
Implicit Adaptive Multi-robot Coordination in Dynamic Environments

Mitchell Colby, Jen Jen Chung and Kagan Tumer

Abstract— Multi-robot teams offer key advantages over single
robots in exploration missions by increasing efficiency (explore
larger areas), reducing risk (partial mission failure with robot
failures), and enabling new data collection modes (multi-modal
observations). However, coordinating multiple robots to achieve
a system-level task is difficult, particularly if the task may
change during the mission. In this work, we demonstrate how
multiagent cooperative coevolutionary algorithms can develop
successful control policies for dynamic and stochastic multi-
robot exploration missions. We find that agents using difference
evaluation functions (a technique that quantifies each individual
agent’s contribution to the team) provides superior system per-
formance (up to 15%) compared to global evaluation functions
and a hand-coded algorithm.

I. INTRODUCTION

Well-coordinated multi-robot teams can accomplish com-
plex tasks in dynamic and stochastic environments. However,
many current coordination strategies require these tasks to be
well-defined ahead of time so that they can be decomposed
and allocated to specific agents.

In exploration missions, though, only high level descrip-
tions of the mission can be given prior to execution since
the exact locations of points of interest (POIs) may be
unknown a priori and new POIs are often detected on-
the-fly. In circumstances where explicit instruction from a
human operator is unavailable, coordination during operation
is necessary for the detection and evaluation of potential POIs
as well as when deciding how to re-allocate robots and team
resources to adapt to the changing mission environment.

The survey in [1] outlined the difficulties of learning
coordinating behaviors for multi-robot teams. Many of the
noted issues arise directly from the fact that multi-robot
problems can grow rapidly in complexity and dimensionality,
so much so that it becomes intractable to obtain sufficient
learning data to develop coherent team strategies. Market-
based approaches, such as in [2] and [3], attempt to reduce
complexity by limiting robot interaction to bidding for tasks
based on individual preferences, while the behavior-based
approaches developed in [4] and [5] remove the need for
inter-robot communication by computing internal motivators
based on the mission requirements to determine a robot’s fit-
ness for a task. In both of these scenarios, brevity is obtained
by condensing prior knowledge of mission requirements into
individual robot preferences.

In cases where this mapping between tasks to preferences
does not exist due to incomplete prior knowledge of the

Mitchell Colby, Jen Jen Chung and Kagan Tumer are with the
Autonomous Agents and Distributed Intelligence Lab, Faculty of Me-
chanical, Industrial and Manufacturing Engineering, Oregon State Uni-
versity, OR, 97330, USA colbym@engr.oregonstate.edu,
{jenjen.chung, kagan.tumer}@oregonstate.edu

	
	
	
	 	
	
	
	

Prior estimates of
POI locations

UAV1

Ground sensor
footprint of UAV1

Sensor range for
detecting other UAVs

Potential POI
detected by UAV1

Potential POI
detected by UAV2

UAV2

Fig. 1: Multi-robot coordination problem with limited prior information.
UAVs begin the mission with prior estimates of POI locations and can
detect potential POIs as well as other UAVs within the respective sensing
radii. UAVs within the team must coordinate to allocate sensing tasks.

mission, external feedback on team performance throughout
the mission can be used to guide policy refinement. Methods
such as value and policy iteration in reinforcement learning
and fitness evaluation in evolutionary algorithms are able to
use feedback signals to successively improve control policies.

One of the persistent challenges in learning multi-robot
team behavior is in devising an appropriate decentralized
agent feedback framework that can be translated across
different mission specifications and adapt to new feedback
from external operators. This is in addition to the difficulty of
designing a decentralized feedback signal that clearly maps
to the actions taken by the robot while also faithfully repre-
senting the global team performance. These two properties
are termed the “sensitivity” and “alignment” of a feedback
function, respectively [6]. A highly sensitive feedback signal
changes mainly due to the actions of the learning robot and
is less affected by the noise of other robots’ actions, while
a feedback signal with strong alignment implies that a robot
learning to improve this signal will also learn to improve the
global system performance. In many existing agent-feedback
functions, these two properties must be traded-off against
one another; the challenge is in designing a utility that
incorporates both of these properties.

In this paper we use the difference evaluation function [6]
from the multiagent literature to learn new robot team be-
haviors and adapt to changing mission environments without
pre-arrangement or explicit communication between team
members. We also show how external feedback can be folded

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 5168

into the learning algorithm via global system evaluations.
We demonstrate our algorithm on an environmental survey

mission across an unknown region with only high level
mission requirements provided prior to execution. Our results
show that the team of unmanned aerial vehicles (UAVs)
are able to explore for POIs in the region and dynamically
reallocate UAVs as new tasks arise. We also show that the
team is able to adapt its behavior given performance feedback
provided by human operators throughout the mission.

II. PROBLEM DESCRIPTION

The problem that we consider in this paper is one of
multi-UAV coordination for environmental monitoring in an
unknown region, Fig. 1 illustrates the basic problem setup.
A team of UAVs is tasked to discover and observe POIs
in a previously unexplored environment. Prior knowledge
of the number of POIs, their locations, and the utility of
observing any particular POI is uncertain and so the UAV
team must perform task assessment and assignment on-the-
fly as new POI information is collected. POIs, as defined
in this problem setup, can extend beyond static features to
also encompass temporal events such as the appearance of
hotspots in a spatio-temporal field as well as dynamic targets
that move in and out of sensor view.

With a single UAV agent or a small team of UAVs,
it may be possible for an external operator to assess the
performance of each team member throughout execution and
provide individual feedback for policy updating. However in
environmental surveillance missions, it is more common for
data from the team to be received in batches, thus timely
assessment of individual performance becomes intractable
particularly with many agents. A single assessment of the
entire team performance is relatively simple to compute and
can feasibly be returned by an external operator, however,
the issue then becomes one of credit assignment, that is,
how does each UAV determine its contribution to the team
performance? This contribution can then be used by each
UAV agent to assess and improve its individual policy.

In the following experiments, each UAV in the team
executes a policy described by a neural network controller.
Neural networks are capable of approximating any function
to arbitrary accuracy and so have the representational ability
to encode continuous state-action control policies while only
requiring a coarse representation of the system state [7],
[8]. Training a neural network involves setting network
weights to encode a control policy which accepts the current
state as an input and returns the action that maximizes a
particular utility function. The performance of the learned
controller is strongly dependent on the utility function used
to evaluate policies. In this work, we train neural network
controllers with cooperative coevolutionary algorithms using
both difference and global evaluation functions to assign
fitness. Coevolution is detailed in the following section.

III. EVOLUTIONARY ALGORITHMS FOR LEARNING
MULTI-ROBOT CONTROL POLICIES

A. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search al-
gorithms that often outperform classical optimization algo-
rithms, particularly in domains where the gradient of the
system evaluation function is unknown [9]. An EA typically
contains three basic mechanisms: solution generation, mu-
tation, and selection. These mechanisms act on an initial
set of candidate solutions (the population) to generate new
solutions and retain solutions that show improvement in
system performance. While simple EAs can be applied to
a variety of learning tasks, they need to be extended in
order to perform effectively in large cooperative multi-robot
problems. One such modification is coevolution, where mul-
tiple populations evolve simultaneously in order to develop
policies for interacting agents.

B. Cooperative Coevolutionary Algorithms

Cooperative Coevolutionary Algorithms (CCEAs) are an
extension of EAs and have been shown to perform well in
cooperative multiagent domains [10]. Multiple populations
evolve in parallel, with each population developing a policy
for one of the robots in the team. Policies from each
population are drawn to form the a team of robots, and the
overall performance of this team is evaluated using a fitness
function F (z), where z is the joint state of all robots in the
team. This fitness is then assigned to each policy in the team.
A general CCEA algorithm is shown in Algorithm 1. There
are N coevolving populations of neural network controllers,
one for each robot in the team. Each coevolving population
has a population size of k. For mutation of the neural
networks, 10% of the network weights are chosen at random
and values drawn from a normal distribution (zero mean and
unit variance) are added to the weights.

The key difference between a CCEA and an EA is the
assignment of fitness to each evolving agent. In a traditional
EA, the fitness of a policy is simply the system performance
attained by that policy. However, in a CCEA, all the agents
in the team affect the overall system performance; this
means that the fitness of a robot’s policy is based on its
interactions with all other robots it collaborates with, result-
ing in context-dependent and subjective fitness assignment
[11]. For example, a robot executing a severely suboptimal
policy collaborating with a team of robots with near-optimal
policies may still lead to good system performance. In
this case, it is difficult to determine that the suboptimal
policy should actually receive a low fitness assignment. This
phenomena is often seen in multiagent systems and is known
as the credit assignment problem: given a team of agents and
the overall system performance, it is difficult to determine
the relative usefulness of each individual agent. In order to
address the credit assignment problem, we focus on shaping
fitness functions with the difference evaluation function.

5169

Algorithm 1 Standard CCEA

1: Initialize N populations of k neural networks
2: for each Generation do
3: for each Population do
4: produce k successor solutions
5: mutate successor solutions
6: end for
7: for i = 1→ 2k do
8: randomly select one policy from each population
9: create team Ti of agents with selected policies

10: simulate Ti in domain
11: assign fitness to each agent in Ti using F (z)
12: end for
13: for each Population do
14: select k networks using binary tournament
15: end for
16: end for

IV. DIFFERENCE EVALUATION FUNCTION

The agent-specific difference evaluation function is defined
as in [12]:

Di ≡ G(z)−G(z−i + ci), (1)

where G(z) is the total system evaluation, z−i are all
the states on which agent i has no effect, and ci is the
counterfactual term, which is a fixed vector to replace the
effects of agent i. Intuitively, the second term in (1) evaluates
the fitness of the system without the effects of agent i, so
the difference evaluation gives agent i’s contribution to the
system evaluation [12]. Note that:

∂Di(z)

∂ai
=

∂G(z)

∂ai
, (2)

where ai is the action of agent i. This means that an agent
acting to increase the difference evaluation function also
increases the overall system performance; this property is
termed alignment. Further, the second term in (1) removes
portions of G(z) that are not related to agent i, resulting
in an improved signal-to-noise ratio; this property is termed
sensitivity. It was shown in the authors’ prior work [12], [13]
that the alignment and sensitivity properties of the difference
evaluation function results in agent-specific feedback, which
allows for superior policies to be learned.

Difference evaluations may be used to define F (z) in the
fitness assignment stage of Algorithm 1; however, in (1),
we see that computing these evaluation functions requires
knowledge of the state of all UAVs in the system z−i, as well
as the functional form of G(z). In practice, such information
is never known to each agent. Computing the difference
evaluation function thus requires approximation.

A. Local Approximation

The algorithm to evaluate the difference evaluation func-
tion was first presented in [13], and is presented in Algo-
rithm 2. We assume that a cooperative multi-robot system
aims to coordinate in order to maximize some system-level
objective function G(s, a), where we have decomposed the

system state vector z into a system state vector s and a
system action vector a. We assume that the value of G(s, a)
is broadcast to each agent, and that each agent i has access to
its local state si and action ai. At each timestep, each agent
takes an action, and G(s, a) is broadcast to each agent. Each
agent i maintains a private neural network approximation
for G(s, a), denoted Ĥi(si, ai). The agent’s local state si,
local action ai, and value of the system objective function
G(s, a) are used to update the Ĥ(si, ai) approximation using
backpropagation. Each agent’s approximation of G(s, a) is a
mapping from that agent’s local state and action to the system
objective function. This approximation is initially very noisy,
because the state and action information is limited to only
one agent’s state and action. However, as the policies of each
agent begin to converge, approximating G(s, a) using only
one agent’s state and action becomes less noisy, because the
variance in the joint action for a particular system-level state
is reduced. Given an agent’s approximation Ĥi(si, ai), the
difference evaluation is estimated as:

D̂i(s, a) = G(s, a)− Ĥi(cs,i, ca,i), (3)

where D̂i(s, a) is agent i’s approximation of the difference
evaluation function. In order to evaluate Ĥi(cs,i, ca,i), a
default state cs,i and default action ca,i are chosen. In other
words, the approximation of the difference evaluation func-
tion determines the difference between the system objective
function and the approximated system objective function if
agent i took a default action.

It is worth noting here that there is no requirement for Ĥ
to approximate G (z−i + ci). Ĥ simply needs to represent a
function that is aligned with G and does not depend on zi.
Computing Ĥ using the method outlined above is a sensible
choice given these requirements and the available informa-
tion, however other choices of Ĥ may also be possible.

V. EXPERIMENT SETUP

We compared the performance of the learning algorithm
using the approximated difference evaluation function signal
to one using the global evaluation signal on the UAV
exploration problem described in Section II. We also show
the best case performance of the algorithm using the exact
difference evaluation function signal.

A. UAV Parameters

We investigate the performance and scalability of our
learning algorithm over two team sizes, a smaller team with
15 UAVs and a large team of 50 UAVs. Each UAV is
equipped with a downward-facing sensor to observe POIs
on the ground and an in-plane bearing sensor to detect other
UAVs within sensor range. The range of the in-plane bearing
sensor, rplanar is twice the radius of the downward-facing
sensor footprint, rground. Both sensors take measurements
with additive white noise drawn from N (0, 0.1).

Sensor detections of POIs and other UAVs are discretized
into four quadrants, {north-east, north-west, south-west,
south-east}, with respect to the UAV body frame. The
detections within each quadrant are used to find the state

5170

Algorithm 2 CCEA using D̂i(s, a)

1: Initialize N populations of k neural networks
2: for each Population i do
3: for each Individual j do
4: Initialize function approximator Ĥi,j(si, ai)
5: end for
6: end for
7: for each Generation do
8: for each Population do
9: produce k successor solutions

10: mutate successor solutions
11: end for
12: for i = 1→ 2k do
13: randomly select one policy from each population
14: create team Ti of agents with selected policies
15: for each Simulation timestep do
16: each agent j in team Ti finds local state si
17: each agent j in team Ti chooses action ai
18: G(s, a) is broadcast to each agent
19: update Ĥi,j(si, ai) based on si, ai, G(s, a)
20: D̂i,j(s, a) = G(s, a)− Ĥi,j(cs,i, cs,a)
21: each agent j increments fitness by D̂i,j(s, a)
22: end for
23: end for
24: for each Population do
25: select k networks using binary tournament
26: end for
27: end for

inputs of the neural network controller. More specifically,
the state variable representing UAV detections in quadrant q
of UAV i is defined as:

sUAVi,q =
∑
i′∈Nq

1

Li′
, (4)

where Nq is the set of observable UAVs in quadrant q, and
Li′ is the relative distance from UAV i to UAV i′. The state
variable representing POI detections in quadrant q of UAV i
is defined as:

sPOIi,q =
∑
j∈Iq

Vj

Lj
, (5)

where Iq is the set of observable POIs in quadrant q, Vj is
the value associated with POI j, and Lj is relative distance
from UAV i to POI j.

At each decision instance, each UAV queries its learned
policy to compute an airspeed and a heading change to
execute in the next step. The learned policies are encoded
by 8-input, 10-hidden unit, 2-output fully connected feedfor-
ward neural networks with sigmoidal activation functions.
The neural network output provides two values that lie
in [0, 1] and each of these are mapped to one of the
two controls. The airspeed control is a linear mapping to
[vamin

, vamax
], the range of airspeeds between the minimum

and maximum allowable airspeed, while the heading changes
are also mapped linearly from [−90◦, 90◦]. In the following

experiments, the survey region is 50 × 50 units in size; the
minimum and maximum allowable airspeeds are defined as
vamin = 0.25 units/timestep and vamax = 1 unit/timestep.

B. POIs

The survey region contains 25 POIs that are initialized
according to a uniform random distribution across the search
space. During each mission, UAVs can only sense POIs that
are active and within sensor range. At initial execution, there
are n POIs active in the entire survey region; as the mission
progresses, more POIs become active at a rate of n POIs per
m timesteps, where n and m are chosen based on the total
number of POIs and overall simulation timesteps such that
all POIs are active after 90% of the mission time. For the
following experiments, n = 5 and m = 9.

Each POI is associated with a radius, rPOI � rground, such
that a POI is considered fully observable to a UAV within
this radius. For the following experiments rPOI = 1.

C. Utility Assignment

A single value is assigned for each POI within sensing
range of a UAV, the value of observing POI i is computed
as

wi =

Vi if dnear ≤ rPOI;
Vi/dnear if rPOI < dnear ≤ rground;

0 otherwise.
(6)

In (6), dnear is the lateral distance from the POI to the nearest
UAV. The global system performance is evaluated as the sum
of the observation values over all POIs,

G(z) =

k∑
i=1

wi. (7)

In the following experiments, the optimal global performance
is achieved when all POIs are perfectly observed within one
epoch (50 timesteps). The maximum global evaluation in
this case is set to 50, thus with all POIs of equal observation
value, Vi = 50/k.

The design of the utility function is such that there is
no benefit to having multiple UAVs observe the same POI.
In the following experiments we analyze the ability of the
difference evaluation function signal to express this aspect
of the mission goal and generate cooperative team behaviors
without requiring explicit instruction for UAVs to monitor
unobserved POIs.

D. Hand-Coded Patrolling Agents

In addition to comparing the learning performance ob-
tained using the approximated difference evaluation versus
the global evaluation, we also compare the performance
of the learned policies against that achieved by a basic
patrolling algorithm. In the patrolling algorithm for n UAVs,
the world is discretized into n equal width strips. Each
UAV occupies one strip, and simply patrols back and forth
along that strip at a constant airspeed. This patrol algorithm
guarantees full coverage of the physical area of the domain.

5171

3,0002,0001,0000

40

35

30

25

Fig. 2: POI surveillance performance of 15 UAVs with 10% sensor noise and
full observability of the region. Mean global evaluations and standard error
in the mean are plotted for the four tested algorithms. Policies trained on
the approximated and analytical difference evaluations outperformed those
trained on global evaluations and the hand-coded patrolling algorithm.

VI. RESULTS

Three sets of experiments were conducted: the first set
of experiments tested a team of 15 UAVs each with infinite
sensor range, the results of these experiments demonstrated
the performance baseline of the team when all members
had full system observability. The second set of experiments
involved a team of 15 UAVs equipped with sensors that
had limited observation ranges. In these experiments, agents
could detect other UAVs up to 20 units away, and could
detect POIs up to 10 units away. In order to analyze the scal-
ability of the proposed algorithm, the final set of experiments
tested a team of 50 UAVs with the same limited-range sensor
specifications. The following results are generated from 100
statistical trials of each set of experiments.

A. 15 UAVs, Full Observability

Averaged results of the global team evaluation with error
bars reporting the standard error in the mean are given in
Fig. 2. These results show that agents learning with the
approximated or analytically computed difference evalua-
tions outperformed agents using global evaluations or the
hand-coded patrol algorithm. By providing agent-specific
feedback, difference evaluations resulted in superior learned
policies than agents using global evaluation functions as fit-
ness assignment operators. These results suggest that in cases
where there is insufficient information to directly compute
difference evaluations, they can be approximated using the
method described in Section IV-A and still provide superior
performance over directly using the global evaluations.

Two observations may be made regarding the hand-coded
patrol policy. First, it has fairly low performance even though
it guarantees full domain coverage. This is due to the fact that
full domain coverage is less important than POI coverage.
In the patrol algorithm, when new POIs are discovered,
nothing directs the UAVs to approach and observe these
POIs. For example, if a UAV is patrolling along its assigned
strip and a POI is discovered behind the UAV, the POI
will not be observed until the UAV completes a patrol
cycle and returns to the POI location. In cases with limited
mission time, this POI may never be observed. The second

3,0002,0001,0000

40

35

30

25

Fig. 3: POI surveillance performance of 15 UAVs with 10% sensor noise
and limited sensing range. Policies trained on difference evaluations again
provided the best system performance, those trained on approximated
difference evaluations perform slightly worse than the patrolling algorithm
but have far less variance in performance.

observation regarding the patrol policy is the high variance in
performance. In cases where POIs are active as a patrolling
UAV is within its observation radius, the patrolling policy
performs quite well. In cases where POIs become active
far from patrolling UAVs, system performance suffers. Thus,
although the patrolling policy performs well in some cases,
it does not generalize to arbitrary POI configurations, and is
thus limited in its applicability.

B. 15 UAVs, Limited-Range Sensors

As seen in Fig. 3, limiting the observation radius of UAV
sensors decreases system performance by ~13% when using
difference evaluations. In the limited observability case,
agents using difference evaluation functions outperformed all
other approaches analyzed. The patrolling policy resulted in
slightly superior mean performance than agents using ap-
proximate difference evaluations. However the performance
of the patrolling policy was far more variable for the reasons
discussed in the previous subsection. Notably, the worst case
patrolling performance achieved a global evaluation of 24.73
compared to 29.49 received by the poorest-performing policy
trained on the approximated difference evaluation. This is
again due to the stochastic nature of the environment and the
ability of the learning algorithm to adaptively direct UAVs
in the team to observe newly discovered POIs and improve
coordination as learning progresses.

C. 50 UAVs, Limited-Range Senors

To investigate the scalability of the proposed algorithm,
the number of UAVs in the system was increased from 15
to 50, and the number of POIs was increased from 25 to 85.
Averaged results over 100 trials are shown in Fig. 4.

In the 50 agent case, policies trained on both the difference
and approximated difference evaluations outperform those
trained on the global evaluations and the patrol algorithm.
As in the 15 agent case, the hand-coded patrolling algorithm
exhibited a high variance in performance. Approximated dif-
ference evaluations produced policies that performed slightly
better than the best case patrol algorithm, and performed far
better than the worst case patrol algorithm.

5172

3,0002,0001,0000

50

40

30

Fig. 4: POI surveillance performance of 50 UAVs with 10% sensor noise
and limited sensing range. Both approximate and analytical difference
evaluations outperform global evaluations and the basic patrolling algorithm.

It is of note that in all three sets of experiments, no UAVs
came into conflict (assuming a conflict radius of 1). As
the agents were learning to explore the domain, the learned
control policies implicitly kept the UAVs “spread out”. It is
possible to add a penalty to discourage UAV conflicts in the
fitness function, but was unnecessary in this work.

D. Alignment Analysis

Recall from (2) that the difference evaluation function and
global evaluation function are aligned, meaning that an agent
acting to increase its difference evaluation also increases
system performance. However, this guarantee of alignment
is lost when difference evaluations are approximated. We
investigate how the degree of alignment of the approximate
difference evaluation impacts performance.

We randomly sampled state-action pairs to evaluate the
degree of alignment of the approximate difference evaluation
function. We chose a random system state s and a random
pair of joint actions {a, a′}, then computed G and D̂ for
each state-action tuple. If G (s, a) ≥ G (s, a′) and D̂ (s, a) ≥
D̂ (s, a′) or vice versa, the approximation is aligned with
the system evaluation function for this state-action pair. We
repeated this process for 500, 000 randomly generated state-
action pairs and the results are shown in Table I.

Note that although approximation alignment increased
from 15 to 50 agents, the relative performance of the approx-
imation decreased. This is due to the increased complexity
of the larger system. There are two interesting results in this
alignment study. First, a strong correlation is seen between
the degree of alignment and the relative performance of
approximated and directly computed difference evaluations.
Second, the approximation having high alignment is suffi-
cient for high system performance. In a learning algorithm,

TABLE I
D̂ ALIGNMENT ANALYSIS

of UAVs D̂ vs. G Alignment D̂/D Performance

15 92.19± 0.81% 96.84± 0.12%
50 94.44± 0.05% 92.47± 0.41%

the accuracy of the evaluation metric is less important than
the relative ordering of state action pairs; as long as an
approximator can determine the preference between two
actions, then the accuracy of the estimated utilities of these
actions are of minimal importance.

VII. CONCLUSIONS

In this work, we developed control and coordination
policies for a team of UAVs in an environmental surveil-
lance domain by coevolving neural network controllers and
assigning fitness with difference evaluation functions. As
the information required to compute difference evaluations
is often unavailable in real world scenarios, each agent
approximated the difference evaluation function using locally
available information. Policies trained on the exact and also
the approximated difference evaluations resulted in superior
performance compared to those trained on global evaluations
by up to 15%. The presented learning algorithms scale
well to large UAV teams and are also able to adapt to the
changing environment to provide far less variance in mission
performance compared to a hand-coded patrolling algorithm.

ACKNOWLEDGMENT

This work was partially supported under NASA grant
number NNX14AI10G.

REFERENCES

[1] L. Parker, “Multiple mobile robot systems,” Springer Handbook of
Robotics, pp. 921–941, 2008.

[2] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multi-
robot coordination,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 758–768, 2002.

[3] L. Liu and D. A. Shell, “An anytime assignment algorithm: From
local task swapping to global optimality,” Autonomous Robots, vol. 35,
no. 4, pp. 271–286, 2013.

[4] L. Parker, “Alliance: An architecture for fault tolerant multirobot
cooperation,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 2, pp. 220–240, 1998.

[5] L. Parker, “Lifelong adaptation in heterogeneous multi-robot teams:
Response to continual variation in individual robot performance,”
Autonomous Robots, vol. 8, no. 3, pp. 239–267, 2000.

[6] A. K. Agogino and K. Tumer, “Analyzing and visualizing multiagent
rewards in dynamic and stochastic environments,” Autonomous Agents
and Multi-Agent Systems, vol. 17, no. 2, pp. 320–338, 2008.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 3,
1989.

[8] P. Huang, J. Lehman, A. Mok, R. Miikkulainen, and L. Sentis,
“Grasping novel objects with a dexterous robotic hand through neu-
roevolution,” in IEEE Symposium on Computational Intelligence in
Control and Automation, Orlando, FL, 2014, pp. 1–8.

[9] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, 1994.

[10] S. G. Ficici, O. Melnik, and J. B. Pollack, “A game-theoretic and
dynamical-systems analysis of selection methods in coevolution,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp.
580–602, 2005.

[11] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, 2005.

[12] A. Agogino and K. Tumer, “Efficient evaluation functions for evolving
coordination,” Evolutionary Computation, vol. 16, no. 2, pp. 257–288,
2008.

[13] M. Colby and K. Tumer, “Approximating difference evaluations with
local information,” in Proceedings of the Fourteenth International
Joint Conference on Autonomous Agents and Multiagent Systems,
Istanbul, Turkey, 2015.

5173

