
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems           (2020) 34:21 
https://doi.org/10.1007/s10458-020-09442-1

1 3

The impact of agent definitions and interactions 
on multiagent learning for coordination in traffic 
management domains

Jen Jen Chung1   · Damjan Miklić2 · Lorenzo Sabattini3 · Kagan Tumer4 · 
Roland Siegwart1

 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The state-action space of an individual agent in a multiagent team fundamentally dictates 
how the individual interacts with the rest of the team. Thus, how an agent is defined in 
the context of its domain has a significant effect on team performance when learning to 
coordinate. In this work we explore the trade-offs associated with these design choices, 
for example, having fewer agents in the team that individually are able to process and act 
on a wider scope of information about the world versus a larger team of agents where each 
agent observes and acts in a more local region of the domain. We focus our study on a traf-
fic management domain and highlight the trends in learning performance when applying 
different agent definitions. In addition, we analyze the impact of agent failure for different 
agent definitions and investigate the ability of the team to learn new coordination strategies 
when individual agents become unresponsive.
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1  Introduction

Many traditional multiagent benchmark domains include a strict definition of the agent 
and the team, examples include the prisoner’s dilemma, where each prisoner is an agent; 
robot soccer, in which each player is an agent; and the predator-prey domain, where each 
predator or prey are individual agents. However, we are increasingly faced with real world 
problems where we, as system designers, get to choose the multiagent team structure. For 
example, in domains such as autonomous traffic management [7, 18], network routing [30] 
and powerplant control [10]. What constitutes an “agent” in these problems (the control-
ler of a single traffic light or all the traffic lights at an intersection?) is fluid and becomes a 
design choice rather than a constraint of the domain.

The term agent factorization was introduced in [20] and describes the breakdown of a 
problem into a multiagent system by finding a representation of the full joint state-action 
space in the union of the individual agent state-action spaces.1 Yet despite the large body 
of work in multiagent systems, and especially in multiagent learning for coordination, this 
concept of designing the agent definitions has not featured much in existing research. Sur-
vey papers proposing multiagent system taxonomies [3, 19, 22, 25, 28] tend to focus more 
on the system architecture, that is, how agents interact and communicate in the domain (if 
at all). However, these aspects are inherently a function of the agent definition in terms of 
the (partially observable) Markov decision process that each individual agent is solving.

One of the main challenges of pinning down the contribution of agent definition to the 
final team performance is the inherent complexity and inter-connectedness of multiagent 
systems. While there is temptation to simply increase the number of agents in a team with-
out changing the individual agent definition, this does not provide a fair comparison as it 
fundamentally changes the capabilities of the team, the difficulty of the original problem 
and so on. Furthermore, the problem domain often does not allow for a straightforward 
comparison between different agent definitions. For example, in robot soccer, each player 
can naturally be described as an agent. Other definitions, such as controlling all defenders 
with a single agent, would require significant reconsideration of how to represent the agent 
state-actions and interactions, not to mention the practical implications of implementing 
such an agent.

In this work, we study the impact of agent definition on the performance of multia-
gent learning for coordination in the warehouse traffic management domain introduced in 
[7, 12]. This domain is particularly well-suited to our study since the fundamental system 
dynamics are decoupled from the structure of the multiagent team. Thus, we can indepen-
dently vary the number of agents in the team and the total information available to the team 
without changing the difficulty of the underlying problem.

We implement four different agent definitions and also compare against a centralized 
learning solution. Our results highlight the trade-offs associated with using lower-level def-
initions, where there are more agents in the team that each have smaller state-action spaces 
but consequently have a more localized view of the problem, versus higher-level defini-
tions, where there are fewer agents attempting to concurrently learn higher dimensional 
policies but can each observe a larger portion of the joint space. In essence this provides 
an insight into the balance between shifting the problem complexity from the learning of 

1  Here we use “agent definition” to avoid confusion with other uses of the term “factorization” in multia-
gent literature.
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coordination (across large numbers of less capable agents), to the learning of individual 
agent policies, with the centralized agent representing the limit. We also investigate the 
change in learning performance when more domain information is provided to the agents. 
Here, our results show that for lower-level agent definitions, the benefits of including addi-
tional state information can outweigh the introduced challenges such as increased state 
dimensionality, especially as the coordination problem becomes more challenging.

This paper is an extended and revised version of our prior work [6], which was pre-
sented at the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems. The main extensions are additional robustness experiments that examine the effects 
of various agent failure cases with respect to the different agent definitions. Our analysis 
explores both the scope of the failure, in terms of the impact within the domain, as well as 
the direct influence of the agent definition on the multiagent team’s ability to discover new 
coordination strategies after failure events.

The next section provides a summary of the various multiagent taxonomies that have 
been proposed in the literature and situates the concept of “agent definition” within these 
categories. A general problem formulation is presented in Sect.  3. In Sect.  4 we intro-
duce the multiagent traffic management domain, which we will use to evaluate the four 
agent definitions formalized in Sect. 5. The experimental setup is described in Sect. 6 with 
results and analyses presented in Sect. 7. Finally in Sect. 8 we conclude with a discussion 
on avenues for future investigation.

2 � Background

Several taxonomies have been offered over the past couple of decades to characterize the 
scope of multiagent problems, specifically multiagent learning problems. As early as [28], 
researchers in the field recognized the challenge of categorizing the myriad problems that 
fall under this label, which is due to the many different axes along which multiagent sys-
tems can vary. In general, multiagent problems can be grouped according to variations in 
environment and agent interaction [28], application and architecture [20], hierarchy [25], 
decentralization and task coupling [22], homogeneity of the agents’ goals, actions and 
domain knowledge [24], as well as by the class of learning algorithms used to solve the 
problem [3].

One aspect that is often neglected is the choice of team structure for the problem. The 
main reason for this is that many multiagent learning domains elicit a natural agent defini-
tion, to the extent that it becomes part of the definition of the problem rather than a design 
variable. In many benchmark multiagent domains such as the rover domain  [1], the bar 
problem [29], and robot soccer [16], agents are often defined according to separable physi-
cal entities in the team, for example, individual robots in the rover and soccer domains, and 
individual clients who visit the bar. However, this does not have to be the case. In our intro-
duction, we suggested having a single agent control all defensive robots in the soccer sce-
nario. Another option would be to have separate agents handling moving and kicking for 
a single robot. Moreover, elements such as agent interaction and learning architecture (e.g. 
the difference between independent learners and joint action learners [9]) can be thought of 
as a direct consequence of how an agent is defined. Parunak [20] highlighted this point and 
also issued a warning:

When the problem is easily conceived in terms of such naturally-occurring entities, 
agents can be applied fairly easily. However, factorizations that are suggested by tra-



	 Autonomous Agents and Multi-Agent Systems           (2020) 34:21 

1 3

   21   Page 4 of 27

ditional analysis but do not correspond to naturally occurring entities (such as the 
hierarchical decomposition of a factory) can lead to very inefficient agent architec-
tures.

A related problem is dealt with in the field of distributed sensing, where one can choose 
between using a single centralized processing unit or multiple processing agents that col-
lectively infer knowledge about a particular process. In this research area, much of the 
work concerns the design of data distribution protocols that are fault tolerant and robust 
to adversarial attacks [21, 26, 27]. Thus, the focus is on how information should be shared 
at runtime to improve the outcome of collective data processing. Agent definition also 
impacts the information distribution across a system; however, each definition prescribes 
what domain information is available to the agent at runtime. Therefore, in this work, we 
consider how the available information, given the agent definition, affects the ability of 
individual agents to coordinate as a team.

Recent work by Castellini et al. [4] has explored this problem from the perspective of 
decomposing the joint action value function in multiagent reinforcement learning. The 
authors note that for many multiagent coordination tasks, it is often the case that the deci-
sion of an agent is only influenced by a small subset of the other agents. Thus, there may 
be significant computational gains by considering a more appropriate breakdown of these 
high dimensional multiagent coordination problems. Specifically, the authors studied the 
representational capacity of different factorizations for several one-shot games, i.e. decom-
positions of the joint value function into additive local components that each only involve 
a subset of the agents. They demonstrated that for many problems, relatively accurate rep-
resentations can be achieved with simple factorizations, but also showed the limitations 
of this method when dealing with problems that demand tight coordination between the 
agents.

In this work, we directly study the impact of the individual agent definition on the abil-
ity of the team to learn coordinated strategies in the joint state-action space. We consider 
teams of concurrently learning agents where we can independently vary two aspects of 
the team structure, i.e. the number of team members and the information available to each 
team member. As summarized by [19], the challenges of concurrent learning fall under two 
main categories: structural credit assignment and the dynamics of learning. Both of these 
areas have enjoyed serious attention from the agents community, notably the introduction 
of individualized reward shaping [1, 11] to address the former, and teammate modeling 
[23] or turn-taking [5] to tackle the latter. The overall consensus is that without careful 
team management, both of these challenges become prohibitive with increased team size 
and problem dimensionality. Thus, agent definition can play a key role in modulating the 
complexity of the learning problem.

3 � Problem formulation

Multiagent learning for coordination with a team of concurrent learners breaks down 
a global team problem into a set of parallel learning tasks that are coupled accord-
ing to the global team performance. The global team problem can be defined by 
the tuple ⟨S,A,P,R⟩ , where S is the set of global states, A is the set of joint actions, 
Pa
s,s�

= Pr
(
St+1 = s�|St = s,At = a

)
 are the transition probabilities of the system, and 

Ra
s
= �[R(s, a)] are the expected rewards. The goal of the team is to collectively exe-

cute actions that maximize the expected return, which is often computed as the sum 
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of discounted future global rewards. However, each agent i only has access to a locally 
observable state Si and its own set of actions Ai , which are reduced components of the 
global state and joint action, respectively. Specifically, for a team of N agents,

Note that there is no strict requirement for the same relationship to exist between the 
individual agent states and the global state. For example, multiple agents may be able to 
observe the same component of the global state, or the global state may simply not be 
jointly observable, i.e. the problem is a Dec-POMDP [2]. The individual agent state can be 
written as,

where St is the global state at time t and O is, in general, a non-invertible observation 
function.

In this work, we explore the effects of varying the state and action definitions of each 
agent while maintaining the same underlying global team problem. In terms of varying 
the agent actions, this means that any decomposition of the agent action sets 

{
Ai

}
 must 

obey (1). While several valid decompositions may exist for any given problem, a conse-
quence of needing to satisfy (1) is that the larger the dimensionality of each agent’s action 
space, the fewer the number of agents needed to cover the full action space of the global 
problem. Furthermore, heterogeneous agent definitions can allow team members to have 
differing degrees of influence over the system. For example, given two agents, i and j, if 
|Ai| ≫ |Aj| then in many cases agent i will have greater influence over the team outcome 
simply because it can act on a greater portion of the joint action space.

Compared to defining valid agent action spaces, greater flexibility is awarded to the defi-
nition of the agent state spaces since the only requirement is that one must be able to derive 
an individual agent’s state from the global state. The global state itself is not dependent 
on the individual agent state representations. Thus, changes to the definition of 

{
Si

}
 only 

impact the dimensionality of each agent’s state space and how difficult it is for the team to 
solve the underlying problem. The former affects the complexity of the individual agent’s 
learning problem [17], while the latter relates to the joint observability of the team as well 
as the distributed nature of the team information [2]. In the following section, we describe 
the target domain of our study, after which we formulate several agent state-action defini-
tions that can be applied to this domain in Sect. 5.

4 � Traffic management domain

4.1 � Domain description

In this work, we study the effect of agent definition in the warehouse traffic management 
domain introduced in [7, 12]. See Fig.  1 for an illustration of the domain setup. In this 
domain, M autonomous ground vehicles (AGVs) deliver packages between various loca-
tions in a warehouse. The routes in the warehouse are represented as a high level traffic 
graph, G = (V, E) , where each edge e ∈ E defines a single direction of travel between two 
vertices of the graph, i.e. e = (u, v) is the edge from vertex u to vertex v, where u, v ∈ V . 
AGVs compute their paths across this graph according to some cost-based planner such as 

(1)A ∶= A1 ×⋯ ×AN .

(2)St
i
= O

(
St
)
,
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A*. The costs associated with traversing each edge are defined as the sum of a fixed and 
known cost of travel, ctravel

e
 , and an additional time-varying cost cadd

e
(t) assigned by the traf-

fic management agents (described in the following subsection),

AGVs in the system have access to the instantaneous graph costs calculated using 
Eq. (3), and are able to replan their paths according to the latest costs at any edge transi-
tion. However, once they begin traversing an edge, they are committed to continuing along 
that edge until they reach their next transition. Balking is not permitted in this domain, 
that is, an AGV cannot spontaneously abandon its current edge and switch to the reverse 
edge when only part way across. However, an AGV can decide to transition to the reverse 
edge once it reaches the end of its current edge. This behavior mimics existing warehouse 
management strategies that enforce lanes of motion and do not allow turning around except 
at intersections [12]. To capture balking behavior in the current setup, one could include 
additional transitions at every step between corresponding edges in the current graph to 
enable an AGV to “turn around” at any point [8]. In the following experiments, all AGVs 
greedily plan to minimize their traversal costs directly according to the costs at the time of 
planning.

The domain defines an AGV capacity for each directed edge in the graph cape , which 
imposes a constraint on the motion of the AGVs. The capacity of an edge roughly trans-
lates to its available bandwidth and can be determined based on the properties of the under-
lying physical space represented by that edge (e.g. the size of the free space). During an 
episode, the number of AGVs on an edge, ne(t) , cannot exceed the capacity of that edge. 
This means that an AGV planning to transition to an edge which is at capacity must wait on 
its current edge until there is space. While waiting, it continues to count towards the capac-
ity of its current edge. Thus, without proper management, bottlenecks in the traffic graph 
can result in cascading congestion throughout the network.

(3)ce(t) = ctravel
e

+ cadd
e

(t).

Fig. 1   The environment is described by a traffic graph where each directed edge must obey strict capacity 
constraints. AGVs cannot enter edges that are already at capacity. Those waiting to transition between edges 
continue to occupy space on their current edge. The goal of the traffic management domain is to find the set 
of additional cost functions cadd

e
(t) that result in the maximal number of successful deliveries
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In the original domain, the delivery robots are randomly spawned throughout an epi-
sode and are removed from the system once they complete their assigned delivery. Here, 
we make a slight modification such that all AGVs are initialized at the start of an episode; 
however, once a delivery is complete, the AGV is not removed, instead it is immediately 
assigned a new delivery mission which begins at its current location. At this point, if the 
AGV must wait to enter the first edge on its new path, it does not count towards the capac-
ity of any edge but is considered to be in a “holding zone” until it begins traversal. Thus, 
the number of AGVs in the system remains constant throughout the episode. This brings 
the domain closer to the actual dynamics of an automated warehouse [12, 13] and also 
allows for a more controlled comparison across simulation runs.

4.2 � Multiagent traffic management

The task of the traffic management system is to discover the appropriate additional costs, 
cadd
e

(t) , to apply to each edge in the traffic graph to incentivize the AGVs to avoid con-
gested areas but still reach their destinations in a timely manner. Given a specific sequence 
of deliveries, an optimal solution to this problem exists; however, the problem quickly 
becomes intractable for even moderate graph sizes and AGV numbers. The challenge 
of problem dimensionality also remains if we attempt to jointly learn the costing strate-
gies for all edges. This motivates the use of a multiagent learning framework in which we 
assign individual agents to manage the traffic in local regions of the graph. The problem 
dimensionality for each agent is therefore much lower compared to the joint learning case. 
However, the problem complexity now shifts to learning coordinated policies across all 
the agents in the team such that collectively they maximize the global objective. The inter-
action between the multiagent traffic management team and the AGV traffic is shown in 
Fig. 2.

Given N agents in a traffic management team, the goal is to concurrently learn the local 
costing strategies that result in the joint policy �∗ =

{
�i

}
∀i ∈ {0,… ,N − 1} , which glob-

ally produces the highest number of successful deliveries. Agents are defined based on their 
scope, that is, the component of the global state that they can observe, and the subset of the 

Traffic Management 
Agents

AGVs

Define cost of travel across each directed 
edge according to current traffic density

Plans across agent cost graph
High level planner

Low level planner Plans across obstacle map according to 
high level graph traversal plan

Fig. 2   Hierarchical traffic management formulation, noting the separation between the multiagent traffic 
management system and the AGVs. The travel space is first decomposed into a high level graph represent-
ing the connectivity of different regions in the map. The multiagent system defines the cost of travel across 
this traffic graph, and the AGVs use these costs to determine their sequence of edge traversals. A lower 
level planner is then assumed to handle the local collision avoidance procedures through the obstacle map. 
Figure from [7]



	 Autonomous Agents and Multi-Agent Systems           (2020) 34:21 

1 3

   21   Page 8 of 27

joint actions that they can control. In the traffic management domain, this can be represented 
as the set of edges that an agent manages, as well as the resolution of the information available 
to each agent regarding the traffic on those edges. For example, an agent may only know the 
number of AGVs on each edge, or it may also know the exact progress of each AGV along 
the edge. In general, given the state of each edge to be �e(t) , then the state for agent i can be 
defined as,

where Ei is the set of edges managed by agent i. Thus, the output actions of agent i are,

and the objective of the multiagent team is,

5 � Agent definitions

The traffic management problem provides a domain in which we can investigate the effects 
of using different multiagent team definitions. The graph structure provides a straightforward 
decomposition of the joint space whereby subsets of E are assigned to individual agents to 
manage. Moreover, practical considerations such as the physical locality of an agent (how far 
it can sense and communicate) can be naturally incorporated into how the subsets are defined.

In this section, we describe four variants in agent definition which explore two separate 
axes in multiagent learning. The first axis varies the number of agents in the team while keep-
ing the total information of the system constant. This explores the trade-off between distribut-
ing the learning complexity at the agent level (higher dimensional state) versus at the team 
level (more agents concurrently learning to coordinate). The second axis considers the effect 
of state resolution to the learning performance in terms of transience and convergence. Intui-
tively, higher resolutions can discriminate between more system states and provide finer con-
trol. However, this comes at the cost of a higher state dimensionality, which can prohibit learn-
ing since the space of possible state-actions becomes too large to explore effectively.

5.1 � Link agents

The first variant we describe is the agent definition presented in [7]. Here, each link agent is 
assigned to a single directed edge, thus the team consists of N = |E| agents. The link agent 
state is simply defined as the total number of AGVs currently traversing the edge, while the 
link agent output is the additional cost of travel for that edge. That is,

(4)�i(t) =
[
�e(t)

]
, ∀e ∈ Ei,

(5)�i(t) = �i

(
�i(t)

)
=
[
cadd
e

(t)
]
, ∀e ∈ Ei,

(6)max
�

G(�) = total deliveries,

(7)s.t. ne(t) ≤ cape ∀t, e ∈ E.

(8)slink
i

(t) = nei (t),

(9)alink
i

(t) = cadd
ei

(t),
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where ei is the edge assigned to link agent i.
Link agents represent the simplest agent definition available to the traffic management 

domain, since they reduce each agent to a single-input single-output policy. From an indi-
vidual agent’s perspective, this is a straightforward one dimensional learning problem. 
However, from the team perspective, this represents a very challenging multiagent learning 
setup. In this case, the structural credit assignment problem is at its most severe [1]; each 
agent only receives the global team performance as a learning signal, yet its individual 
contribution to that reward becomes more ambiguous the larger the team size. In addition, 
the contribution of agent noise is also exacerbated as the number of agents in the team 
increases [5].

5.2 � Intersection agents

The second variant in agent definition that we investigate decomposes the underlying traf-
fic graph according to vertices rather than edges. Specifically, each intersection agent is 
assigned to manage AGV traffic on the set of incoming edges of a particular vertex. Thus, 
the team consists of N = |V| intersection agents, whose states and actions are,

where Ei is the set of incoming edges assigned to intersection agent i. Note that the state-
action space for each intersection agent in the team can be heterogeneous in this formula-
tion since each agent’s dimensionality is defined by the number of incoming edges they 
manage. That is, the dimensionality of intersection agent i is ||Ei||.

Compared to link agents, we generally expect an intersection formulation of a ware-
house graph to have fewer agents in the team since for most graphs |V| < |E| . Thus, the 
challenges of structural credit assignment and agent noise are reduced when compared to 
the link agent formulation. However, this comes at the cost of a higher dimensional learn-
ing problem for each of the individual agents.

5.3 � Incorporating travel time

The final two variants we consider in this study are focused on the effect of state resolution 
to the multiagent learning problem. As explained in Sect. 3, both the state space definitions 
and the action space definitions can impact the final team performance. In the link agent 
and intersection agent formulations described in Sects. 5.1 and 5.2, the state information 
only consists of the current number of AGVs on the edges. Now we investigate the effect of 
including additional AGV tracking information.

For each edge, we track de(t) , the amount of time remaining until the next AGV com-
pletes its traversal and will attempt to transition to a new edge or complete its delivery. 
This value can range from the total time required to traverse an edge (if there are currently 
no AGVs present) to zero, which represents the case where an AGV has completed its 
traversal and will transition to a new edge at the next timestep provided it does not violate 
Eq. (7). This travel time information is incorporated as an additional element in the state 
vector for each edge. Thus, the travel-time-augmented link agent state becomes,

(10)�
int.
i
(t) = [ne(t)], ∀e ∈ Ei,

(11)�
int.
i
(t) = [cadd

e
(t)], ∀e ∈ Ei,
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Similarly, the augmented intersection agent state is defined as,

Note that the action space for each agent definition remains the same as in Eqs.  (9) and 
(11), respectively.

Augmenting the state with de provides a coarse indicator of when the ne component 
of the state is about to change. Moreover, it brings the joint state space of the multiagent 
team closer to full observability of the underlying domain. More information could be pro-
vided by individual tracking data on each AGV; however, including such information can 
be challenging and raises further questions about the design of the agent state definition. 
For example, de only accounts for the progress of the next AGV that will transition off an 
edge. Instead, one could consider appending the progress of the m-next AGVs to transi-
tion to the agent state. This additional tracking information necessarily increases the state 
dimensionality of the learning agent, yet the fundamental question remains of whether or 
not this information ultimately helps or hinders the learning of coordinated policies. Fur-
ther complications arise if attempting to capture the progress of all AGVs since the number 
of AGVs on each edge will change over time. Thus, if an agent were to directly include the 
progress of each AGV within its region of control as additional elements in its state input, 
this would require agent policies that can handle variable-sized input states. While possible 
through mechanisms such as recurrent or recursive neural networks, we leave this area of 
investigation to future work.

6 � Experimental setup

In the following experiments we use the setup described in [7] and represent the control 
policy of each agent as a single hidden layer, fully connected neural network.2 For the link 
agents (with and without travel time information), we use 16 neurons in the hidden layer, 
while for the intersection agents we set the number of hidden neurons to four times the 
number of output neurons. For example, an intersection agent managing AGV traffic on 3 
edges will have 12 hidden neurons, its output action dimensionality will be 3, and its input 
state dimensionality will be 6. Without including travel time information, the intersection 
agent will only have a state input size of 3. This scaling was chosen as it allows us to main-
tain comparability between the representational complexity of each of the agent definitions 
(see the final column of Table 1).

It is worth noting that although we maintain a similar number of total weights in the 
team, the intersection agent policies must model the correlations between traffic over mul-
tiple incoming edges. On the other hand, link agents only observe traffic on a single edge, 
making an implicit assumption that traffic on different edges are conditionally independ-
ent given the global team performance. Thus, intersection agents are tasked with capturing 
more domain information despite having a similar number of parameters with which to 
store the encoding. This highlights an important trade-off between having agents with a 

(12)�
link,time

i
(t) =

[
nei(t), dei(t)

]
.

(13)�
int.,time

i
(t) = [ne(t), de(t)], ∀e ∈ Ei.

2  We use a logistic activation function at each layer and the final network output is scaled by the base tra-
versal time of the longest edge in the graph.
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more local or a more global view of the multiagent learning task. In this work, we control 
for the total representational capacity of the whole team; however, future studies may be 
conducted to investigate other methods for achieving congruence between an agent’s scope 
in the domain and its policy architecture.

To train the weights of the agent policies, we employ cooperative coevolution [14] using 
the global team performance from Eq. (6) as the fitness evaluation for all policies in the 
currently tested team. The following subsection provides a brief outline of the cooperative 
coevolutionary algorithm (CCEA). Note, however, that there is no requirement for using 
CCEAs to learn coordinated multiagent policies in this domain. Any distributed multiagent 
learning algorithm, such as multiagent reinforcement learning  [19], could be applied in 
conjunction with any valid control policy representation, provided that the learning algo-
rithm can be trained using coarse reward signals.

6.1 � Cooperative Coevolution for Multiagent Learning

Algorithm 1 provides the pseudo-code for our implementation of CCEA. CCEAs evolve 
multiple populations in parallel; in our case, each agent maintains a population of K = 10 
neural networks which represents its pool of potential control policies. At the start of evo-
lution, each control policy in the population produces a mutated successor, resulting in a 
total population of 2K neural networks (lines 2–4).

At each generation, a multiagent team is formed by selecting, without replacement, one 
control policy from each agent’s population (lines  7–8). This team is then evaluated by 

Table 1   Comparison of agent 
definitions

Team structure # Agents State dim. Action dim. Total # 
weights in 
team

Link 38 1 1 1254
Link, time 38 2 1 1862
Intersection 11 {2, 3, 4} {2, 3, 4} 1126
Intersection, time 11 {4, 6, 8} {2, 3, 4} 1670
Centralized 1 38 38 1254
Centralized, time 1 76 38 1862
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simulating their performance in the domain (line  9). For our experiments, each episode 
involves spawning AGVs in the environment that then plan and execute paths based on the 
output traversal costs from the multiagent traffic management team that is currently being 
tested. More details on the traffic simulation are provided in the following subsection. At 
the end of the episode, the performance of the entire team, computed according to Eq. (6), 
is assigned as the fitness of each of the control policies that made up the team (line 10). 
Once all 2K teams are evaluated, each agent then applies the selection step by retaining the 
K control policies with the best fitness (line 12). In our case, these are the control policies 
that resulted in the highest number of completed deliveries, G. These K control policies 
then undergo mutation and the process repeats (lines 13–14). For our work, we applied a 
mutation rate of 10%, that is, at every generation (epoch), each network weight had a 10% 
probability of undergoing mutation, with added mutation noise drawn from N(0, 1).

6.2 � Warehouse Traffic Graph

We ran our experiments on the simple traffic graph shown in Fig.  3. We tested four 
instances of the domain that vary the number of AGVs present in the warehouse. Each 
learning episode contained {90, 120, 200, 400} AGVs with half starting at vertex 0 and the 
other half initialized at vertex 1. Note that the maximum capacity of the traffic graph is 272 
AGVs (all edges full). All delivery missions originating at vertex 0 have a goal vertex 1 
and vice versa, thus forcing the AGVs to continually move between the two vertices. The 
layout of the traffic graph is designed such that if all AGVs undertake their A* path com-
puted on the basic traversal costs ctravel , then the system will be severely congested along 
edges (0, 1) and (1, 0) . The goal of the multiagent team is to learn the optimal costing strat-
egy that incentivizes detours via vertices 2–10 to enable the highest number of successful 
deliveries.

We compared the four agent definitions described in Sect. 5 against a centralized traffic 
management solution where a single agent is tasked to apply costs on all edges of the traf-
fic graph. To maintain comparability, we set the total number of network weights for the 
centralized agent to be equal to that of the link agent team. Thus, the centralized agent also 
uses a neural network policy with 16 hidden neurons. Table 1 lists the relevant parameters 
of the six tested agent team structures for the basic traffic graph, which are evaluated in the 
following section. Some additional experimental results are provided in “Appendix” that 
compare the performance of the centralized agent with 16 hidden neurons to its perfor-
mance when provided with the same relative number of hidden neurons as the intersection 
agents, i.e. four times the number of edges.

6.3 � Agent failure

In addition, we also explore the effect of agent failure for each of the multiagent team struc-
tures. Specifically we test two failure sets, the first centered around vertex 6 and the second 
around vertex 2. Failure is manifested when an agent i no longer applies its learned policy 
costs, but rather strictly emits the maximum cost, that is,

(14)cadd
ei

= max
e∈E

ctravel
e

∀ei ∈ Ei,
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which for our traffic graph in Fig. 3 results in cadd
ei

= 28,∀ei ∈ Ei . This particular failure 
scenario is especially severe, since the optimal coordination strategy requires the team to 
redirect traffic from the main arteries (the direct edges between vertices 0 and 1) through 
vertices 2 and 6, which means setting the costs for traversing those associated edges to a 
low value. By assigning fixed high costs, agent failure prevents the use of these edges and 
forces the discovery of traffic routing strategies through parts of the graph that are initially 
costlier due to their greater distances.

For each agent definition, we investigated the effect of having a single agent in the team 
fail. Given the difference in domain influence between a single link agent and a single 
intersection agent, it is expected that having a single agent fail in either case will result 
in varying degrees of severity on the team performance. Thus, we also compared the case 
where all the incoming link agents associated with a vertex fail together, which simulates 
the same scope of domain failure as the single intersection agent failure case. We expect 
that a single failed intersection agent will cause a greater initial impact on team perfor-
mance than a single failed link agent but will be comparable to the case where the set of 
link agents associated with the same vertex fail. Furthermore, we are particularly interested 
in studying the recovery behavior for each of the agent definitions. Agents in each team 
must undergo policy adaptation after the failure event and the transience of this learning 
process provides some insight into the relationship between the agent definition and the 
speed and extent to which the team can recover. Table 2 outlines the two sets of experi-
ments that we conducted for this study, the agent indices are labeled on the traffic graph in 
Fig. 3.

Fig. 3   The basic traffic graph. AGVs are initialized at 0 and 1, traveling to the opposite vertex, i.e. vertex 
1 or vertex 0, respectively. Edges (0, 1) , and (1, 0) have the highest capacity and represent the shortest path. 
The goal of the multiagent traffic management team is to incentivize AGVs to take detours to alleviate 
congestion. The inset shows the link agent indices associated with the incoming edges to vertices 2 and 6. 
Original underlying figure from [7]
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7 � Results and analysis

7.1 � Multiagent team performance with increasing congestion

Each of the agent definitions were tested over 30 statistical runs across which the neu-
ral network weight initializations were randomized. Each statistical run consisted of 
500 epochs (generations), and at each epoch each team was evaluated in an episode 200 
timesteps in length. In our experiments we use an initial population size of K = 10 , which 
is doubled during the CCEA mutation process (see Algorithm 1). This means that for each 
agent definition, a single epoch requires 20 domain simulations to test each of the ran-
domly sampled population members. The multiagent team performance for each epoch is 
then recorded as the highest evaluation achieved over the 20 domain simulations.

Figure 4 shows the progression of team performance across the learning epochs in each 
of the four domain variants. The plotted values are averaged over the 30 statistical runs 
with 1� standard deviations shown by the shaded regions. Figure 5 plots the overall best 
team performance over the 30 statistical runs and provides an indication of the highest 
achievable performance throughout the learning procedure.

The first and possibly most noticeable result is that centralized learning (without the 
inclusion of time information) performs quite well in the mean for lower AGV numbers 
(90–200 AGVs). It experiences the fastest learning transience and also exhibits a much 
smaller standard deviation over the mean performance compared to the decentralized, 
multiagent learning performance. However, the limitations of centralized learning can be 
seen most clearly in the comparison between Fig.  4c, d (and similarly in Fig.  5). When 
the underlying problem domain increases in complexity (in our case, higher numbers of 
AGVs in the warehouse), the performance of the centralized learners saturates while the 
decentralized learners are able to continue improving. In fact, at 400 AGVs, the best team 
performance of either of the centralized learners (with and without AGV time) is lower 
than for the 200 AGV case at {658, 743} deliveries compared to {658, 788} , respectively. 
The maximum number of deliveries for each agent definition at the end of 500 episodes is 
shown in Table 3. 

The inclusion of AGV travel time into the agent state produces a range of effects 
depending on the original agent definition. The centralized learner experiences a sig-
nificant decrease in the mean and maximum learning performance when AGV time is 
included, while the standard deviation remains roughly around the same order of mag-
nitude. Compare this to the difference between the link and link t  agent definitions. Here 
we see the opposite relationship whereby the inclusion of AGV travel time produces a 
substantial improvement in the link t  agent team performance across all warehouse AGV 

Table 2   Index of agent(s) that 
fail for each tested set

Team structure Set 6 Set 2

Link 15 1
Link, time 15 1
Link {15, 21, 28, 33} {1, 5, 13, 20}

Link, time {15, 21, 28, 33} {1, 5, 13, 20}

Intersection 6 2
Intersection, time 6 2
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numbers. In the case of the intersection agent definition, the benefits of including time are 
less pronounced. A slight trend in improved mean learning performance can be observed 
as warehouse AGV numbers are increased; however, there is very little difference between 
the maximum team performances for either intersection agent definition. This suggests that 
more “local” definitions, i.e. agent state-action spaces that observe a smaller portion of the 
global state-action space, derive a much greater benefit from expanding their state informa-
tion and that these benefits can outweigh the challenges they introduce due to increased 
problem dimensionality. In contrast, including time into the “global” centralized agent state 
only serves to make the learning problem more difficult without providing any apparent 
benefits to the overall performance.

Figure 5 shows the maximum achieved performance of any team at each learning epoch. 
The only case in which a centralized agent performed better than a distributed agent was 
in the simplest problem domain with only 90 AGVs present in the warehouse. For all other 
cases, the four distributed agent definitions were able to find better joint policies than the 
centralized learners, with the gap in improvement widening as the problem complexity 
rises (i.e. more AGVs to route in the warehouse). However, Fig. 5 shows that distributed 

Fig. 4   Average team performance across training epochs. Mean and one standard deviation (from 30 sta-
tistical runs) are shown for each set of experiments with increasing numbers of AGVs from (a)–(d). Best 
viewed in color (Color figure online)
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learning also displays a high degree of inter-epoch performance variability, and this vari-
ability persists for more learning epochs as the problem complexity increases. For exam-
ple, in the 90 and 120 AGV problems, the maximum learning performance converges after 
approximately 100–200 epochs; however, for 200 or 400 AGVs its takes well over 300 
epochs. This is partially a result of agent noise [5] and is exacerbated by the team rand-
omization which occurs at each epoch. As expected, both of these problems increase in 
severity the more agents there are in the team. In contrast, the centralized learners exhibit 

(a) 90 AGVs (b) 120 AGVs

(c) 200 AGVs (d) 400 AGVs

Fig. 5   Best team performance across training epochs. Best viewed in color (Color figure online)

Table 3   Maximum deliveries 
after 500 learning epochs

Values in bold highlight the best performance for the different AGV 
numbers

Team 90 AGVs 120 AGVs 200 AGVs 400 AGVs

Link 539 675 703 864
Link, time 554 686 843 904
Intersection 545 668 844 834
Intersection, time 544 662 837 844
Centralized 545 659 788 743
Centralized, time 527 605 666 658



Autonomous Agents and Multi-Agent Systems           (2020) 34:21 	

1 3

Page 17 of 27     21 

monotonically increasing performance since evolution will always maintain the best policy 
from the previous round.

The final result we present focuses on the spread of the team performances at the end of 
500 training epochs. The violin plots in Fig. 6 show the distributions over the 30 statisti-
cal runs for each of the agent definitions. The four link and intersection result distribu-
tions have a much wider spread and are more heavily skewed compared to the central-
ized learners. Both centralized learners achieved relatively normal distributions with strong 
agreement between the means and medians, whereas greater disparity can be seen in the 
corresponding values for the distributed learners. This is another demonstration of the vari-
ability in performance that results from agent noise and randomization in the teams during 
cooperative coevolution. However, for all six agent definitions, the spread in final team 
performance increased as the underlying problem complexity increased, i.e. more AGVs 
present in the warehouse.

The shape of the final distributions also highlights an interesting relationship between 
the performances of the two link agent definitions. Both sets of distributions exhibit peaks 
around the same values, see Fig. 6a–c. However, for the link t  agents, the median perfor-
mance tends towards the higher valued peaks, whereas the opposite case occurs for the 
basic link agents. Indeed, each of the peaks in the distributions correspond to local maxima 
in the joint state-action space. Our results support the notion that the more “local” the agent 
definition, the more susceptible the team is to getting stuck in local maxima. The AGV 
travel time information provided sufficient additional domain scope to the link agents to 
substantially improve their performance, and this improvement is consistent across increas-
ing domain complexity. In contrast, the intersection agent states could already access a 
wider portion of the joint space, thus the benefits drawn from having additional time infor-
mation tended to be balanced out by the doubling in state dimensionality.

7.2 � Multiagent team performance with agent failure

We investigated the effect of agent failure on team learning performance for the 
case of 120 AGVs. At this level of congestion, we observed from the previous set of 
experiments that both vertex 2 and vertex 6 experienced AGV traffic as a result of the 
final learned policies of the link and intersection agents. However, it is still possible 
to reroute traffic if a subset of edges associated with either of these vertices becomes 
blocked (too costly to traverse). The aim of these experiments was to analyze the recov-
ery performance of the team after failure occurs. The following results are collated over 
100 statistical runs with failure occurring at epoch 200.

Figure 7 shows the team learning performance for failure set 6. Agent failure at epoch 
200 causes all teams to experience a drop in performance, albeit to varying degrees. The 
failure of link agent 15 causes the weakest drop in team performance, suggesting that 
up to epoch 200 the agents had not discovered a joint policy that relied heavily on link 
agent 15’s actions. Notably, when the set of link agents {15, 21, 28, 33} fail, there is a 
more pronounced drop and the team is unable to recover to its pre-failure performance 
within the next 300 learning epochs.

When looking at the mean performance in Fig. 7a, the failure of the link t  agent set 
causes the greatest impact, while the drop in performance of both intersection agent def-
initions is of a similar magnitude. Both intersection agent definitions are able to recover 
much faster in the mean compared to the link t  agents. However, when analyzing the best 
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team performance over learning epochs (Fig. 7b) we see that intersection and intersec-
tion t  agents lag behind the link t  agents both before and after failure occurs.

Figure 8 shows the team learning performance for failure set 2. The impact of agent 
failure is far more pronounced in these plots than for failure set 6. This is because vertex 
2 and its associated incoming edges play a more significant role in catering for AGV 
traffic between vertices 0 and 1. AGV traffic that cannot make it on the direct edge 
between the start and goal vertices immediately overflow to paths that pass through ver-
tex 2. This is in contrast to vertex 6 which acts as a tertiary route point in the system 
along with vertices 3 and 5.

In Fig. 8a, b, the mean and maximum team performance drops back to the initial value 
immediately after edges {1, 5, 13, 20} become disabled (intersection/intersection t  agent 
failure and link/link t  agent set failure). Furthermore, in all cases, teams are unable to 
recover to their prior performance levels within the subsequent 300 learning epochs. Note 

Fig. 6   Violin plots of the team performance distributions at the end of 500 training epochs. The ‘ + ’ symbol 
represents the mean and the ‘ × ’ represents the median. All four multiagent team structures produce much 
wider distributions. Significant skew is observed at lower AGV numbers, whereas at higher AGV numbers 
the distributions become more symmetrical
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that for this failure set, the teams will be unable to reach their pre-failure optimal levels of 
coordination since any rerouting around edge 1 or vertex 2 (assuming that the direct edges 
between vertices 0 and 1 are at capacity) will result in a longer path for the AGVs and so 
fewer deliveries can be achieved in the same time period. Thus, Fig. 8b shows that even for 
the case where only link agent 1 fails, the best team performance cannot fully recover for 
either the link or link t  agent teams.

For the failure cases that involve all incoming edges to vertex 2, the recovery perfor-
mance is relatively similar between the link t  and both intersection agent definitions. In fact, 
Fig. 8a shows that on average, these three multiagent team formulations are able to reach 
or even surpass the performance of the link agent teams where only a single agent (agent 
1) has failed. However, analysis of Fig. 8b suggests that the scale of the failure across the 
domain (the number of edges that become blocked in the graph) is still the main factor that 
limits the maximal recovery behavior.

(a) Average team performance (b) Best team performance

Fig. 7   Multiagent team performance when agent failure occurs at epoch 200. In this set of experiments we 
focus on failure at vertex 6. See Table 2 and Fig. 3 for details on the set of failed agents. Best viewed in 
color (Color figure online)

(a) Average team performance (b) Best team performance

Fig. 8   Multiagent team performance when agent failure occurs at vertex 2 in epoch 200. Compared to 
Fig. 7, all teams experience a much more significant drop in performance when failure first occurs. Best 
viewed in color (Color figure online)
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As a final comparison, we plot the final team performance distributions in Fig. 9 for 
the two failure sets. This result highlights the robustness of different agent definitions 
to different failures across the domain. The plots show three main local maxima for 
each failure case, each enabling approximately {250, 480, 620} AGV deliveries. When 
compared to Fig. 6b, the main effect of agent failure is to push the mean and median of 
the team performances toward a lower local maximum. When the failure is less severe, 
as in the case of failure set 6, intersection agents are able to recover policies that pro-
duce coordination solutions close to the higher local maximum, enabling more deliver-
ies. In contrast, link agent teams, with or without time information, are often unable 
to discover these coordination strategies after failure events. In the case of severe fail-
ure, i.e. failure set 2, recovery becomes far more challenging for all agent definitions, 
with many more teams unable to discover solutions that allow more than 300 deliver-
ies. Nevertheless, comparing the upper regions of the distribution plots shows that, 
regardless of the failure severity, intersection agents are more capable of discovering 
effective recovery behaviors compared to link agents. This suggests that teams made 
up of agents with access to a greater scope of the full domain may be more robust to 
individual agent failures. Conversely, multiagent systems that exhibit high possibili-
ties for such failure events may benefit from incorporating such agent definition design 
concepts.

8 � Discussion

When formulating a problem as a multiagent coordination task, the individual agent defini-
tions can result in substantial differences in the learned team performance. Therefore, in 
multiagent domains that do not present a natural agent definition, it is important to consider 

Fig. 9   Comparison of final team performance distributions between different agent definitions and across 
different failure cases. The distributions show that in general intersection agents are better able to adapt in 
cases of non-critical agent failure (vertex 6 as opposed to vertex 2) with a substantially higher mean and 
median in Fig. 9a compared to all other agent definitions. However, for both failure cases, link agents with 
travel time information were still able to find the best coordinated policy despite performing worse in the 
mean
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these implications when adjusting agent complexity and team coordination complexity. 
Our study provides some insight into these trade-offs, demonstrating that very “local” defi-
nitions are more susceptible to local optima, which can be overcome by providing more 
state information, despite the overhead of increased state dimensionality. On the other end 
of the spectrum we show that including the same additional information can hinder learn-
ing when a sufficiently “global” view of the problem is already available to the agents. In 
the latter case, the increased problem dimensionality outweighs the potential benefits of 
incorporating more information from the joint state.

Our comparison of centralized, intersection and link agent definitions also showed 
that for simple domains, it may sometimes be preferable to use a centralized learner. 
The combined benefits of avoiding issues related to agent noise and structural credit 
assignment reduces the overall variability in learning performance and can provide 
faster initial learning transience. However, as problem complexity increases, the per-
formance of centralized learning tends to lag whereas distributed learners are able to 
continue improving the team performance. Our results suggest that substantially longer 
training times will be necessary for a centralized learner to achieve comparable perfor-
mance (see also the supplementary results in “Appendix”). The turning point of this 
trade-off is extremely challenging to pin down. Indeed it remains an open question as 
to how we can formalize this trade-off for any particular agent definition and any par-
ticular problem domain.

Our study into the impact of agent failure also highlighted the differences in recov-
ery response between the various agent definitions. Notably, mean learning perfor-
mance over multiple statistical runs was often not indicative of the best team perfor-
mance, with link t  agents often able to find the best joint policy overall despite lagging 
behind intersection agents in their mean performance. In particular, the distribution 
over the final team performances also indicated that intersection agents were able to, 
more frequently, discover team coordination strategies that resulted in high global 
rewards. Nevertheless, a multiagent team made up of link t  agents was able to recover 
the best overall joint policy after failure in all of the tested cases.

8.1 � Notes for practitioners

As explained in the introduction, the warehouse traffic management domain is ideally 
suited to studying the effect of agent definition on multiagent learning for coordination 
since the team formulation is decoupled from the complexity of the underlying problem. In 
general, we expect our findings to be applicable to other multiagent coordination domains 
which have similar characteristics. That is, where the agents participate in the domain not 
as the physical actors in the space, but by controlling the behavior of the physically inter-
acting elements. For example, through a hierarchical command structure such as packet 
routing in a communication network [30] or as designers of individual sub-components of 
a mechanism [15]. How the learning trends described in this paper extend more broadly to 
other classes of multiagent domains is a highly relevant question for further research.

Of course, one must always consider any higher level domain constraints when deciding 
how an agent can be defined in any particular multiagent domain. For example, to apply 
a multiagent team in a physical system, the main constraints on the agent definitions will 
come directly from the system implementation. These include the availability of sensor 
data, accessibility to control actuation and whether all or any of these data can be com-
municated across the multiagent system. Returning to the robot soccer example, if the 
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individual robots cannot communicate with each other or to a base station, then it is impos-
sible to have an agent that controls all of the defensive robots in the team.

8.2 � Future work

This study is intended as a starting point for further, more formal investigations into the 
effect of agent definition. As stated at the start, and demonstrated in our results, the defini-
tion of an agent in the context of its domain has a significant effect on team performance 
when learning to coordinate. So far we have tested a handful of possible agent defini-
tions on a single multiagent domain under different degrees of problem complexity. There 
remain a number of axes of variation that are yet to be explored. For example, we have not 
addressed the case where agents in the team have different definitions (i.e. a mix of link 
and intersection agents). However, the intersection agent definition in this work is an exam-
ple where team members have different state-action spaces, and consequently have differ-
ent levels of impact on the joint state-action space. Intersection agents that connect more 
edges of the graph have greater access to, and impact on, a larger portion of the joint space. 
Besides agent heterogeneity, other variations such as the presence of hierarchical structures 
within the multiagent team can provide greater insight into the overall impact of agent defi-
nition on multiagent learning for coordination.

Finally, it is worth noting that in this work we used a relatively simple evolutionary 
algorithm to optimize for the agent policies. While this was shown to be an adequate train-
ing routine for the domain at hand, extending to more complex multiagent coordination 
problems may require more powerful learning tools. At the same time, using a more pow-
erful learning method may also ameliorate (or exacerbate) some of the learning and coor-
dination challenges highlighted above. Thus, it is certainly worth investigating the degree 
to which this interaction between training routine and agent definition impacts the overall 
performance.

Code for the warehouse domain is available open source at https​://githu​b.com/JenJe​
nChun​g/multi​agent​_learn​ing.
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Appendix: Additional experiments on the centralized agent network 
architecture

We conducted additional experiments to assess the performance of the centralized learner 
when a more complex network architecture was available. In these experiments, the cen-
tralized agent uses the same relative number of hidden neurons as the intersection agents, 
i.e. four times the number of edges, which for 38 edges gives 152 hidden neurons. Thus, the 
centralizedrel agent has 11,590 weights defining its control policy while the centralizedt,rel 
agent with time information has 17,366 weights. This is over nine times more param-
eters than the originally tested centralized and centralized t  agent policies (see Table  1). 
Results are shown in Figs. 10, 11 and 12 below where the original centralized policies are 
in green and cyan (no time information and with time information, respectively), while the 

https://github.com/JenJenChung/multiagent_learning
https://github.com/JenJenChung/multiagent_learning
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performance of the larger neural network policies are shown in dark grey and light grey, 
respectively.

From these results, we see that, in practice, additional policy parameters do not enable 
substantially better learning performance. The centralized learner with time information is 
able to improve its learning performance when using the more complex network architec-
ture; however, the centralized learner without time information actually degrades in its per-
formance when more parameters are introduced. Of course, a more comprehensive sweep 
of possible network architectures would be needed to assess whether there exists a “sweet 
spot” that balances network representational capacity and learning complexity for each of 
these cases. Nevertheless, the basic centralized learner with no time information and only 
1254 network weights still outperforms all other policy architectures under all computed 
metrics. A quantitative comparison of the mean and medians of the final distributions is 
given in Table 4.

Fig. 10   Comparison of the average team performance across training epochs for different centralized agent 
policy architectures. Green and cyan plots are equivalent to those shown in Figs. 4, 5 and 6, while the grey 
curves show the performance of centralized agents whose neural network control policies have over nine 
times more parameters. Mean and one standard deviation (from 30 statistical runs) are shown for each set 
of experiments with increasing numbers of AGVs from (a)–(d). Best viewed in color (Color figure online)
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Finally, we note that in these experiments, we only run our learning algorithm for 500 
learning epochs. However, the learning trends suggest that to achieve substantial improve-
ments in the policy performance (e.g. beyond what is currently achieved by the intersec-
tion, intersection t  and link t  agents) will require a significantly greater learning effort. The 
bottleneck may lie in the underlying evolutionary algorithm that is used to train the poli-
cies. Thus, future work may consider adapting or replacing this routine with techniques 
that are tailored to efficiently training neural networks with large numbers of parameters.

(a) 90 AGVs (b) 120 AGVs

(c) 200 AGVs (d) 400 AGVs

Fig. 11   Best team performance across training epochs. Best viewed in color (Color figure online)
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Table 4   Percentage improvement 
of the basic centralized agent 
against all other centralized 
policies

90 AGVs 120 AGVs 200 AGVs 400 AGVs

 Mean (%)
Centralizedt 6.19 10.17 9.00 10.10
Centralizedrel 5.76 7.79 5.45 4.84
Centralizedt,rel 2.67 4.72 3.73 1.50
 Median (%)
Centralizedt 6.45 9.41 6.96 11.81
Centralizedrel 5.39 6.49 2.65 6.24
Centralizedt,rel 2.41 4.87 2.27 3.34

Fig. 12   Violin plots of the team performance distributions at the end of 500 training epochs. The ‘+’ sym-
bol represents the mean and the ‘ × ’ represents the median. The centralizedt,rel agent with 17,366 weights is 
able to improve on the performance of the centralizedt  agent, which only has 1862 weights. However, the 
basic centralized agent with only 1254 neural network weights produces the highest mean and median per-
formance under all four tested domain complexities
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