Often, the mathematical form of
G(a) is unknown, meaning Di(a) cannot be directly com-
puted. However, agents can still use local knowledge to
approximate G(a) and thus estimate difference evaluation
functions, which drastically improve system performance.
So, even though the analytical computation of Di(a) pro-
vides faster learning than when approximating Di(a), it is
not always possible to perform this analytical computation.

The key result is that agents with only local knowledge
converge to the same performance (although in more com-
putational time) as agents with global knowledge about the
system. In cases where global knowledge is available, it is
often beneficial to use this knowledge while shaping agent



feedback signals. However, in many cases, agents’ knowledge
is often limited to what they can observe, and constructing
meaningful agent feedback based on this limited information
is critical for ensuring high system performance. These re-
sults demonstrate that in some cases, approximate difference
evaluations result in no significant loss in converged system
performance when only local knowledge is available.

5.2 Rover Domain Results
The rover domain was initialized as follows. There are 10

agents and 10 POIs in a planar world of size 25 units by 25
units. For coevolution, each agent maintains a population of
25 neural networks. Networks are mutated by adding vari-
ables drawn from a Gaussian distribution with zero mean
and unit variance to 10 randomly drawn weights from each
neural network. Each episode lasts 25 timesteps, and agents
can move a maximum of 1 distance unit per timestep. At the
beginning of each episode, agent positions are randomly ini-
tialized near the center of the domain. The coeovlutionary
algorithm1 was run for 3000 generations, and 150 statistical
runs were conducted for statistical significance. The experi-
mental results are shown in Figure 3. As in the bar problem,
reported error bars represent the error in the mean of the
statistical data.

Figure 3: Rover domain results (10 agents). Ap-
proximating Di(s, a) results in 88% of the per-
formance attained when analytically computing
Di(s, a). Approximating the difference evaluation
function results in significant performance gains
when compared to using the system evaluation func-
tion G(s, a).

As seen in Figure 3, approximating Di(s, a) results in an
approximate 23% increase in converged performance com-
pared to using the system evaluation function G(s, a). When
approximatingDi(s, a), the converged performance was 88%
of the converged performance when analytically computing
Di(s, a). Although the performance decreases when approx-

1We also performed these experiments using multiagent Q-
learning using policy gradient methods. The cooperative co-
evolutionary algorithm results are presented to demonstrate
that our approximation of difference evaluations applies to
both multiagent reinforcement learning and cooperative co-
evolutionary algorithms, not to suggest that coevolutionary
algorithms are the preferred approach for the rover domain.

imating rather than analytically computing Di(s, a), it is
important to note that much less information is required
to make the approximation. The approximation of Di(s, a)
requires only an agent’s local state and action, and the eval-
uation of G(s, a). In order to analytically compute Di(s, a),
global information about the state and action of each agent
is required, as well as the functional form of G(s, a). So,
although estimating Di(s, a) results in slightly worse perfor-
mance than analytically computing Di(s, a), it is often ex-
tremely difficult to make this analytical calculation, mean-
ing that approximation is required in order to implement
difference evaluation functions.

Unlike the bar problem, there is a drop in converged per-
formance between D(s, a) and D̂i(s, a). This can be at-
tributed to the increased complexity of the state and action
space in the rover domain. In the stateless bar problem,
there were simply 10 discrete actions that agents had to
choose from. In the rover domain, both the states and ac-
tions are continuous. In the bar problem, difference evalu-
ations attempt to answer whether an agent had a positive
impact on the system for the specific night the agent at-
tended; in the rover domain, difference evaluations attempt
to answer whether the agent had a positive impact on infor-
mation collection over the course of a time-extended task.
Clearly, approximating the system evaluation function in the
rover domain is much more complex than in the bar problem,
and explains why the approximation resulted in decreased
performance of D̂i(s, a) when compared to D(s, a).
It is important to note that a local approximation only

resulted in a 12% decrease in performance when the state
information used to construct agent feedback decreased by
90%. The states and actions of all 10 agents are incorporated
into calculating D(s, a). In the approximation D̂i(s, a), only
one agent’s state is used in the calculation. This is an ex-
tremely promising result, as a massive loss in information
results in only a small loss in performance.

Another important note is that when learning initially be-
gins, D̂i(s, a) is simply a noisy version of Ĝ(s, a). As learn-
ing progresses and agent approximations of G(s, a) become

more accurate, D̂(s, a) gradually moves from a noisy repre-

sentation of Ĝ(s, a) to an approximation of Di(s, a). This

is why early in learning, D̂i(s, a) performs closer to G(s, a),
but gradually performs closer to Di(s, a).

5.3 Scaling Results
In order to demonstrate the scalability of our approach,

we use the difference evaluation approximation algorithm in
a larger instance of the rover domain. In this experiment,
there are 100 agents and 100 POIs in a planar world of size 50
by 50. Learning is allowed to proceed for 5000 generations.
All other parameters of the experiment are identical to the
rover experiment in Section 5.2. The experimental results
are shown in Figure 4. The reported error bars represent
the error in the mean of the statistical data.

As seen in Figure 4, learning with D̂i(s, a) results in 79%
of the performance compared to using the analytically com-
puted difference evaluation, and outperforms the system
evaluation function by 49%. Although D̂i(s, a) performed
more poorly compared toDi(s, a) in this larger domain (79%
vs. 88%), it outperformed G(s, a) by a wider margin (49%
vs. 23%) as the system grew in complexity. This is strong
evidence supporting the use of approximate difference eval-
uations over the system evaluation function.



Figure 4: Rover domain results (100 agents). Ap-
proximating Di(s, a) results in 79% of the per-
formance attained when analytically computing
Di(s, a). Approximating the difference evaluation
function results in significant performance gains
when compared to using the system evaluation func-
tion G(s, a).

It is of note that in this larger domain, learning occurs
more slowly (as compared to Di(s, a)) than in the 10 agent
domain. This can be attributed to the fact that the ap-
proximation of G(s, a) is more difficult to learn in the larger
domain, and poor approximations early on in learning de-
crease the learning speed. As the approximator becomes
more accurate, learning with D̂i(s, a) speeds up. However,
even when agents use only local knowledge and approxi-
mate Di(s, a), they still significantly outperform agents us-
ing G(s, a). These results indicate that difference evalua-
tions may be extended to applications where global knowl-
edge about the system state, as well as the form of the sys-
tem evaluation function, are unavailable.

It is of note that in all three experiments conducted, ap-
proximating difference evaluations instead of directly calcu-
lating them required at least 90% less system information,
but only resulted in performance losses of up to 21%. This
is an extremely promising result, as using far less knowledge
to calculate agent feedback results in a comparatively low
drop in system performance.

5.4 Theoretical Implications of D(z) Approxi-
mation

The difference evaluation is fully factored, meaning that
an agent acting to increase the value of Di(s, a) will always
also increase the value of G(s, a). However, when approxi-
mating the difference evaluation, the guarantee of factored-
ness is lost. We now analyze the degree to which the ap-
proximate difference evaluation is factored with respect to
the system evaluation function.

In order to evaluate the degree of factoredness associated
with the approximations, we performed random sampling in
the rover domain to compare G(s, a) with Ĝi(si, ai). Ran-
dom states are created by drawing the positions of the rovers
and POIs from a uniform random distribution such that
rovers and POIs could be placed at any location in the pla-
nar world. Then, a random action was selected (x- and
y−motion) from uniform random distributions for a ran-

domly selected rover. This action was executed, and the
change in the value of G(s, a) was recorded. If the sign of

this change is equal to the sign of Ĝi(si, ai), then Ĝi(si, ai)
is factored with G(s, a) for this particular state-action pair.
This process was repeated for one million randomly gener-
ated states.

We found that Ĝi(si, ai) was factored with G(s, a) in 94%
of the states tested in the 10 agent domain, and 78% of the
states tested in the 100 agent domain. This is a particularly
interesting result for two reasons. First, the approximation
was capable of attaining a fairly high degree of factored-
ness, which explains why the approximation of difference
evaluations provided good performance. Second, when the
approximation of G(s, a) was found to be 95% factored in
the 10 agent domain, the approximation of difference eval-
uations led to 88% of the performance of analytically cal-
culated difference evaluations. When the approximation of
difference evaluations was 78% factored, the approximation
of difference evaluations led to 79% of the performance of
analytically computed difference evaluations. In our exper-
iments, the degree of factoredness of Ĝi(si, ai) is strongly

correlated with the performance of D̂i(s, a).

6. HARDWARE IMPLEMENTATION
We implemented the rover domain on a set of five Pio-

neer P3-DX compact differential-drive research robots. Each
robot was equipped with odometry and lidar sensors, and so
could determine its own position and the positions of sur-
rounding objects. Each robot was controlled by a computer
running the Robot Operating System (ROS) [21]. POIs were
defined as people standing with the robots (Figure 5).

We mapped the rover domain as described in Section 4
onto the hardware implementation by reducing the variety
of information brought in by the robots’ sensors down to
the 8 state variables described above. To mimic the rover
sensor return for each quadrant, each robot reported its po-
sition to a central hub, using the rocon multimaster system
for ROS [22]. The hub calculated the relative robot posi-
tions and sent each robot its four quadrant sensor values.
This centralized calculation was necessary since the lidars
were mounted above the robot platform such that their pla-
nar laser scans could not reliably detect the small available
surface area of the other robots. Future work will investigate
improved designs for robust robot detection. The POI sensor
values were extracted by feeding the raw lidar returns into
the trained people classifier of the leg_detector ROS pack-
age developed by Willow Garage [19]. The leg_detector

package output the target position of human POIs in the
robot body frame, and this data was condensed into the 4
POI quadrant values using Equation 11.

Rover control policies were trained in a 5-rover, 10-POI
simulation (5000 generations) and used the 8 state input
variables (2 sensor values for each quadrant, as discussed
above) to output a displacement command (Δx,Δy) in the
respective body frame. These values were issued as way-
point commands to the robot through the move_base ROS
package [14]. This allowed the robot to use the built-in
obstacle-avoidance routines to find collision-free paths to the
locations dictated by the control policy.

Figure 5 shows the initial and final robot configurations
for two sequential trials, as well as the paths taken by each
robot. As seen in Figure 6, 9 POIs were successfully ob-
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Figure 5: The initial configuration of the robots and POIs is shown in (a), after 58 s 9 of the 10 POIs have
been observed and the trajectories are plotted in (b). At 59 s, the POIs reconfigured to form two clusters,
a large cluster of 8 in the center and a small cluster of 2 towards the far right as shown in (c). The control
policies on the robots allowed them to reobserve all the POIs. Note that the majority of the lead time was
due to the internal path planners on the robots, shown in (d). Also of note is that the robot in the far right
corner failed to find a safe motion path, however the team of robots was still able to reacquire all POIs.
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Figure 6: Hardware results from Pioneer P3-DX ex-
periments, with 5 robots and 10 POIs. In the first
POI configuration, 9 POIs were fully observed. In
the second configuration, all 10 POIs were fully ob-
served.

served in the first trial, and all 10 POIs were successfully
observed in the second trial. These results are consistent
with the simulation results shown in Section 5.

7. DISCUSSION
Difference evaluations have been empirically shown to im-

prove coordination in multiagent systems in a many do-
mains, including air traffic control, rover control, sensor
network control, and congestion games. Further, difference
evaluations are fully factored, and are typically low in noise.
However, a key limitation of difference evaluations is the re-
quirement for global knowledge about the state of the system
as well as the system evaluation function. Thus, directly im-
plementing difference rewards in generic multiagent domains
is often a difficult task.

In this work, we demonstrate that difference evaluations
may be approximated by each agent using only local state
and action information. The only assumption is that the
value of the system evaluation function G(s, a) can be broad-
cast to each agent, which in most cases is a reasonable as-
sumption. We present an approach for approximating differ-
ence evaluation functions in order to provide agent-specific
feedback to improve coordination, and demonstrate in two
domains the effectiveness and scalability of our approach.

The key contribution of this work is presenting a novel
method to implement difference evaluation functions in any
generic multiagent system, without requiring global knowl-
edge about the state of the system or the mathematical form
of the system evaluation function. Further, this approxi-
mation approach significantly outperforms methods which
use the overall system evaluation function. As each agent
maintains a local approximation of the system evaluation
function, increases in computational cost are insignificant,
because the computation is parallelized across each agent in
the system.

An analysis of the relationship between the degree of fac-
toredness of the function approximation and the performance
relative to difference evaluations is the most interesting fu-
ture research topic. In the 10 agent domain, the approxi-
mation of G(s, a) was 94% factored and resulted in 88% of
the performance of Di(s, a) without approximation. In the
100 agent domain, the approximation of G(s, a) was 78%
factored and resulted in 79% of the performance of Di(s, a)
without approximation; this is an intriguing result, although
without further research no claims can be made. There is
a clear relationship between the factoredness of the approx-
imation and the resultant system performance, but the na-
ture of this relationship should be further investigated.
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