
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:21
https://doi.org/10.1007/s10458-020-09442-1

1 3

The impact of agent definitions and interactions
on multiagent learning for coordination in traffic
management domains

Jen Jen Chung1  · Damjan Miklić2 · Lorenzo Sabattini3 · Kagan Tumer4 ·
Roland Siegwart1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The state-action space of an individual agent in a multiagent team fundamentally dictates
how the individual interacts with the rest of the team. Thus, how an agent is defined in
the context of its domain has a significant effect on team performance when learning to
coordinate. In this work we explore the trade-offs associated with these design choices,
for example, having fewer agents in the team that individually are able to process and act
on a wider scope of information about the world versus a larger team of agents where each
agent observes and acts in a more local region of the domain. We focus our study on a traf-
fic management domain and highlight the trends in learning performance when applying
different agent definitions. In addition, we analyze the impact of agent failure for different
agent definitions and investigate the ability of the team to learn new coordination strategies
when individual agents become unresponsive.

Keywords  Multiagent systems · Cooperation and coordination · Intelligent agents · Agent
definitions

 *	 Jen Jen Chung
	 chungj@ethz.ch

	 Damjan Miklić
	 damjan@romb‑technologies.hr

	 Lorenzo Sabattini
	 lorenzo.sabattini@unimore.it

	 Kagan Tumer
	 kagan.tumer@oregonstate.edu

	 Roland Siegwart
	 rsiegwart@ethz.ch

1	 Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
2	 RoMb Technologies d.o.o., Zagreb, Croatia
3	 University of Modena and Reggio Emilia, Reggio Emilia, Italy
4	 Oregon State University, Corvallis, USA

http://orcid.org/0000-0001-7828-0741
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09442-1&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 2 of 27

1  Introduction

Many traditional multiagent benchmark domains include a strict definition of the agent
and the team, examples include the prisoner’s dilemma, where each prisoner is an agent;
robot soccer, in which each player is an agent; and the predator-prey domain, where each
predator or prey are individual agents. However, we are increasingly faced with real world
problems where we, as system designers, get to choose the multiagent team structure. For
example, in domains such as autonomous traffic management [7, 18], network routing [30]
and powerplant control [10]. What constitutes an “agent” in these problems (the control-
ler of a single traffic light or all the traffic lights at an intersection?) is fluid and becomes a
design choice rather than a constraint of the domain.

The term agent factorization was introduced in [20] and describes the breakdown of a
problem into a multiagent system by finding a representation of the full joint state-action
space in the union of the individual agent state-action spaces.1 Yet despite the large body
of work in multiagent systems, and especially in multiagent learning for coordination, this
concept of designing the agent definitions has not featured much in existing research. Sur-
vey papers proposing multiagent system taxonomies [3, 19, 22, 25, 28] tend to focus more
on the system architecture, that is, how agents interact and communicate in the domain (if
at all). However, these aspects are inherently a function of the agent definition in terms of
the (partially observable) Markov decision process that each individual agent is solving.

One of the main challenges of pinning down the contribution of agent definition to the
final team performance is the inherent complexity and inter-connectedness of multiagent
systems. While there is temptation to simply increase the number of agents in a team with-
out changing the individual agent definition, this does not provide a fair comparison as it
fundamentally changes the capabilities of the team, the difficulty of the original problem
and so on. Furthermore, the problem domain often does not allow for a straightforward
comparison between different agent definitions. For example, in robot soccer, each player
can naturally be described as an agent. Other definitions, such as controlling all defenders
with a single agent, would require significant reconsideration of how to represent the agent
state-actions and interactions, not to mention the practical implications of implementing
such an agent.

In this work, we study the impact of agent definition on the performance of multia-
gent learning for coordination in the warehouse traffic management domain introduced in
[7, 12]. This domain is particularly well-suited to our study since the fundamental system
dynamics are decoupled from the structure of the multiagent team. Thus, we can indepen-
dently vary the number of agents in the team and the total information available to the team
without changing the difficulty of the underlying problem.

We implement four different agent definitions and also compare against a centralized
learning solution. Our results highlight the trade-offs associated with using lower-level def-
initions, where there are more agents in the team that each have smaller state-action spaces
but consequently have a more localized view of the problem, versus higher-level defini-
tions, where there are fewer agents attempting to concurrently learn higher dimensional
policies but can each observe a larger portion of the joint space. In essence this provides
an insight into the balance between shifting the problem complexity from the learning of

1  Here we use “agent definition” to avoid confusion with other uses of the term “factorization” in multia-
gent literature.

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 3 of 27  21

coordination (across large numbers of less capable agents), to the learning of individual
agent policies, with the centralized agent representing the limit. We also investigate the
change in learning performance when more domain information is provided to the agents.
Here, our results show that for lower-level agent definitions, the benefits of including addi-
tional state information can outweigh the introduced challenges such as increased state
dimensionality, especially as the coordination problem becomes more challenging.

This paper is an extended and revised version of our prior work [6], which was pre-
sented at the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems. The main extensions are additional robustness experiments that examine the effects
of various agent failure cases with respect to the different agent definitions. Our analysis
explores both the scope of the failure, in terms of the impact within the domain, as well as
the direct influence of the agent definition on the multiagent team’s ability to discover new
coordination strategies after failure events.

The next section provides a summary of the various multiagent taxonomies that have
been proposed in the literature and situates the concept of “agent definition” within these
categories. A general problem formulation is presented in Sect. 3. In Sect. 4 we intro-
duce the multiagent traffic management domain, which we will use to evaluate the four
agent definitions formalized in Sect. 5. The experimental setup is described in Sect. 6 with
results and analyses presented in Sect. 7. Finally in Sect. 8 we conclude with a discussion
on avenues for future investigation.

2 � Background

Several taxonomies have been offered over the past couple of decades to characterize the
scope of multiagent problems, specifically multiagent learning problems. As early as [28],
researchers in the field recognized the challenge of categorizing the myriad problems that
fall under this label, which is due to the many different axes along which multiagent sys-
tems can vary. In general, multiagent problems can be grouped according to variations in
environment and agent interaction [28], application and architecture [20], hierarchy [25],
decentralization and task coupling [22], homogeneity of the agents’ goals, actions and
domain knowledge [24], as well as by the class of learning algorithms used to solve the
problem [3].

One aspect that is often neglected is the choice of team structure for the problem. The
main reason for this is that many multiagent learning domains elicit a natural agent defini-
tion, to the extent that it becomes part of the definition of the problem rather than a design
variable. In many benchmark multiagent domains such as the rover domain [1], the bar
problem [29], and robot soccer [16], agents are often defined according to separable physi-
cal entities in the team, for example, individual robots in the rover and soccer domains, and
individual clients who visit the bar. However, this does not have to be the case. In our intro-
duction, we suggested having a single agent control all defensive robots in the soccer sce-
nario. Another option would be to have separate agents handling moving and kicking for
a single robot. Moreover, elements such as agent interaction and learning architecture (e.g.
the difference between independent learners and joint action learners [9]) can be thought of
as a direct consequence of how an agent is defined. Parunak [20] highlighted this point and
also issued a warning:

When the problem is easily conceived in terms of such naturally-occurring entities,
agents can be applied fairly easily. However, factorizations that are suggested by tra-

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 4 of 27

ditional analysis but do not correspond to naturally occurring entities (such as the
hierarchical decomposition of a factory) can lead to very inefficient agent architec-
tures.

A related problem is dealt with in the field of distributed sensing, where one can choose
between using a single centralized processing unit or multiple processing agents that col-
lectively infer knowledge about a particular process. In this research area, much of the
work concerns the design of data distribution protocols that are fault tolerant and robust
to adversarial attacks [21, 26, 27]. Thus, the focus is on how information should be shared
at runtime to improve the outcome of collective data processing. Agent definition also
impacts the information distribution across a system; however, each definition prescribes
what domain information is available to the agent at runtime. Therefore, in this work, we
consider how the available information, given the agent definition, affects the ability of
individual agents to coordinate as a team.

Recent work by Castellini et al. [4] has explored this problem from the perspective of
decomposing the joint action value function in multiagent reinforcement learning. The
authors note that for many multiagent coordination tasks, it is often the case that the deci-
sion of an agent is only influenced by a small subset of the other agents. Thus, there may
be significant computational gains by considering a more appropriate breakdown of these
high dimensional multiagent coordination problems. Specifically, the authors studied the
representational capacity of different factorizations for several one-shot games, i.e. decom-
positions of the joint value function into additive local components that each only involve
a subset of the agents. They demonstrated that for many problems, relatively accurate rep-
resentations can be achieved with simple factorizations, but also showed the limitations
of this method when dealing with problems that demand tight coordination between the
agents.

In this work, we directly study the impact of the individual agent definition on the abil-
ity of the team to learn coordinated strategies in the joint state-action space. We consider
teams of concurrently learning agents where we can independently vary two aspects of
the team structure, i.e. the number of team members and the information available to each
team member. As summarized by [19], the challenges of concurrent learning fall under two
main categories: structural credit assignment and the dynamics of learning. Both of these
areas have enjoyed serious attention from the agents community, notably the introduction
of individualized reward shaping [1, 11] to address the former, and teammate modeling
[23] or turn-taking [5] to tackle the latter. The overall consensus is that without careful
team management, both of these challenges become prohibitive with increased team size
and problem dimensionality. Thus, agent definition can play a key role in modulating the
complexity of the learning problem.

3 � Problem formulation

Multiagent learning for coordination with a team of concurrent learners breaks down
a global team problem into a set of parallel learning tasks that are coupled accord-
ing to the global team performance. The global team problem can be defined by
the tuple ⟨S,A,P,R⟩ , where S is the set of global states, A is the set of joint actions,
Pa
s,s�

= Pr
(
St+1 = s�|St = s,At = a

)
 are the transition probabilities of the system, and

Ra
s
= �[R(s, a)] are the expected rewards. The goal of the team is to collectively exe-

cute actions that maximize the expected return, which is often computed as the sum

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 5 of 27  21

of discounted future global rewards. However, each agent i only has access to a locally
observable state Si and its own set of actions Ai , which are reduced components of the
global state and joint action, respectively. Specifically, for a team of N agents,

Note that there is no strict requirement for the same relationship to exist between the
individual agent states and the global state. For example, multiple agents may be able to
observe the same component of the global state, or the global state may simply not be
jointly observable, i.e. the problem is a Dec-POMDP [2]. The individual agent state can be
written as,

where St is the global state at time t and O is, in general, a non-invertible observation
function.

In this work, we explore the effects of varying the state and action definitions of each
agent while maintaining the same underlying global team problem. In terms of varying
the agent actions, this means that any decomposition of the agent action sets

{
Ai

}
 must

obey (1). While several valid decompositions may exist for any given problem, a conse-
quence of needing to satisfy (1) is that the larger the dimensionality of each agent’s action
space, the fewer the number of agents needed to cover the full action space of the global
problem. Furthermore, heterogeneous agent definitions can allow team members to have
differing degrees of influence over the system. For example, given two agents, i and j, if
|Ai| ≫ |Aj| then in many cases agent i will have greater influence over the team outcome
simply because it can act on a greater portion of the joint action space.

Compared to defining valid agent action spaces, greater flexibility is awarded to the defi-
nition of the agent state spaces since the only requirement is that one must be able to derive
an individual agent’s state from the global state. The global state itself is not dependent
on the individual agent state representations. Thus, changes to the definition of

{
Si

}
 only

impact the dimensionality of each agent’s state space and how difficult it is for the team to
solve the underlying problem. The former affects the complexity of the individual agent’s
learning problem [17], while the latter relates to the joint observability of the team as well
as the distributed nature of the team information [2]. In the following section, we describe
the target domain of our study, after which we formulate several agent state-action defini-
tions that can be applied to this domain in Sect. 5.

4 � Traffic management domain

4.1 � Domain description

In this work, we study the effect of agent definition in the warehouse traffic management
domain introduced in [7, 12]. See Fig. 1 for an illustration of the domain setup. In this
domain, M autonomous ground vehicles (AGVs) deliver packages between various loca-
tions in a warehouse. The routes in the warehouse are represented as a high level traffic
graph, G = (V, E) , where each edge e ∈ E defines a single direction of travel between two
vertices of the graph, i.e. e = (u, v) is the edge from vertex u to vertex v, where u, v ∈ V .
AGVs compute their paths across this graph according to some cost-based planner such as

(1)A ∶= A1 ×⋯ ×AN .

(2)St
i
= O

(
St
)
,

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 6 of 27

A*. The costs associated with traversing each edge are defined as the sum of a fixed and
known cost of travel, ctravel

e
 , and an additional time-varying cost cadd

e
(t) assigned by the traf-

fic management agents (described in the following subsection),

AGVs in the system have access to the instantaneous graph costs calculated using
Eq. (3), and are able to replan their paths according to the latest costs at any edge transi-
tion. However, once they begin traversing an edge, they are committed to continuing along
that edge until they reach their next transition. Balking is not permitted in this domain,
that is, an AGV cannot spontaneously abandon its current edge and switch to the reverse
edge when only part way across. However, an AGV can decide to transition to the reverse
edge once it reaches the end of its current edge. This behavior mimics existing warehouse
management strategies that enforce lanes of motion and do not allow turning around except
at intersections [12]. To capture balking behavior in the current setup, one could include
additional transitions at every step between corresponding edges in the current graph to
enable an AGV to “turn around” at any point [8]. In the following experiments, all AGVs
greedily plan to minimize their traversal costs directly according to the costs at the time of
planning.

The domain defines an AGV capacity for each directed edge in the graph cape , which
imposes a constraint on the motion of the AGVs. The capacity of an edge roughly trans-
lates to its available bandwidth and can be determined based on the properties of the under-
lying physical space represented by that edge (e.g. the size of the free space). During an
episode, the number of AGVs on an edge, ne(t) , cannot exceed the capacity of that edge.
This means that an AGV planning to transition to an edge which is at capacity must wait on
its current edge until there is space. While waiting, it continues to count towards the capac-
ity of its current edge. Thus, without proper management, bottlenecks in the traffic graph
can result in cascading congestion throughout the network.

(3)ce(t) = ctravel
e

+ cadd
e

(t).

Fig. 1   The environment is described by a traffic graph where each directed edge must obey strict capacity
constraints. AGVs cannot enter edges that are already at capacity. Those waiting to transition between edges
continue to occupy space on their current edge. The goal of the traffic management domain is to find the set
of additional cost functions cadd

e
(t) that result in the maximal number of successful deliveries

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 7 of 27  21

In the original domain, the delivery robots are randomly spawned throughout an epi-
sode and are removed from the system once they complete their assigned delivery. Here,
we make a slight modification such that all AGVs are initialized at the start of an episode;
however, once a delivery is complete, the AGV is not removed, instead it is immediately
assigned a new delivery mission which begins at its current location. At this point, if the
AGV must wait to enter the first edge on its new path, it does not count towards the capac-
ity of any edge but is considered to be in a “holding zone” until it begins traversal. Thus,
the number of AGVs in the system remains constant throughout the episode. This brings
the domain closer to the actual dynamics of an automated warehouse [12, 13] and also
allows for a more controlled comparison across simulation runs.

4.2 � Multiagent traffic management

The task of the traffic management system is to discover the appropriate additional costs,
cadd
e

(t) , to apply to each edge in the traffic graph to incentivize the AGVs to avoid con-
gested areas but still reach their destinations in a timely manner. Given a specific sequence
of deliveries, an optimal solution to this problem exists; however, the problem quickly
becomes intractable for even moderate graph sizes and AGV numbers. The challenge
of problem dimensionality also remains if we attempt to jointly learn the costing strate-
gies for all edges. This motivates the use of a multiagent learning framework in which we
assign individual agents to manage the traffic in local regions of the graph. The problem
dimensionality for each agent is therefore much lower compared to the joint learning case.
However, the problem complexity now shifts to learning coordinated policies across all
the agents in the team such that collectively they maximize the global objective. The inter-
action between the multiagent traffic management team and the AGV traffic is shown in
Fig. 2.

Given N agents in a traffic management team, the goal is to concurrently learn the local
costing strategies that result in the joint policy �∗ =

{
�i

}
∀i ∈ {0,… ,N − 1} , which glob-

ally produces the highest number of successful deliveries. Agents are defined based on their
scope, that is, the component of the global state that they can observe, and the subset of the

Traffic Management
Agents

AGVs

Define cost of travel across each directed
edge according to current traffic density

Plans across agent cost graph
High level planner

Low level planner Plans across obstacle map according to
high level graph traversal plan

Fig. 2   Hierarchical traffic management formulation, noting the separation between the multiagent traffic
management system and the AGVs. The travel space is first decomposed into a high level graph represent-
ing the connectivity of different regions in the map. The multiagent system defines the cost of travel across
this traffic graph, and the AGVs use these costs to determine their sequence of edge traversals. A lower
level planner is then assumed to handle the local collision avoidance procedures through the obstacle map.
Figure from [7]

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 8 of 27

joint actions that they can control. In the traffic management domain, this can be represented
as the set of edges that an agent manages, as well as the resolution of the information available
to each agent regarding the traffic on those edges. For example, an agent may only know the
number of AGVs on each edge, or it may also know the exact progress of each AGV along
the edge. In general, given the state of each edge to be �e(t) , then the state for agent i can be
defined as,

where Ei is the set of edges managed by agent i. Thus, the output actions of agent i are,

and the objective of the multiagent team is,

5 � Agent definitions

The traffic management problem provides a domain in which we can investigate the effects
of using different multiagent team definitions. The graph structure provides a straightforward
decomposition of the joint space whereby subsets of E are assigned to individual agents to
manage. Moreover, practical considerations such as the physical locality of an agent (how far
it can sense and communicate) can be naturally incorporated into how the subsets are defined.

In this section, we describe four variants in agent definition which explore two separate
axes in multiagent learning. The first axis varies the number of agents in the team while keep-
ing the total information of the system constant. This explores the trade-off between distribut-
ing the learning complexity at the agent level (higher dimensional state) versus at the team
level (more agents concurrently learning to coordinate). The second axis considers the effect
of state resolution to the learning performance in terms of transience and convergence. Intui-
tively, higher resolutions can discriminate between more system states and provide finer con-
trol. However, this comes at the cost of a higher state dimensionality, which can prohibit learn-
ing since the space of possible state-actions becomes too large to explore effectively.

5.1 � Link agents

The first variant we describe is the agent definition presented in [7]. Here, each link agent is
assigned to a single directed edge, thus the team consists of N = |E| agents. The link agent
state is simply defined as the total number of AGVs currently traversing the edge, while the
link agent output is the additional cost of travel for that edge. That is,

(4)�i(t) =
[
�e(t)

]
, ∀e ∈ Ei,

(5)�i(t) = �i

(
�i(t)

)
=
[
cadd
e

(t)
]
, ∀e ∈ Ei,

(6)max
�

G(�) = total deliveries,

(7)s.t. ne(t) ≤ cape ∀t, e ∈ E.

(8)slink
i

(t) = nei (t),

(9)alink
i

(t) = cadd
ei

(t),

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 9 of 27  21

where ei is the edge assigned to link agent i.
Link agents represent the simplest agent definition available to the traffic management

domain, since they reduce each agent to a single-input single-output policy. From an indi-
vidual agent’s perspective, this is a straightforward one dimensional learning problem.
However, from the team perspective, this represents a very challenging multiagent learning
setup. In this case, the structural credit assignment problem is at its most severe [1]; each
agent only receives the global team performance as a learning signal, yet its individual
contribution to that reward becomes more ambiguous the larger the team size. In addition,
the contribution of agent noise is also exacerbated as the number of agents in the team
increases [5].

5.2 � Intersection agents

The second variant in agent definition that we investigate decomposes the underlying traf-
fic graph according to vertices rather than edges. Specifically, each intersection agent is
assigned to manage AGV traffic on the set of incoming edges of a particular vertex. Thus,
the team consists of N = |V| intersection agents, whose states and actions are,

where Ei is the set of incoming edges assigned to intersection agent i. Note that the state-
action space for each intersection agent in the team can be heterogeneous in this formula-
tion since each agent’s dimensionality is defined by the number of incoming edges they
manage. That is, the dimensionality of intersection agent i is ||Ei||.

Compared to link agents, we generally expect an intersection formulation of a ware-
house graph to have fewer agents in the team since for most graphs |V| < |E| . Thus, the
challenges of structural credit assignment and agent noise are reduced when compared to
the link agent formulation. However, this comes at the cost of a higher dimensional learn-
ing problem for each of the individual agents.

5.3 � Incorporating travel time

The final two variants we consider in this study are focused on the effect of state resolution
to the multiagent learning problem. As explained in Sect. 3, both the state space definitions
and the action space definitions can impact the final team performance. In the link agent
and intersection agent formulations described in Sects. 5.1 and 5.2, the state information
only consists of the current number of AGVs on the edges. Now we investigate the effect of
including additional AGV tracking information.

For each edge, we track de(t) , the amount of time remaining until the next AGV com-
pletes its traversal and will attempt to transition to a new edge or complete its delivery.
This value can range from the total time required to traverse an edge (if there are currently
no AGVs present) to zero, which represents the case where an AGV has completed its
traversal and will transition to a new edge at the next timestep provided it does not violate
Eq. (7). This travel time information is incorporated as an additional element in the state
vector for each edge. Thus, the travel-time-augmented link agent state becomes,

(10)�
int.
i
(t) = [ne(t)], ∀e ∈ Ei,

(11)�
int.
i
(t) = [cadd

e
(t)], ∀e ∈ Ei,

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 10 of 27

Similarly, the augmented intersection agent state is defined as,

Note that the action space for each agent definition remains the same as in Eqs. (9) and
(11), respectively.

Augmenting the state with de provides a coarse indicator of when the ne component
of the state is about to change. Moreover, it brings the joint state space of the multiagent
team closer to full observability of the underlying domain. More information could be pro-
vided by individual tracking data on each AGV; however, including such information can
be challenging and raises further questions about the design of the agent state definition.
For example, de only accounts for the progress of the next AGV that will transition off an
edge. Instead, one could consider appending the progress of the m-next AGVs to transi-
tion to the agent state. This additional tracking information necessarily increases the state
dimensionality of the learning agent, yet the fundamental question remains of whether or
not this information ultimately helps or hinders the learning of coordinated policies. Fur-
ther complications arise if attempting to capture the progress of all AGVs since the number
of AGVs on each edge will change over time. Thus, if an agent were to directly include the
progress of each AGV within its region of control as additional elements in its state input,
this would require agent policies that can handle variable-sized input states. While possible
through mechanisms such as recurrent or recursive neural networks, we leave this area of
investigation to future work.

6 � Experimental setup

In the following experiments we use the setup described in [7] and represent the control
policy of each agent as a single hidden layer, fully connected neural network.2 For the link
agents (with and without travel time information), we use 16 neurons in the hidden layer,
while for the intersection agents we set the number of hidden neurons to four times the
number of output neurons. For example, an intersection agent managing AGV traffic on 3
edges will have 12 hidden neurons, its output action dimensionality will be 3, and its input
state dimensionality will be 6. Without including travel time information, the intersection
agent will only have a state input size of 3. This scaling was chosen as it allows us to main-
tain comparability between the representational complexity of each of the agent definitions
(see the final column of Table 1).

It is worth noting that although we maintain a similar number of total weights in the
team, the intersection agent policies must model the correlations between traffic over mul-
tiple incoming edges. On the other hand, link agents only observe traffic on a single edge,
making an implicit assumption that traffic on different edges are conditionally independ-
ent given the global team performance. Thus, intersection agents are tasked with capturing
more domain information despite having a similar number of parameters with which to
store the encoding. This highlights an important trade-off between having agents with a

(12)�
link,time

i
(t) =

[
nei(t), dei(t)

]
.

(13)�
int.,time

i
(t) = [ne(t), de(t)], ∀e ∈ Ei.

2  We use a logistic activation function at each layer and the final network output is scaled by the base tra-
versal time of the longest edge in the graph.

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 11 of 27  21

more local or a more global view of the multiagent learning task. In this work, we control
for the total representational capacity of the whole team; however, future studies may be
conducted to investigate other methods for achieving congruence between an agent’s scope
in the domain and its policy architecture.

To train the weights of the agent policies, we employ cooperative coevolution [14] using
the global team performance from Eq. (6) as the fitness evaluation for all policies in the
currently tested team. The following subsection provides a brief outline of the cooperative
coevolutionary algorithm (CCEA). Note, however, that there is no requirement for using
CCEAs to learn coordinated multiagent policies in this domain. Any distributed multiagent
learning algorithm, such as multiagent reinforcement learning [19], could be applied in
conjunction with any valid control policy representation, provided that the learning algo-
rithm can be trained using coarse reward signals.

6.1 � Cooperative Coevolution for Multiagent Learning

Algorithm 1 provides the pseudo-code for our implementation of CCEA. CCEAs evolve
multiple populations in parallel; in our case, each agent maintains a population of K = 10
neural networks which represents its pool of potential control policies. At the start of evo-
lution, each control policy in the population produces a mutated successor, resulting in a
total population of 2K neural networks (lines 2–4).

At each generation, a multiagent team is formed by selecting, without replacement, one
control policy from each agent’s population (lines 7–8). This team is then evaluated by

Table 1   Comparison of agent
definitions

Team structure # Agents State dim. Action dim. Total #
weights in
team

Link 38 1 1 1254
Link, time 38 2 1 1862
Intersection 11 {2, 3, 4} {2, 3, 4} 1126
Intersection, time 11 {4, 6, 8} {2, 3, 4} 1670
Centralized 1 38 38 1254
Centralized, time 1 76 38 1862

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 12 of 27

simulating their performance in the domain (line 9). For our experiments, each episode
involves spawning AGVs in the environment that then plan and execute paths based on the
output traversal costs from the multiagent traffic management team that is currently being
tested. More details on the traffic simulation are provided in the following subsection. At
the end of the episode, the performance of the entire team, computed according to Eq. (6),
is assigned as the fitness of each of the control policies that made up the team (line 10).
Once all 2K teams are evaluated, each agent then applies the selection step by retaining the
K control policies with the best fitness (line 12). In our case, these are the control policies
that resulted in the highest number of completed deliveries, G. These K control policies
then undergo mutation and the process repeats (lines 13–14). For our work, we applied a
mutation rate of 10%, that is, at every generation (epoch), each network weight had a 10%
probability of undergoing mutation, with added mutation noise drawn from N(0, 1).

6.2 � Warehouse Traffic Graph

We ran our experiments on the simple traffic graph shown in Fig. 3. We tested four
instances of the domain that vary the number of AGVs present in the warehouse. Each
learning episode contained {90, 120, 200, 400} AGVs with half starting at vertex 0 and the
other half initialized at vertex 1. Note that the maximum capacity of the traffic graph is 272
AGVs (all edges full). All delivery missions originating at vertex 0 have a goal vertex 1
and vice versa, thus forcing the AGVs to continually move between the two vertices. The
layout of the traffic graph is designed such that if all AGVs undertake their A* path com-
puted on the basic traversal costs ctravel , then the system will be severely congested along
edges (0, 1) and (1, 0) . The goal of the multiagent team is to learn the optimal costing strat-
egy that incentivizes detours via vertices 2–10 to enable the highest number of successful
deliveries.

We compared the four agent definitions described in Sect. 5 against a centralized traffic
management solution where a single agent is tasked to apply costs on all edges of the traf-
fic graph. To maintain comparability, we set the total number of network weights for the
centralized agent to be equal to that of the link agent team. Thus, the centralized agent also
uses a neural network policy with 16 hidden neurons. Table 1 lists the relevant parameters
of the six tested agent team structures for the basic traffic graph, which are evaluated in the
following section. Some additional experimental results are provided in “Appendix” that
compare the performance of the centralized agent with 16 hidden neurons to its perfor-
mance when provided with the same relative number of hidden neurons as the intersection
agents, i.e. four times the number of edges.

6.3 � Agent failure

In addition, we also explore the effect of agent failure for each of the multiagent team struc-
tures. Specifically we test two failure sets, the first centered around vertex 6 and the second
around vertex 2. Failure is manifested when an agent i no longer applies its learned policy
costs, but rather strictly emits the maximum cost, that is,

(14)cadd
ei

= max
e∈E

ctravel
e

∀ei ∈ Ei,

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 13 of 27  21

which for our traffic graph in Fig. 3 results in cadd
ei

= 28,∀ei ∈ Ei . This particular failure
scenario is especially severe, since the optimal coordination strategy requires the team to
redirect traffic from the main arteries (the direct edges between vertices 0 and 1) through
vertices 2 and 6, which means setting the costs for traversing those associated edges to a
low value. By assigning fixed high costs, agent failure prevents the use of these edges and
forces the discovery of traffic routing strategies through parts of the graph that are initially
costlier due to their greater distances.

For each agent definition, we investigated the effect of having a single agent in the team
fail. Given the difference in domain influence between a single link agent and a single
intersection agent, it is expected that having a single agent fail in either case will result
in varying degrees of severity on the team performance. Thus, we also compared the case
where all the incoming link agents associated with a vertex fail together, which simulates
the same scope of domain failure as the single intersection agent failure case. We expect
that a single failed intersection agent will cause a greater initial impact on team perfor-
mance than a single failed link agent but will be comparable to the case where the set of
link agents associated with the same vertex fail. Furthermore, we are particularly interested
in studying the recovery behavior for each of the agent definitions. Agents in each team
must undergo policy adaptation after the failure event and the transience of this learning
process provides some insight into the relationship between the agent definition and the
speed and extent to which the team can recover. Table 2 outlines the two sets of experi-
ments that we conducted for this study, the agent indices are labeled on the traffic graph in
Fig. 3.

Fig. 3   The basic traffic graph. AGVs are initialized at 0 and 1, traveling to the opposite vertex, i.e. vertex
1 or vertex 0, respectively. Edges (0, 1) , and (1, 0) have the highest capacity and represent the shortest path.
The goal of the multiagent traffic management team is to incentivize AGVs to take detours to alleviate
congestion. The inset shows the link agent indices associated with the incoming edges to vertices 2 and 6.
Original underlying figure from [7]

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 14 of 27

7 � Results and analysis

7.1 � Multiagent team performance with increasing congestion

Each of the agent definitions were tested over 30 statistical runs across which the neu-
ral network weight initializations were randomized. Each statistical run consisted of
500 epochs (generations), and at each epoch each team was evaluated in an episode 200
timesteps in length. In our experiments we use an initial population size of K = 10 , which
is doubled during the CCEA mutation process (see Algorithm 1). This means that for each
agent definition, a single epoch requires 20 domain simulations to test each of the ran-
domly sampled population members. The multiagent team performance for each epoch is
then recorded as the highest evaluation achieved over the 20 domain simulations.

Figure 4 shows the progression of team performance across the learning epochs in each
of the four domain variants. The plotted values are averaged over the 30 statistical runs
with 1� standard deviations shown by the shaded regions. Figure 5 plots the overall best
team performance over the 30 statistical runs and provides an indication of the highest
achievable performance throughout the learning procedure.

The first and possibly most noticeable result is that centralized learning (without the
inclusion of time information) performs quite well in the mean for lower AGV numbers
(90–200 AGVs). It experiences the fastest learning transience and also exhibits a much
smaller standard deviation over the mean performance compared to the decentralized,
multiagent learning performance. However, the limitations of centralized learning can be
seen most clearly in the comparison between Fig. 4c, d (and similarly in Fig. 5). When
the underlying problem domain increases in complexity (in our case, higher numbers of
AGVs in the warehouse), the performance of the centralized learners saturates while the
decentralized learners are able to continue improving. In fact, at 400 AGVs, the best team
performance of either of the centralized learners (with and without AGV time) is lower
than for the 200 AGV case at {658, 743} deliveries compared to {658, 788} , respectively.
The maximum number of deliveries for each agent definition at the end of 500 episodes is
shown in Table 3.

The inclusion of AGV travel time into the agent state produces a range of effects
depending on the original agent definition. The centralized learner experiences a sig-
nificant decrease in the mean and maximum learning performance when AGV time is
included, while the standard deviation remains roughly around the same order of mag-
nitude. Compare this to the difference between the link and link t agent definitions. Here
we see the opposite relationship whereby the inclusion of AGV travel time produces a
substantial improvement in the link t agent team performance across all warehouse AGV

Table 2   Index of agent(s) that
fail for each tested set

Team structure Set 6 Set 2

Link 15 1
Link, time 15 1
Link {15, 21, 28, 33} {1, 5, 13, 20}

Link, time {15, 21, 28, 33} {1, 5, 13, 20}

Intersection 6 2
Intersection, time 6 2

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 15 of 27  21

numbers. In the case of the intersection agent definition, the benefits of including time are
less pronounced. A slight trend in improved mean learning performance can be observed
as warehouse AGV numbers are increased; however, there is very little difference between
the maximum team performances for either intersection agent definition. This suggests that
more “local” definitions, i.e. agent state-action spaces that observe a smaller portion of the
global state-action space, derive a much greater benefit from expanding their state informa-
tion and that these benefits can outweigh the challenges they introduce due to increased
problem dimensionality. In contrast, including time into the “global” centralized agent state
only serves to make the learning problem more difficult without providing any apparent
benefits to the overall performance.

Figure 5 shows the maximum achieved performance of any team at each learning epoch.
The only case in which a centralized agent performed better than a distributed agent was
in the simplest problem domain with only 90 AGVs present in the warehouse. For all other
cases, the four distributed agent definitions were able to find better joint policies than the
centralized learners, with the gap in improvement widening as the problem complexity
rises (i.e. more AGVs to route in the warehouse). However, Fig. 5 shows that distributed

Fig. 4   Average team performance across training epochs. Mean and one standard deviation (from 30 sta-
tistical runs) are shown for each set of experiments with increasing numbers of AGVs from (a)–(d). Best
viewed in color (Color figure online)

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 16 of 27

learning also displays a high degree of inter-epoch performance variability, and this vari-
ability persists for more learning epochs as the problem complexity increases. For exam-
ple, in the 90 and 120 AGV problems, the maximum learning performance converges after
approximately 100–200 epochs; however, for 200 or 400 AGVs its takes well over 300
epochs. This is partially a result of agent noise [5] and is exacerbated by the team rand-
omization which occurs at each epoch. As expected, both of these problems increase in
severity the more agents there are in the team. In contrast, the centralized learners exhibit

(a) 90 AGVs (b) 120 AGVs

(c) 200 AGVs (d) 400 AGVs

Fig. 5   Best team performance across training epochs. Best viewed in color (Color figure online)

Table 3   Maximum deliveries
after 500 learning epochs

Values in bold highlight the best performance for the different AGV
numbers

Team 90 AGVs 120 AGVs 200 AGVs 400 AGVs

Link 539 675 703 864
Link, time 554 686 843 904
Intersection 545 668 844 834
Intersection, time 544 662 837 844
Centralized 545 659 788 743
Centralized, time 527 605 666 658

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 17 of 27  21

monotonically increasing performance since evolution will always maintain the best policy
from the previous round.

The final result we present focuses on the spread of the team performances at the end of
500 training epochs. The violin plots in Fig. 6 show the distributions over the 30 statisti-
cal runs for each of the agent definitions. The four link and intersection result distribu-
tions have a much wider spread and are more heavily skewed compared to the central-
ized learners. Both centralized learners achieved relatively normal distributions with strong
agreement between the means and medians, whereas greater disparity can be seen in the
corresponding values for the distributed learners. This is another demonstration of the vari-
ability in performance that results from agent noise and randomization in the teams during
cooperative coevolution. However, for all six agent definitions, the spread in final team
performance increased as the underlying problem complexity increased, i.e. more AGVs
present in the warehouse.

The shape of the final distributions also highlights an interesting relationship between
the performances of the two link agent definitions. Both sets of distributions exhibit peaks
around the same values, see Fig. 6a–c. However, for the link t agents, the median perfor-
mance tends towards the higher valued peaks, whereas the opposite case occurs for the
basic link agents. Indeed, each of the peaks in the distributions correspond to local maxima
in the joint state-action space. Our results support the notion that the more “local” the agent
definition, the more susceptible the team is to getting stuck in local maxima. The AGV
travel time information provided sufficient additional domain scope to the link agents to
substantially improve their performance, and this improvement is consistent across increas-
ing domain complexity. In contrast, the intersection agent states could already access a
wider portion of the joint space, thus the benefits drawn from having additional time infor-
mation tended to be balanced out by the doubling in state dimensionality.

7.2 � Multiagent team performance with agent failure

We investigated the effect of agent failure on team learning performance for the
case of 120 AGVs. At this level of congestion, we observed from the previous set of
experiments that both vertex 2 and vertex 6 experienced AGV traffic as a result of the
final learned policies of the link and intersection agents. However, it is still possible
to reroute traffic if a subset of edges associated with either of these vertices becomes
blocked (too costly to traverse). The aim of these experiments was to analyze the recov-
ery performance of the team after failure occurs. The following results are collated over
100 statistical runs with failure occurring at epoch 200.

Figure 7 shows the team learning performance for failure set 6. Agent failure at epoch
200 causes all teams to experience a drop in performance, albeit to varying degrees. The
failure of link agent 15 causes the weakest drop in team performance, suggesting that
up to epoch 200 the agents had not discovered a joint policy that relied heavily on link
agent 15’s actions. Notably, when the set of link agents {15, 21, 28, 33} fail, there is a
more pronounced drop and the team is unable to recover to its pre-failure performance
within the next 300 learning epochs.

When looking at the mean performance in Fig. 7a, the failure of the link t agent set
causes the greatest impact, while the drop in performance of both intersection agent def-
initions is of a similar magnitude. Both intersection agent definitions are able to recover
much faster in the mean compared to the link t agents. However, when analyzing the best

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 18 of 27

team performance over learning epochs (Fig. 7b) we see that intersection and intersec-
tion t agents lag behind the link t agents both before and after failure occurs.

Figure 8 shows the team learning performance for failure set 2. The impact of agent
failure is far more pronounced in these plots than for failure set 6. This is because vertex
2 and its associated incoming edges play a more significant role in catering for AGV
traffic between vertices 0 and 1. AGV traffic that cannot make it on the direct edge
between the start and goal vertices immediately overflow to paths that pass through ver-
tex 2. This is in contrast to vertex 6 which acts as a tertiary route point in the system
along with vertices 3 and 5.

In Fig. 8a, b, the mean and maximum team performance drops back to the initial value
immediately after edges {1, 5, 13, 20} become disabled (intersection/intersection t agent
failure and link/link t agent set failure). Furthermore, in all cases, teams are unable to
recover to their prior performance levels within the subsequent 300 learning epochs. Note

Fig. 6   Violin plots of the team performance distributions at the end of 500 training epochs. The ‘ + ’ symbol
represents the mean and the ‘ × ’ represents the median. All four multiagent team structures produce much
wider distributions. Significant skew is observed at lower AGV numbers, whereas at higher AGV numbers
the distributions become more symmetrical

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 19 of 27  21

that for this failure set, the teams will be unable to reach their pre-failure optimal levels of
coordination since any rerouting around edge 1 or vertex 2 (assuming that the direct edges
between vertices 0 and 1 are at capacity) will result in a longer path for the AGVs and so
fewer deliveries can be achieved in the same time period. Thus, Fig. 8b shows that even for
the case where only link agent 1 fails, the best team performance cannot fully recover for
either the link or link t agent teams.

For the failure cases that involve all incoming edges to vertex 2, the recovery perfor-
mance is relatively similar between the link t and both intersection agent definitions. In fact,
Fig. 8a shows that on average, these three multiagent team formulations are able to reach
or even surpass the performance of the link agent teams where only a single agent (agent
1) has failed. However, analysis of Fig. 8b suggests that the scale of the failure across the
domain (the number of edges that become blocked in the graph) is still the main factor that
limits the maximal recovery behavior.

(a) Average team performance (b) Best team performance

Fig. 7   Multiagent team performance when agent failure occurs at epoch 200. In this set of experiments we
focus on failure at vertex 6. See Table 2 and Fig. 3 for details on the set of failed agents. Best viewed in
color (Color figure online)

(a) Average team performance (b) Best team performance

Fig. 8   Multiagent team performance when agent failure occurs at vertex 2 in epoch 200. Compared to
Fig. 7, all teams experience a much more significant drop in performance when failure first occurs. Best
viewed in color (Color figure online)

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 20 of 27

As a final comparison, we plot the final team performance distributions in Fig. 9 for
the two failure sets. This result highlights the robustness of different agent definitions
to different failures across the domain. The plots show three main local maxima for
each failure case, each enabling approximately {250, 480, 620} AGV deliveries. When
compared to Fig. 6b, the main effect of agent failure is to push the mean and median of
the team performances toward a lower local maximum. When the failure is less severe,
as in the case of failure set 6, intersection agents are able to recover policies that pro-
duce coordination solutions close to the higher local maximum, enabling more deliver-
ies. In contrast, link agent teams, with or without time information, are often unable
to discover these coordination strategies after failure events. In the case of severe fail-
ure, i.e. failure set 2, recovery becomes far more challenging for all agent definitions,
with many more teams unable to discover solutions that allow more than 300 deliver-
ies. Nevertheless, comparing the upper regions of the distribution plots shows that,
regardless of the failure severity, intersection agents are more capable of discovering
effective recovery behaviors compared to link agents. This suggests that teams made
up of agents with access to a greater scope of the full domain may be more robust to
individual agent failures. Conversely, multiagent systems that exhibit high possibili-
ties for such failure events may benefit from incorporating such agent definition design
concepts.

8 � Discussion

When formulating a problem as a multiagent coordination task, the individual agent defini-
tions can result in substantial differences in the learned team performance. Therefore, in
multiagent domains that do not present a natural agent definition, it is important to consider

Fig. 9   Comparison of final team performance distributions between different agent definitions and across
different failure cases. The distributions show that in general intersection agents are better able to adapt in
cases of non-critical agent failure (vertex 6 as opposed to vertex 2) with a substantially higher mean and
median in Fig. 9a compared to all other agent definitions. However, for both failure cases, link agents with
travel time information were still able to find the best coordinated policy despite performing worse in the
mean

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 21 of 27  21

these implications when adjusting agent complexity and team coordination complexity.
Our study provides some insight into these trade-offs, demonstrating that very “local” defi-
nitions are more susceptible to local optima, which can be overcome by providing more
state information, despite the overhead of increased state dimensionality. On the other end
of the spectrum we show that including the same additional information can hinder learn-
ing when a sufficiently “global” view of the problem is already available to the agents. In
the latter case, the increased problem dimensionality outweighs the potential benefits of
incorporating more information from the joint state.

Our comparison of centralized, intersection and link agent definitions also showed
that for simple domains, it may sometimes be preferable to use a centralized learner.
The combined benefits of avoiding issues related to agent noise and structural credit
assignment reduces the overall variability in learning performance and can provide
faster initial learning transience. However, as problem complexity increases, the per-
formance of centralized learning tends to lag whereas distributed learners are able to
continue improving the team performance. Our results suggest that substantially longer
training times will be necessary for a centralized learner to achieve comparable perfor-
mance (see also the supplementary results in “Appendix”). The turning point of this
trade-off is extremely challenging to pin down. Indeed it remains an open question as
to how we can formalize this trade-off for any particular agent definition and any par-
ticular problem domain.

Our study into the impact of agent failure also highlighted the differences in recov-
ery response between the various agent definitions. Notably, mean learning perfor-
mance over multiple statistical runs was often not indicative of the best team perfor-
mance, with link t agents often able to find the best joint policy overall despite lagging
behind intersection agents in their mean performance. In particular, the distribution
over the final team performances also indicated that intersection agents were able to,
more frequently, discover team coordination strategies that resulted in high global
rewards. Nevertheless, a multiagent team made up of link t agents was able to recover
the best overall joint policy after failure in all of the tested cases.

8.1 � Notes for practitioners

As explained in the introduction, the warehouse traffic management domain is ideally
suited to studying the effect of agent definition on multiagent learning for coordination
since the team formulation is decoupled from the complexity of the underlying problem. In
general, we expect our findings to be applicable to other multiagent coordination domains
which have similar characteristics. That is, where the agents participate in the domain not
as the physical actors in the space, but by controlling the behavior of the physically inter-
acting elements. For example, through a hierarchical command structure such as packet
routing in a communication network [30] or as designers of individual sub-components of
a mechanism [15]. How the learning trends described in this paper extend more broadly to
other classes of multiagent domains is a highly relevant question for further research.

Of course, one must always consider any higher level domain constraints when deciding
how an agent can be defined in any particular multiagent domain. For example, to apply
a multiagent team in a physical system, the main constraints on the agent definitions will
come directly from the system implementation. These include the availability of sensor
data, accessibility to control actuation and whether all or any of these data can be com-
municated across the multiagent system. Returning to the robot soccer example, if the

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 22 of 27

individual robots cannot communicate with each other or to a base station, then it is impos-
sible to have an agent that controls all of the defensive robots in the team.

8.2 � Future work

This study is intended as a starting point for further, more formal investigations into the
effect of agent definition. As stated at the start, and demonstrated in our results, the defini-
tion of an agent in the context of its domain has a significant effect on team performance
when learning to coordinate. So far we have tested a handful of possible agent defini-
tions on a single multiagent domain under different degrees of problem complexity. There
remain a number of axes of variation that are yet to be explored. For example, we have not
addressed the case where agents in the team have different definitions (i.e. a mix of link
and intersection agents). However, the intersection agent definition in this work is an exam-
ple where team members have different state-action spaces, and consequently have differ-
ent levels of impact on the joint state-action space. Intersection agents that connect more
edges of the graph have greater access to, and impact on, a larger portion of the joint space.
Besides agent heterogeneity, other variations such as the presence of hierarchical structures
within the multiagent team can provide greater insight into the overall impact of agent defi-
nition on multiagent learning for coordination.

Finally, it is worth noting that in this work we used a relatively simple evolutionary
algorithm to optimize for the agent policies. While this was shown to be an adequate train-
ing routine for the domain at hand, extending to more complex multiagent coordination
problems may require more powerful learning tools. At the same time, using a more pow-
erful learning method may also ameliorate (or exacerbate) some of the learning and coor-
dination challenges highlighted above. Thus, it is certainly worth investigating the degree
to which this interaction between training routine and agent definition impacts the overall
performance.

Code for the warehouse domain is available open source at https​://githu​b.com/JenJe​
nChun​g/multi​agent​_learn​ing.

Acknowledgements  This paper is an extension of our AAMAS paper [6]. We provide additional experi-
ments analyzing the differences in team performance after agent failure and also expand our discussion with
notes for practitioners. This work was partially supported by the EU H2020 project CROWDBOT under
Grant Nr. 779942 and by the National Science Foundation under Grant No. IIS-1815886.

Appendix: Additional experiments on the centralized agent network
architecture

We conducted additional experiments to assess the performance of the centralized learner
when a more complex network architecture was available. In these experiments, the cen-
tralized agent uses the same relative number of hidden neurons as the intersection agents,
i.e. four times the number of edges, which for 38 edges gives 152 hidden neurons. Thus, the
centralizedrel agent has 11,590 weights defining its control policy while the centralizedt,rel
agent with time information has 17,366 weights. This is over nine times more param-
eters than the originally tested centralized and centralized t agent policies (see Table 1).
Results are shown in Figs. 10, 11 and 12 below where the original centralized policies are
in green and cyan (no time information and with time information, respectively), while the

https://github.com/JenJenChung/multiagent_learning
https://github.com/JenJenChung/multiagent_learning

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 23 of 27  21

performance of the larger neural network policies are shown in dark grey and light grey,
respectively.

From these results, we see that, in practice, additional policy parameters do not enable
substantially better learning performance. The centralized learner with time information is
able to improve its learning performance when using the more complex network architec-
ture; however, the centralized learner without time information actually degrades in its per-
formance when more parameters are introduced. Of course, a more comprehensive sweep
of possible network architectures would be needed to assess whether there exists a “sweet
spot” that balances network representational capacity and learning complexity for each of
these cases. Nevertheless, the basic centralized learner with no time information and only
1254 network weights still outperforms all other policy architectures under all computed
metrics. A quantitative comparison of the mean and medians of the final distributions is
given in Table 4.

Fig. 10   Comparison of the average team performance across training epochs for different centralized agent
policy architectures. Green and cyan plots are equivalent to those shown in Figs. 4, 5 and 6, while the grey
curves show the performance of centralized agents whose neural network control policies have over nine
times more parameters. Mean and one standard deviation (from 30 statistical runs) are shown for each set
of experiments with increasing numbers of AGVs from (a)–(d). Best viewed in color (Color figure online)

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 24 of 27

Finally, we note that in these experiments, we only run our learning algorithm for 500
learning epochs. However, the learning trends suggest that to achieve substantial improve-
ments in the policy performance (e.g. beyond what is currently achieved by the intersec-
tion, intersection t and link t agents) will require a significantly greater learning effort. The
bottleneck may lie in the underlying evolutionary algorithm that is used to train the poli-
cies. Thus, future work may consider adapting or replacing this routine with techniques
that are tailored to efficiently training neural networks with large numbers of parameters.

(a) 90 AGVs (b) 120 AGVs

(c) 200 AGVs (d) 400 AGVs

Fig. 11   Best team performance across training epochs. Best viewed in color (Color figure online)

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 25 of 27  21

Table 4   Percentage improvement
of the basic centralized agent
against all other centralized
policies

90 AGVs 120 AGVs 200 AGVs 400 AGVs

 Mean (%)
Centralizedt 6.19 10.17 9.00 10.10
Centralizedrel 5.76 7.79 5.45 4.84
Centralizedt,rel 2.67 4.72 3.73 1.50
 Median (%)
Centralizedt 6.45 9.41 6.96 11.81
Centralizedrel 5.39 6.49 2.65 6.24
Centralizedt,rel 2.41 4.87 2.27 3.34

Fig. 12   Violin plots of the team performance distributions at the end of 500 training epochs. The ‘+’ sym-
bol represents the mean and the ‘ × ’ represents the median. The centralizedt,rel agent with 17,366 weights is
able to improve on the performance of the centralizedt agent, which only has 1862 weights. However, the
basic centralized agent with only 1254 neural network weights produces the highest mean and median per-
formance under all four tested domain complexities

	 Autonomous Agents and Multi-Agent Systems (2020) 34:21

1 3

 21   Page 26 of 27

References

	 1.	 Agogino, A., & Tumer, K. (2004). Efficient evaluation functions for multi-rover systems. Genetic and
evolutionary computation conference (pp. 1–11). Seattle, WA: Springer.

	 2.	 Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.

	 3.	 Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications and
Reviews, 8(2), 156–172.

	 4.	 Castellini, J., Oliehoek, F. A., Savani, R., & Whiteson, S. (2019). The representational capacity of
action-value networks for multi-agent reinforcement learning. In Proceedings of the 18th interna-
tional conference on autonomous agents and multiagent systems (pp. 1862–1864).

	 5.	 Chung, J.J., Chow, S., & Tumer, K. (2018). When less is more: Reducing agent noise with probabil-
istically learning agents. In Proceedings of the 17th international conference on autonomous agents
and multiagent systems, International foundation for autonomous agents and multiagent systems,
Stockholm, Sweden. Extended abstract (pp. 1900–1902).

	 6.	 Chung, J.J., Miklić, D., Sabattini, L., Tumer, K., & Siegwart, R. (2019). The impact of agent defini-
tions and interactions on multiagent learning for coordination. In Proceedings of the 18th interna-
tional conference on autonomous agents and multiagent systems, pp. 1752–1760

	 7.	 Chung, J. J., Rebhuhn, C., Yates, C., Hollinger, G. A., & Tumer, K. (2019). A multiagent frame-
work for learning dynamic traffic management strategies. Autonomous Robots, 43(6), 1375–1391.

	 8.	 Claes, D., Oliehoek, F., Baier, H., & Tuyls, K. (2017). Decentralised online planning for multi-
robot warehouse commissioning. In Proceedings of the 16th conference on autonomous agents and
multiagent systems. International foundation for autonomous agents and multiagent systems (pp.
492–500).

	 9.	 Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multia-
gent systems. In AAAI/IAAI, Madison, WI (pp. 746–752).

	10.	 Colby, M., Yliniemi, L., Pezzini, P., Tucker, D., Bryden, K.M., & Tumer, K. (2016). Multiobjec-
tive neuroevolutionary control for a fuel cell turbine hybrid energy system. In Proceedings of the
genetic and evolutionary computation conference (pp. 877–884). Denver, CO: ACM

	11.	 Devlin, S., & Kudenko, D. (2011). Theoretical considerations of potential-based reward shaping for
multi-agent systems. In The 10th international conference on autonomous agents and multiagent
systems, international foundation for autonomous agents and multiagent systems, Taipei, Taiwan
(Vol. 1, pp. 225–232).

	12.	 Digani, V., Sabattini, L., & Secchi, C. (2016). A probabilistic Eulerian traffic model for the coor-
dination of multiple AGVs in automatic warehouses. IEEE Robotics and Automation Letters, 1(1),
26–32.

	13.	 Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2015). Ensemble coordination approach in
multi-AGV systems applied to industrial warehouses. IEEE Transactions on Automation Science
and Engineering, 12(3), 922–934.

	14.	 Ficici, S. G., Melnik, O., & Pollack, J. B. (2005). A game-theoretic and dynamical-systems analy-
sis of selection methods in coevolution. IEEE Transactions on Evolutionary Computation, 9(6),
580–602.

	15.	 Hulse, D., Tumer, K., Hoyle, C., & Tumer, I. (2018). Modeling multidisciplinary design with
multiagent learning. In: Artificial intelligence for engineering design, analysis and manufacturing
(pp. 1–15). FirstView

	16.	 Kitano, H. (1998). RoboCup-97: Robot soccer world cup I. New York: Springer.
	17.	 Littman, M.L., Dean, T.L., & Kaelbling, L.P. (1995). On the complexity of solving Markov deci-

sion problems. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp.
394–402).

	18.	 Mannion, P., Duggan, J., & Howley, E. (2016). An experimental review of reinforcement learn-
ing algorithms for adaptive traffic signal control. In Autonomic road transport support systems (pp.
47–66). New York: Springer.

	19.	 Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The state of the art. Autonomous
Agents and Multi-agent Systems, 11(3), 387–434.

	20.	 Parunak, H. V. D. (1996). Applications of distributed artificial intelligence in industry. Foundations of
Distributed Artificial Intelligence, 2, 1–18.

	21.	 Rosas, F., Chen, K. C., & Gündüz, D. (2018). Social learning for resilient data fusion against data falsi-
fication attacks. Computational Social Networks, 5(1), 10.

Autonomous Agents and Multi-Agent Systems (2020) 34:21 	

1 3

Page 27 of 27  21

	22.	 Sen, S., & Weiss, G. (1999). Learning in multiagent systems. In G. Weiss (Ed.), Multiagent systems: A
modern approach to distributed artificial intelligence (pp. 259–298). Cambridge, MA: MIT Press.

	23.	 Stone, P., Kaminka, G. A., Kraus, S., & Rosenschein, J. S. (2010). Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI conference on artificial intelligence, Atlanta, GA (pp.
1504–1509).

	24.	 Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3), 345–383.

	25.	 Sycara, K. P. (1998). Multiagent systems. AI Magazine, 19(2), 79.
	26.	 Tsitsiklis, J. N. (1993). Decentralized detection. Advances in Statistical Signal Processing, 2(2),

297–344.
	27.	 Veeravalli, V. V., & Varshney, P. K. (2012). Distributed inference in wireless sensor networks. Phil-

osophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
370(1958), 100–117.

	28.	 Weiß, G. (1996). Adaptation and learning in multi-agent systems: Some remarks and a bibliography.
In: G. Weiß & S. Sen (Eds.), IJCAI’95 workshop on adaption and learning in multi-agent systems (pp.
1–21). Berlin: Springer.

	29.	 Wolpert, D. H., Wheeler, K. R., & Tumer, K. (1999). General principles of learning-based multi-agent
systems. In Proceedings of the third annual conference on autonomous agents (pp. 77–83). ACM

	30.	 Ye, D., Zhang, M., & Yang, Y. (2015). A multi-agent framework for packet routing in wireless sensor
networks. Sensors, 15(5), 10026–10047.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	The impact of agent definitions and interactions on multiagent learning for coordination in traffic management domains
	Abstract
	1 Introduction
	2 Background
	3 Problem formulation
	4 Traffic management domain
	4.1 Domain description
	4.2 Multiagent traffic management

	5 Agent definitions
	5.1 Link agents
	5.2 Intersection agents
	5.3 Incorporating travel time

	6 Experimental setup
	6.1 Cooperative Coevolution for Multiagent Learning
	6.2 Warehouse Traffic Graph
	6.3 Agent failure

	7 Results and analysis
	7.1 Multiagent team performance with increasing congestion
	7.2 Multiagent team performance with agent failure

	8 Discussion
	8.1 Notes for practitioners
	8.2 Future work

	Acknowledgements
	References

