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Abstract. Increasing robotic perception and action capabilities promise
to bring us closer to agents that are effective for automating complex
operations in human-centered environments. However, to achieve the de-
gree of flexibility and ease of use needed to apply such agents to new
and diverse tasks, representations are required for generalizable reason-
ing about conditions and effects of interactions, and as common ground
for communicating with non-expert human users. To advance the dis-
cussion on how to meet these challenges, we characterize open problems
and point out promising research directions.

1 Introduction

There is growing excitement surrounding the possibility of service robots soon
becoming a staple in hospitals, malls, construction sites or even in the home. This
is perhaps not entirely unwarranted given the astonishing technological progress
that we’ve observed over just the last few years across all areas of robotics. There
are now myriad options for autonomous point-to-point navigation in changing
and dynamic human spaces [1–3], similarly so for safe physical interaction be-
tween robots and humans or other objects in the environment [4, 5]. On top of
this, there are also any number of methods that generate the internal scene rep-
resentations needed to support these tasks [6–10]. Nevertheless, even the most
optimistic among us would likely agree that a scenario where we could simply
ask a robot (or a team of robots) to “tidy the room” and expect a satisfactory
outcome is still a fairly distant dream. The individual skills needed to complete
such a task—pick and place of objects [11–15], opening and closing drawers
and cupboards [16–18], navigation in clutter [19, 20], etc.—may all be available,
but there is still a missing link that’s needed to translate the semantic notion of
“tidy” into a potentially extensive and complex sequence of robot-legible actions.

The field of high-level symbolic planning [21] pushes towards this idea by
offering frameworks that operate over predicates (binary symbols of relations or
properties, e.g. “teddy on floor”) [22–24]. By describing the state of the world
as a set of predicates and defining the actions available to the robot in terms
of preconditions and effects (e.g. the precondition for a grasp action may be
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the predicate “object in reach” and its resulting effect is “object in gripper”),
such planners can accept commands such as “teddy in cupboard”, to output an
action sequence {navigate to teddy, grasp teddy, navigate to cupboard, place
teddy} that completes the task. While the logic may be straightforward, even
such a simple example hides a surprising amount of complexity. Most notably,
the semantic concepts of “on the floor” or “in the cupboard” lead to the same
interpretability problem as in the “tidy” example. It may be easier to conceive
of a metric computation (a grounding) to evaluate the “on” and “in” predicates
compared to “tidy”, however, such a check still needs to be implemented. Indeed,
one is needed for every predicate the robot encounters. Currently available solu-
tions either hand-code these rules, which is untenable in the long run, or learn
the groundings [25–28], which overfits to a specific task. Alternatively, end-to-
end approaches short-circuit symbolic planning altogether by directly learning
actions from semantic commands without a (human-legible) intermediate repre-
sentation [29], which precludes a shared human-robot understanding. Moreover,
given the incomplete, fuzzy, representation- and context-dependent nature of
most predicates (see Figure 1 for an example of how even “on” can get messy),
there is often no clear or easy way to consistently translate these to the metric
representation of the environment in which robots operate.

So far we’ve only considered the robot-agnostic elements of predicate under-
standing: how to determine whether a predicate holds given just the state of
the world. A second challenge arises from the description of the robot actions,
whose preconditions and effects by necessity include robot-specific predicates.
Take the grasp action as an example, previously we suggested that having the
target “in reach” would be a suitable precondition. However, whether or not
this predicate holds depends entirely on the robot’s available workspace, which
varies from setup to setup. “In reach” also doesn’t cover the full set of conditions
needed to determine an object’s graspability, since we would also need to factor
in elements such as the robot’s grasping mechanism (fingers, jamming, suction,
etc.), its sensing capabilities and its payload capacity. A complete and correct
set of symbolic action definitions would need to be based on robot-specific object
affordances, and these, too, must somehow be obtained.

Given the difficulty of generating analytical translations between semantic
predicates and the general metric space of a robot, it seems that the most
promising solutions will likely require some degree of learning. Self-supervised
strategies [30] may help to alleviate the need for manually labeled data and these
can be of particular value when learning robot-centric affordances. Notably, the
fidelity of available physics simulators [31] now lets us learn robot skills which
transfer remarkably well to real-world execution [32, 33]. Of course, we’re still
left with all the robot-agnostic elements, which ultimately require some degree
of user input, either via labeling [34, 35] or by demonstration [36]. As with any
works needing user input, the core challenges are how to most efficiently gather
this limited and precious resource, and how to most effectively make use of it.
Works that deal with activity classification [37] and behavioral cloning from ob-
servation [38] can supplement these efforts by exploiting the huge amount of on-
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Fig. 1: (a)-(b) Two examples of where the predicate “container on table” holds. Indeed, we can
generally agree that this predicate holds for any position or orientation of the container so long as
it is supported from below by the table surface. (c) Does the predicate “lid on container” hold in
this case? Typically when we say “put the lid on the container” we would like the outcome shown
in (d). But if we were simply identifying the lid, we may describe it in both (c) and (d) as “the lid
on the container”.

line image and video data, while active learning [39] can help reduce the required
amount of labeled data. However, regardless of the data source, additional effort
will invariably be needed to verify the correctness of learned semantic predicates
and methods for further knowledge refinement will almost surely be required.

This paper presents some of the key challenges in consolidating the semantic
nature in which humans interpret the world and the actions that we take within
it, with the fundamentally metric representations available to our robots. The
motivating thesis of this investigation is that by enabling a mutual understanding
of the world (or at least a way to map from a human’s internal representation
of it to a robot’s and vice versa), we can interact with robots as smoothly as
we would with other humans. Potentially arriving at a point where we can get
them to tidy our rooms with a single command.

2 Contextual Scene Understanding

Semantics provides a compressed representation of the world at the level of ob-
jects and their relationships. They allow us to reason effortlessly over tasks that
would otherwise be extremely tedious to describe within a metric representa-
tion. Assuming that we are stuck with robots that must, at the end of the day,
operate using metric representations, the question is then, how do we convert
our semantic, relational and contextual understanding of the environment into
such a metric space? Deep learning-based algorithms for computer vision [40–42]
and natural language processing [43, 44] have already given us a taste of what’s
possible at the conjunction of high-powered compute and enormous amounts of
data. While this presents an obvious starting point, we posit here that a robot—
an artificial embodied agent—performing long term reasoning and planning in
shared human environments will need to undergo continual online adaptation
of its world representation. This is not only so that it updates its scene under-
standing according to newly discovered semantic predicates, but also so that it
can render its interactions with the world (reasoning about its own capabilities
and the effects of its actions) within the same representation as new objects
or new capabilities are introduced. From a symbolic planning perspective, this
means that we need efficient strategies for discovering and evaluating predicates,
as well as methods for generating agent-specific action definitions which can be
corrected and completed over time given new interaction experiences.
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2.1 Spatial Predicates: Object-to-object Relationships

Thankfully, a large number of predicates that are needed to describe typical
tasks undertaken in human spaces can be evaluated spatially or temporally.
These involve prepositions that describe the relationship between two objects
(e.g. “on”) or two actions (e.g. “after”). The latter is generally well-handled by
symbolic planners that apply temporal logic [45, 46], while we can conceivably
learn the rules for spatial predicates given sufficient training examples of relevant
sensory data, such as comparing point clouds or bounding boxes of objects [47].

Unfortunately, and perhaps not surprisingly, this is not the end of the story
for spatial predicates. Take for instance the examples shown in Figure 1. While
the container is unquestionably “on” the table in all instances, whether or not
the lid is considered “on” the container in Figure 1c and Figure 1d may differ
depending on the intention of the task. Although it’s possible to exhaustively
learn the different subtleties of each predicate from scratch, this is not a sat-
isfying solution and may be fatally unrealistic depending on the training data
and memory requirements. A more principled approach may be to build levels
of specificity into the representation which would allow directly extending and
specializing from established predicates. That way, when a robot is told that it
failed to “put the lid on the container” as in Figure 1c, it doesn’t search across all
possible configurations of the lid and container, but rather searches only within
those configurations for which its original understanding of “on” holds.

Automatically learned predicate extensions can also provide an avenue for
efficient knowledge consolidation. For instance, a sequence of n objects one “on”
the other would need n − 1 “on” predicates to define. Alternatively, a person
would typically describe such an arrangement with a single predicate “stack”.
Learning to associate jointly observed sets of predicates can potentially fast-track
planning and will in general enable more compact state representations. One
consideration to note is that some conditions may not be explicitly observable
when simply associating predicate sets. For example, the order of the objects in
a stack may or may not strictly matter. While this has little impact on being
able to determine if a “stack” predicate holds, it can become very important
for a planner that needs to know how to generate a stack from a random set
of objects. Put another way, “on” is only a necessary condition for “stack”,
additional effort may still be needed to learn the full set of sufficient conditions
for these higher-level predicates.

2.2 Affordances: Object-to-agent and Scene-to-agent Relationships

A second set of predicates that are needed are those that relate specifically to the
agent and the actions that it can execute. High-level symbolic actions are defined
by preconditions and effects, the former is the set of predicates that must hold
in order for the action to be executable while the latter is the set of predicate
changes that the action causes. Generally speaking, action preconditions relate to
the agent-specific affordances of the particular object(s) targeted by that action,
for example, recall the discussion on graspability from Section 1. One option for
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learning object affordances is to simply rely on manually labeled data such as
[35], however the limitations of this may quickly become apparent in an open
world setting. In contrast, methods that can efficiently update and add to an
existing knowledge base from the agent’s own experiences are considerably more
powerful and more appealing, especially given our use case in robotics.

Some affordance predicates may be immediately observable even without
requiring physical interaction with the object. For example, the geometry of
an object can already disqualify it from being considered graspable. Beyond
geometry, other remotely observable object properties can provide good proxies
that allow affordance generalization over unseen objects. Over time, a robot
could learn to associate features, such as surface texture, with how easy an
object has been to grasp given a particular end-effector. In an ideal scenario,
such associations would remove the need for physical interaction and would allow
the agent to directly attach an affordance to a new object just based on remote
observation. The challenge is then to identify the salient object features that
reveal these correlations and also to decide how optimistically (or conservatively)
to generalize affordances to newly encountered objects.

Ultimately, however, the only way we can truly verify if an object has a par-
ticular affordance is to physically interact with it to see if the associated action
succeeds. To further complicate things, there are agent-, object- and scene-level
reasons why an action may fail. An object may not be graspable because (i) it’s
too heavy for the robot to lift; (ii) its current orientation does not allow grasping;
or (iii) other objects in the scene are blocking the robot from grasping it. From
the perspective of a symbolic planner, it can be quite useful to distinguish be-
tween these different cases as they each point to potential recovery mechanisms.
In the first case, the ability to recover lies solely with the agent (increase the
robot payload); in the second case the robot may be able to move the object into
a graspable orientation; while in the last case, the robot will need to interact
with other objects in the scene to change the graspability predicate of the target
object. Uncovering the true reason behind why a particular object affordance
doesn’t hold will likely require a combination of knowledge extrapolation (to
hypothesize what went wrong) and sophisticated exploration strategies to avoid
the computational blowup of an exhaustive search. Predicate extension methods,
such as those described in Section 2.1, will then also be needed to update the
state and action representations to enable successful replanning.

2.3 Challenges and Benefits of Embodiment

Since affordance predicates are inherently tied to the robot’s capabilities, their
evaluation is at least directly measurable by the robot (did the action succeed
or not?). Of course, knowing that an affordance holds is not the same as know-
ing how to effect that affordance. Recent works propose methods that exploit
simulation to learn this directly from point cloud data [16, 17]. However, these
approaches stop short of a full evaluation and only explore object interactions
with a disembodied gripper, relying instead on downstream motion planners to
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deal with kinematic and dynamics constraints that arise from the full realiza-
tion of the robot. It remains to be seen whether learning a more generalized
(robot-agnostic) set of object affordances, which are then refined to each specific
setup, or directly learning a robot-centric representation results in better overall
functionality. As is typical for learning algorithms, ease of training, ease of use,
generalizability and overall performance will all factor into this comparison, and
perhaps unique to robot-affordance learning, we would also be very interested
in how readily the learned representation can be adapted given live, real-world
interaction data.

3 Summary and Outlook

Contextual scene understanding is challenging for a robot but it’s a problem
worth tackling as it enables robots to truly reason about the world to solve
general, large-scale, long-horizon tasks given simple semantic commands. We’ve
identified several major challenges related to predicate-based world representa-
tions and outlined promising directions for investigation. These include ideas for
automatic predicate extension via specialization of existing predicates or consoli-
dation of jointly observed predicates, as well as ideas for generalizing affordances
to unseen objects and exploiting agent embodiment in robotic domains.
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symbolic operators for task and motion planning. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. (2021)

28. Yuan, W., Paxton, C., Desingh, K., Fox, D.: SORNet: Spatial object-centric repre-
sentations for sequential manipulation. In: Conference on Robot Learning. (2022)



8 Jen Jen Chung et al.

29. Shridhar, M., Manuelli, L., Fox, D.: CLIPort: What and where pathways for robotic
manipulation. In: Conference on Robot Learning. (2022)

30. Nair, A., Bahl, S., Khazatsky, A., Pong, V., Berseth, G., Levine, S.: Contex-
tual imagined goals for self-supervised robotic learning. In: Conference on Robot
Learning. (2020)

31. Collins, J., Chand, S., Vanderkop, A., Howard, D.: A review of physics simulators
for robotic applications. IEEE Access 9 (2021)

32. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of
robotic control with dynamics randomization. In: IEEE International Conference
on Robotics and Automation. (2018) 3803–3810

33. Zhao, W., Queralta, J.P., Westerlund, T.: Sim-to-real transfer in deep reinforce-
ment learning for robotics: A survey. In: IEEE Symposium Series on Computational
Intelligence. (2020)

34. Cohen, V., Burchfiel, B., Nguyen, T., Gopalan, N., Tellex, S., Konidaris, G.:
Grounding language attributes to objects using Bayesian eigenobjects. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. (2019)

35. Wald, J., Dhamo, H., Navab, N., Tombari, F.: Learning 3D semantic scene graphs
from 3D indoor reconstructions. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition. (2020)

36. Gopalan, N., Rosen, E., Konidaris, G., Tellex, S.: Simultaneously learning trans-
ferable symbols and language groundings from perceptual data for instruction fol-
lowing. Robotics: Science and Systems XVI (2020)
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