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Abstract
In this paper, we introduce a novel algorithm for incorporating uncertainty into lookahead planning. Our algorithm
searches through connected graphs with uncertain edge costs represented by known probability distributions. As a robot
moves through the graph, the true edge costs of adjacent edges are revealed to the planner prior to traversal. This locally
revealed information allows the planner to improve performance by predicting the benefit of edge costs revealed in the
future and updating the plan accordingly in an online manner. Our proposed algorithm, risk-aware graph search (RAGS),
selects paths with high probability of yielding low costs based on the probability distributions of individual edge traversal
costs. We analyze RAGS for its correctness and computational complexity and provide a bounding strategy to reduce its
complexity. We then present results in an example search domain and report improved performance compared with tra-
ditional heuristic search techniques. Lastly, we implement the algorithm in both simulated missions and field trials using
satellite imagery to demonstrate the benefits of risk-aware planning through uncertain terrain for low-flying unmanned
aerial vehicles.
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1. Introduction

When planning in unstructured environments, there is a
greater need for fast, reliable path-planning methods capa-
ble of operating under uncertainty. Planning under uncer-
tainty allows for robustness when faced with unknown
and partially known environments. We introduce a method,
risk-aware graph search (RAGS), for finding paths through
graphs with uncertain edge costs (similar to stochastic
shortest path problems with recourse (Polychronopoulos
and Tsitsiklis, 1996)). In the domain of interest, a robot
moves through an environment represented by a graph, and
the true costs for edges adjacent to the robot’s location are
revealed dynamically. Our method accounts for both the
uncertainty in the edge costs and the dynamic revealing of
these costs. Thus, we bridge the gap between traditional
search methods (Hart et al., 1968; Koenig and Likhachev,
2005) and risk-aware planning under uncertainty (Hollinger
et al., 2016; Murphy and Newman, 2013).

Traditionally, graphs are composed of nodes and edges,
with a node representing some state and an edge repre-
senting the transition between states. Effectively searching
through a graph with known edges has been researched
extensively and applies across disciplines in robotics, com-
puter science, and optimization. We aim to expand the
capabilities of graph search algorithms by allowing for

uncertainty in traversal costs and dynamic discovery of
those costs, while avoiding the blowup in computation
from more expressive frameworks (e.g. partially observ-
able Markov decision processes (POMDPs)). Our novel
approach searches over uncertain edge costs with known
distributions and properly adjusts as new information about
the edge costs becomes available. This formulation allows
for computationally efficient methods of reducing the risk
of traversing paths with high cost.

The main novelty of this work is the introduction of a
non-myopic graph search algorithm for risk-aware planning
with uncertain edge costs and dynamic local edge cost dis-
covery. RAGS is an online planning mechanism that incor-
porates live feedback for deciding when to be conservative
and when to be aggressive. With edge costs modeled as
probability distributions, we can derive a principled way of
leveraging information further down a path. This leads to a
trade-off between revealing the true cost of a large number
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of edges (exploration) and traversing uncertain edges with
low mean cost (exploitation). RAGS addresses this trade-
off in a principled way, and the result is a low probability of
executing a path with high cost.

We compare our method with A*, sampled A* (Murphy
and Newman, 2013), and a greedy approach on a large
number of random connected graphs. The results show
that RAGS reduces the number of high cost runs com-
pared with all other tested methods. In addition to testing
over random graphs, we validate RAGS using a real-world
dataset. By applying a series of filters to satellite imagery
data, we are able to extract potential obstacles that may
impede a robot moving through the map. To deal with the
imprecise nature of obstacle extraction, we can utilize the
benefits of RAGS to find paths that are less likely to be
substantially delayed. We show examples of different cases
in which RAGS finds preferable paths. The algorithm is
run on 96 satellite images taken from a broad set of land-
scapes. The resulting path costs over the image database
confirm the benefit of the RAGS algorithm in a real-world
planning domain. Finally, we conducted flight trials using a
DJI Matrice 100 quadcopter1 to demonstrate the real-time
application of the RAGS algorithm using onboard sensor
feedback.

This paper is an extended and revised version of our
prior work (Skeele et al., 2016), which was presented at
the 12th International Workshop on the Algorithmic Foun-
dations of Robotics. The main extensions are an improved
metric for initially bounding the set of best paths to con-
sider during execution, extending and improving the simu-
lations using real-world data, and the inclusion of flight trial
results demonstrating the application of the algorithm in a
real-world environment.

The remainder of this paper is organized as follows.
Section 2 provides a review of related work and research
in probabilistic planners. We formulate the path search
problem with uncertain traversal costs and dynamic edge
cost discovery in Section 3. In Section 4, we derive a
method for quantifying path risk (Section 4.1) and present
a way to reduce the search space by removing dominated
paths (Section 4.2). The complete RAGS algorithm is pre-
sented in Section 4.3 and we show comparisons to existing
search algorithms in Section 5. We then highlight the utility
of RAGS by demonstrating its effectiveness for planning
through various terrain captured from satellite imagery in
Section 6 with flight trial results presented in Section 7.
Finally, in Section 8, we draw conclusions and propose
future directions for this line of research.

2. Related work

Planning under uncertainty is a challenging problem in
robotics. An underlying assumption in many existing plan-
ning algorithms is that the search space is not stochastic,
that is there is high certainty in the search space. Under
this assumption, researchers have developed many powerful

algorithms such as A* (Hart et al., 1968) and RRT* (Kara-
man and Frazzoli, 2011) that perform efficient point-to-
point planning over expected costs (see Latombe (2012) and
LaValle (2006) for surveys). These algorithms are efficient
for problems with deterministic actions and a well-defined
search space, but are often not well suited to planning under
uncertainty. Recent work has explored ways of incorpo-
rating uncertainty into similar planners in field robotics
applications (Bohren et al., 2011; Hollinger et al., 2016).

Reasoning probabilistically in robotic planning allows
performance to degrade gracefully when encountering the
unexpected. Notable work has been done on incorporating
uncertainty from sensors into the state estimation of the sys-
tem (Kalman, 1960; Kurniawati et al., 2008), or in the path
planning itself (Bry and Roy, 2011; Chaves et al., 2015).
However, uncertainty can lie in both the state and the world
model, so we must address both sources of uncertainty to
plan effectively.

Prior work in uncertain traversability of graph edges has
focused on a binary status of the edge. This family of prob-
lems is a variant of the shortest path problem known as the
Canadian traveler problem (CTP) (Papadimitriou and Yan-
nakakis, 1991). The CTP is inspired by drivers in northern
Canada who sometimes have to deal with snow blocking
roads and causing delays. The focus of CTP, and variations
of it, is to plan paths/policies when graph connections are
uncertain. A slight variation, known as stochastic shortest
path with recourse (SSPR) (Polychronopoulos and Tsitsik-
lis, 1996), adds random arc costs. Our problem formulation,
similar to the CTP and SSPR, provides local information
during traversal. This is also consistent with the algorithm
PAO* for domains where there is a hidden state in the graph
(Ferguson et al., 2004). The hidden state relates this work
to POMDPs (Monahan, 1982), which provide an expressive
framework for uncertain states, actions, and observations.
In our case, we assume there is only uncertainty in the tran-
sition costs, which avoids the computational blowup often
found in large POMDPs.

Planning over the expected cumulative cost is another
relevant variant of the shortest path problem (Hou et al.,
2014). Risk-sensitive Markov decision processes (MDPs)
are one approach to such stochastic planning problems.
These solutions address cases where large deviations from
the expected behavior can have detrimental effects (Carpin
et al., 2016). Previous approaches have used a parameter for
risk aversion to solve risk-sensitive MDPs (Marcus et al.,
1997). Like these techniques, we aim to avoid large devia-
tions from the expected value while planning for low costs;
however, we also look to exploit local information available
during execution. We build on work in risk-aware planning
(e.g. risk-sensitive MDPs), which deal with probability dis-
tributions over outcomes. Other risk-aware planning tech-
niques in the literature use bounding of likelihood (Sun
et al., 2015) by minimizing the path length with respect to
a lower bound on the probability of success. This is simi-
lar to work in Feyzabadi and Carpin (2014), which instead
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bounds the average risk. These algorithms define reasonable
ways of assigning a value for trading off between risk and
a primary search objective such as distance, but they do not
incorporate dynamically revealed information as part of the
search.

The stochastic edge cost problem has been approached
using an iterative sampling method when dealing with
uncertainty in terrain classification (Murphy and Newman,
2013). In this prior work, the edge values between land-
marks are sampled from modeled cost distributions, and
A* is used over each sampling to generate a list of paths.
The paths most frequently taken are considered the most
likely to return low cost paths, which yields a method (sam-
pled A*) that we test our algorithm against. In our work, we
derive a formula for reducing the risk of a path based on the
uncertainty of the traversal costs themselves, which allows
for a more expressive framework than heuristic searches
and reduced computational requirements compared with
sampled approaches.

3. Problem formulation

In this paper, we consider the problem of planning and exe-
cuting a risk-aware path through an uncertain environment
where knowledge of the true traversal costs are revealed
only as we arrive within some proximity of an area. This
planning scenario can be described over a graph with edge
costs initially represented by some set of distributions, with
the true edge costs identified as we arrive at the parent
node of each edge during the path execution. Throughout
this paper we use the term “risk” in its general sense to
describe the uncertainty of an outcome, i.e. committing to
any particular path from start to goal has an associated risk
because the true cost of the traversal is unknown at the
start of execution. The generality of the RAGS formulation
is such that the cost can represent any metric, e.g. travel
time, path length, energy expenditure or probability of col-
lision/failure (as in SSPR), as long as the outcomes can be
modeled as a distribution. Although we focus on a path cost
minimization objective in this paper, we note that this for-
mulation could represent informative path-planning objec-
tives by considering the equivalent maximization problem
(Meliou et al., 2007). We now formulate the path search
problem with uncertain edge costs and introduce notation
that will be used throughout the paper.

Consider a graph G = (V , E) where the cost of travers-
ing edge E ∈ E is drawn from a normal distribution
N (

μE, σ 2
E

)
. The cost of a path P ⊂ E is the sum of the

edge traversal costs, each of which are normally distributed.
Thus, the total path cost is drawn from N (

μP , σ 2
P

)
, where

μP =
∑

P μE and σ 2
P =

∑
P σ 2

E . This formulation is simi-
lar to that of the random network used in Polychronopoulos
and Tsitsiklis (1996).

Assumption 1. The true edge costs are drawn as inde-
pendent and identically distributed (i.i.d.) samples from the
respective cost distributions when queried.

Fig. 1. Setup of pairwise comparison for sequential lookahead
planning. Given the path cost distributions, we can directly com-
pute the probability that traveling from Start to Goal through A
will ultimately yield a cheaper path than traveling via B.

An important implication of Assumption 1 is that
although multiple paths may share a subset of edges, all
paths can be treated as having independent cost distribu-
tions. This is analogous to a problem where traversal costs
are not fixed, but instead vary over time, and edge costs are
queried upon arrival at the parent node. This assumption
simplifies the computation of risk and dominance (shown
later in Section 4) without significantly changing the nature
of the problem.

Given any pair of start and goal vertices in the graph,
Vs, Vg ∈ V , the task is to traverse the graph along the acyclic
path of least risk. More precisely, since each edge transition
prunes the available set of paths to the goal, the path of least
risk retains the highest probability of traversing the overall
least-cost path as each transition is executed from Vs to Vg.

The decision at each vertex can be formulated by con-
sidering the next available transitions and their associated
path sets. For example, say edge connections exist between
the current vertex Vt and each of the vertices in the set
Vt+1 = {A, B, C, . . .}; furthermore, m acyclic paths exist
from vertex A to Vg, whereas n acyclic paths exist from
vertex B to Vg, etc. Let A be the set of random variables

Ai, i = {1, . . . , m}, where Ai ∼ N
(
μAi , σ

2
Ai

)
represents the

cost distribution of path i from vertex A to Vg (see Figure 1).
Let cAi be a sample of the random variable Ai and let cA0 be
the known cost of transitioning between Vt and A, then the
lowest-cost path from Vt to A and onwards to Vg has cost:

cAmin = cA0 + min
Ai∈A

cAi (1)

Similar statements can be made for path sets B, C, . . .. To
traverse the path of least risk, each edge transition must
select the next vertex V ∈ Vt+1 such that the following
probability holds:

P
(

cVmin < cV ′min

)
≥ 0.5, ∀V ′ ∈ Vt+1 \ V (2)

That is, transitioning to vertex V results in a higher prob-
ability of executing a lower cost path than transitioning to
any other neighboring vertex V ′.
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4. RAGS

4.1. Quantifying path risk

The pairwise comparison P
(
cAmin < cBmin

)
describes the

probability that the lowest-cost path in the set A is cheaper
than the lowest-cost path in the set B. Given Assumption 1,
this probability can be expanded to

P
(
cAmin < cBmin

) =
∞∫
−∞

P
(
cBmin = x

) · P (
cAmin < x

)
dx (3)

We can now express each term in the integral according to
the path cost distributions of each respective set. Let,

f (x,A) = P
(
cAmin < x

)
g(x,B) = P

(
cBmin = x

)

As each of the path costs are drawn from normal distribu-
tions, then

f (x,A) = 1−
m∏

i=1

1
2 erfc (d(Ai)) (4)

g(x,B) =
n∑

j=1

⎡
⎢⎣ 1√

2πσBj
exp

(
−d

(
Bj

)2
)
·

n∏
k=1
k 
=j

1
2 erfc (d(Bk))

⎤
⎥⎦

(5)

where d (ζi) = x−cζ0−μζi√
2σζi

.

As an aside, note that f ′(x, ·) = g(x, ·). Thus, using
integration by parts, we can show that

P
(
cAmin < cBmin

) = 1− P
(
cBmin < cAmin

)

confirming that these two events are indeed complementary.
Equations (4) and (5) give some intuitive insight into the

calculation of path risk. This formulation performs a trade-
off between the number of available paths in each set and
the quality of the paths in each set, the latter represented
by the means and variances of the path cost distributions.
For example, f (x,A) calculates the probability that the best
path in A has a path cost less than x (the plot of f (x,A) is
shown in Figure 2 for μA0 = {20} and σA0 = {5} as well
as six other path set variants). From Equation (4), we note
that as m → ∞, f (x,A) → 1, ∀x ∈ (−∞,∞). This is
shown in the solid curves plotting f

(
x,A0,1,2

)
in Figure 2

(black, dark blue, and light blue, respectively). Path set A1

has twice as many paths (of equal means and variances) as
A0, whereas A2 has three times as many. The curves show
a trend towards an earlier and more rapid transition to 1
as m increases; however, the difference between f (x,A2)

and f (x,A1) is much smaller than the difference between
f (x,A1) and f (x,A0), suggesting that adding more paths
results in diminishing returns in terms of driving f (x,A)→
1, ∀x ∈ (−∞,∞).

Fig. 2. Plot of f (x,A), probability of the cost of the path being
less than x, for seven path sets; A0 has a single path with cost

drawn from N
(

20, 52
)

. This plot shows the effects of including

additional paths to the set whose costs are drawn from varying
distributions. This figure is best viewed in color.

Other trends can be observed when adding paths of vary-
ing cost distributions to the set. Here A3 includes a second
path with lower mean and equivalent variance to A0. The
corresponding f (x,A3) (red, dot-dashed) is shifted signifi-
cantly to the left of f (x,A0), causing the transition towards
1 to occur much earlier. On the other hand, the addition
of a second path with higher mean and equivalent vari-
ance results in almost no change to the curve, as shown by
the overlap between f (x,A4) (yellow, dashed) and f (x,A0).
Adding a path with equivalent mean but a lower variance
results in the plot of f (x,A5) (purple, dot-dashed), which
shows a much more rapid transition to 1 compared with
either f (x,A0) or f (x,A1). However, the addition of a path
with equal mean and higher variance increases the over-
all uncertainty associated with the path set, as shown by
the shallower gradation in the probability curve of f (x,A6)

(green, dashed). Furthermore, this means that although the
transition towards 1 begins at lower values of x, as x→∞,
f (x,A6) → 1 more slowly than for f (x,A1) or f (x,A5).
Indeed, the cross-over occurs at the mean, x = 20. For
x < 20, f (x,A6) lies above both f (x,A1) and f (x,A5), after
this point, their ordering reverses.

This analysis motivates a bounding approach that com-
pares the values of path cost means and variances to retain
only the most relevant paths for the calculation of Equa-
tion (3). Bounding the path set is especially desirable since
the computation of each pairwise comparison has complex-
ity O(

n2m
)
, where n and m are the sizes of the path sets

under consideration.

4.2. Non-dominated path set

Existing graph search algorithms, such as A*, use a total
ordering of vertices based on the calculated cost-to-arrive
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to find a single optimal path between defined start and goal
vertices. In contrast, an implementation of RAGS requires
two sweeps of the graph, because an initial pass is required
to gather cost-to-go information at each node for quantify-
ing the path risk at execution. If all possible acyclic paths
between start and goal are to be considered, then this ini-
tial pass is exponential in the average branching factor of
the search tree. To reduce this computation, we introduce
a partial ordering condition based on the path cost means
and variances to sort the priority queue and terminate the
search. This bounds the set of resultant paths to be consid-
ered during execution by accepting only those that exhibit
desirable path cost mean and variance characteristics.

As discussed in Section 4.1, the addition of paths with
higher mean costs to the existing path set results in lit-
tle improvement in the overall risk of committing to that
set. Similarly, adding paths with higher variances on the
path cost results in a slower convergence of f (x,A) to 1.
In our prior work (Skeele et al., 2016), we used a simple
comparison between the path cost distribution properties
to bound the path set by removing all paths with strictly
higher means and variances. However, because we consider
costs defined by normal distributions that are evenly dis-
tributed about the mean, a path with high cost variance has
an equal probability of resulting in both more or less expen-
sive traversals. Furthermore, these probabilities are greater
than that of a path with the same mean cost but a lower cost
variance. Thus, naïvely penalizing paths with high variance
can result in a loss of optimality. In this work, we update
the partial ordering criterion from Skeele et al. (2016) to
formally trade-off path cost mean and variance according
to our probabilistic definition of path risk introduced in the
previous section.

In practice, the partial ordering considers whether a path
is dominated by an existing path, either in the open or
closed set. For any two paths, A and B, between the same
set of start and end vertices, we can consider the probabil-
ity that the cost of traversing A is lower than the cost of
traversing B,

P (cA < cB) = 1− P( cB − cA ≤ 0)

As both path costs are represented by normal distributions,
then cB − cA ∼ N (

μB − μA, σ 2
B + σ 2

A

)
, such that

P (cA < cB) = 1−�

⎛
⎝ μA − μB√

σ 2
B + σ 2

A

⎞
⎠

where �(·) is the cumulative distribution function of a nor-
mal distribution. Here we introduce the domination thresh-
old, dthresh ∈ [0.5, 1), such that if P (cA < cB) > dthresh, then
we say that A dominates B. That is

A  B⇔ 1−�

⎛
⎝ μA − μB√

σ 2
B + σ 2

A

⎞
⎠ > dthresh

Expanding �(·), this becomes

A  B⇔ μA < μB +
√

2
(
σ 2

B + σ 2
A

)
erf−1 (1− 2dthresh)

(6)
The inverse error function term in Equation (6) produces

a value between (−∞, 0], which scales the contribution of
the distribution variances in the path domination compar-
ison. The effect of this is such that as dthresh → 1, the
right-hand side of the inequality in Equation (6) goes to
−∞, and the number of dominated paths goes to 0. In other
words, the number of paths in the non-dominated path set
grows to contain all possible paths from start to goal as
dthresh → 1. On the other hand, when dthresh = 0.5, the
non-dominated path set reduces to those paths with optimal
mean cost. This is formalized in Lemma 1 and Theorem 1
below.

Lemma 1. Given the graph G = (V , E) as defined in
Section 3, the non-dominated path sets PND and P ′ND are
generated by using domination thresholds dthresh and d′thresh,
respectively. If dthresh ≤ d′thresh, then PND ⊆ P ′ND.

Proof. Proof by contradiction: If PND � P ′ND, then there
exists a path B where B ∈ PND and B /∈ P ′ND. It follows
from Equation (6) that there exists a path A such that the
following inequalities hold true:

μA < μB +
√

2
(
σ 2

B + σ 2
A

)
erf−1 (

1− 2d′thresh

)

μA ≥ μB +
√

2
(
σ 2

B + σ 2
A

)
erf−1 (1− 2dthresh)

This gives

erf−1 (1− 2dthresh) < erf−1 (
1− 2d′thresh

)

As erf−1 is a strictly increasing function, then

1− 2dthresh < 1− 2d′thresh ⇒ dthresh > d′thresh

which contradicts the required condition.

Theorem 1. For any dthresh ∈ [0.5, 1), the non-dominated
path set includes the A* path calculated on the mean of the
edge cost distributions.

Proof. Let path B be the A* path calculated on the mean,
which has the lowest total mean cost, μB = μmin. Accord-
ing to Equation (6), when dthresh = 0.5, the domination
condition is given by μA < μB. However, by definition,
for all paths A, μA ≥ μmin. Thus, the A* path calculated
on the mean of the edge cost distributions will be con-
tained in the non-dominated path set for dthresh = 0.5. It
follows from Lemma 1 that this path will be included in all
non-dominated path sets for dthresh ∈ [0.5, 1).
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Algorithm 1 RISK-AWARE GRAPH SEARCH

// INITIAL SWEEP

1: Initialize open, closed, PND ← ∅ � Initialize open and closed sets, and non-dominated path set
2: Vs ← start, Vg ← goal
3: Ns ← ∅, Ns.append(Vs) � Initialize start node
4: open.push(Ns) � Place the start node in the open set
5: while open 
= ∅ do
6: N0 ← open.pop() � Current search node
7: closed.push(N0)
8: if N0.getVertex() = Vg then
9: PND.push(N0) � Non-dominated path to goal found

10: else
11: Vt+1 ← getNeighbors(N0,G) � Expand the current node
12: for V in Vt+1 do � Assess all neighboring vertices
13: N ← N0.append(V ) � Compute child node
14: if notAncestor(V , N0) ∧ nonDom(N , closed) then
15: open.push(N) � Open set sorted according to dominance

16: if ¬nonDom(open.top(), PND) then � End search if all nodes in the open set are
17: break dominated by the non-dominated path set

// PATH EXECUTION

18: GND ← PND � Directed graph formed by non-dominated path set
19: N ← ∅
20: V0 ← Vs

21: while V0 
= Vg do
22: N .append(V0)
23: Vt+1 ← getNeighbors(N ,GND)
24: Vordered ← ComparePathSets(Vt+1,GND) � Total ordering of vertices from Equation (3)
25: V0 = Vordered.pop() � Execute edge traversal

From a practical perspective, the purpose of the domina-
tion threshold is to determine the cutoff point for deciding
which paths are included in the non-dominated path set and
which are excluded. For example, with a domination thresh-
old of 0.6, all paths in the non-dominated set have at least
a 60% probability of incurring a lower cost than any path
excluded from the set, i.e. if path A dominates path B, then
path B has < 40% chance of being the better path. As we
increase the domination threshold, more paths are included
in the non-dominated set, reducing the chances that the true
best path is excluded from the set. However, at the same
time, these newly added paths to the non-dominated set
also have a successively lower probability of actually being
the best path. In our comparative experiments in Section 5,
we show that beyond a certain domination threshold, there
does not appear to be value in adding more paths to the
non-dominated path set, i.e. the additional paths serve to
confound the online decision making rather than provide
useful options.

4.3. RAGS dynamic execution

Given the non-dominated path set, path execution can occur
by conducting edge transitions at each node to select the
path set of least risk according to Equation (2). The true

edge transition costs, which become available for all neigh-
boring edges to the current node, are included by directly
substituting the known value of cV0

into Equation (1).2 The
pseudo-code for the complete RAGS algorithm is provided
in Algorithm 1; an initial sweep of the graph is conducted
to search for the non-dominated path set, and a second
sweep is conducted during execution to incorporate edge
cost information as it is received.

The initial sweep, shown in lines 1–17 of Algorithm 1, is
similar to the A* procedure with three notable exceptions.
First, in lines 8 and 9, if the current node contains a path
from start to goal, then it is included in the non-dominated
path set. Second, in line 14, each child node of the current
expanded node is checked against the ancestor list to explic-
itly exclude looping paths. Furthermore, a child node is also
excluded at this point if it is found to be dominated by any
node in the closed set with the same end vertex. Third, in
line 16, the initial sweep is terminated either when open
set is empty or when the next node to be expanded from the
open set is found to be dominated by any node in the current
non-dominated path set.

The RAGS online execution begins by constructing the
directed graph formed by the non-dominated path set
(line 18). Beginning at the start vertex (line 20), each edge
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(a) (b)

Fig. 3. A sample search graph is shown in (a). The mean cost is the sum of the Euclidean distance plus a random additional cost. Edge
variances are represented using a scale from blue to yellow on the graph. The darker (more blue) the edges, the less variance there is
on the cost. The non-dominated path set (red) and the executed RAGS path (black) shown in (b) demonstrate the algorithm’s ability to
account for both the path cost distributions as well as the available path options to goal. Not only does it favor traversing edges with
balanced mean costs and variances, it also trades off against the number of remaining path options to the goal. Best viewed in color.

Fig. 4. Path search results over 100 samples of one graph configuration (unique vertices and mean edge costs); edge cost variances
are drawn uniformly between 0 and {5, 10, 20} for the three plots (a)–(c), respectively. RAGS computed the non-dominated path set
according to a domination threshold on dthresh = 0.60. The difference in cost of the executed path and the true optimal path as a
percentage of the optimal path cost is shown. Note that the true optimal path cost can only be calculated in hindsight.

transition first considers the set of all neighboring vertices
(line 23), and computes a total ordering of the possible
traversals according to Equation 3 (line 24). It is here that
RAGS incorporates the observed costs of the next transi-
tions if that information is available. The edge traversal to
the best vertex from this set is executed (line 25), and this
loop continues until the goal vertex is reached.

5. Comparison with existing search
algorithms

We compared RAGS against a naïve A* implementation,
a sampled A* method, and a greedy approach. Naïve A*

finds and executes the lowest-cost path based on the mean
edge costs and does not perform any replanning. The greedy
search is performed over the set of non-dominated paths
and selects the cheapest edge to traverse at each step. The
sampled A* method searches over graphs constructed by
sampling over the edge cost distributions and executes the
path that is most frequently found. To provide a fair com-
parison, the planning time of sampled A* (related to the
number of sampled graphs it plans over before selecting the
most frequent path) is limited to the time RAGS needed to
find a path. We chose A* to compare against as a simplified
solution to the problem and sampled A* because the method
was previously introduced in a similar domain (Murphy and
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Fig. 5. (a) Final median path cost performance, (b) computation times, and (c) path set size across varying domination thresholds for
σ 2

max = 10. In (a), the bars indicate the average first and third quartiles over the 100 graphs (each sampled 100 times). Note that the
curves are slightly offset along the x-axis to aid clarity. In (b) and (c), the error bars show the 95% confidence intervals.

Newman, 2013). The greedy approach provides a baseline
for comparison to a purely reactive implementation.

The search algorithms were tested on a set of graphs gen-
erated with a uniform random distribution of 100 vertices
over a space 100× 100 units in size and connected accord-
ing to the PRM* radius (Karaman and Frazzoli, 2011). Edge
costs were represented by normal distributions with mean
equal to the Euclidean distance between vertices plus an
additional cost, cE ∼ N (

μE, σ 2
E

)
. The mean over each

edge cost distribution was drawn from a uniform random
distribution, μE ∼ U (0, 100), whereas the variance was
also drawn from a uniform distribution σ 2

E ∼ U (
0, σ 2

max

)
,

where σ 2
max = {5, 10, 20} for each unique set of graph ver-

tices and mean edge costs. Note that a minimum cost of the
Euclidean distance was enforced in the following experi-
ments. The start vertex was defined at Vs = (0, 0), with
the goal at Vg = (100, 100). Figure 3a gives an example of
a randomly generated graph, with edge variance shown in
blue-yellow scale (darker blue lines having a smaller vari-
ance). In Figure 3b, the non-dominated path set is shown in
red and the RAGS path is shown in black.

In Figure 4, we show the resulting path costs for 100 tri-
als over a single graph configuration, where each trial drew
new edge costs from the distributions as described above.
For this set of experiments RAGS used a domination thresh-
old of dthresh = 0.60 to compute the non-dominated path
set. Of the four tested path-planning methods, naïve A* is
the only technique that always executes the same path. This
is because the A* path is calculated according to the mean
edge costs, which are fixed for each graph. Naïve A* per-
forms relatively well in the mean but is prone to incurring
expensive traversals. For example, the most expensive A*
path in Figure 4c costs 83.5% more than the optimal path,
whereas this number drops to 62.3% for RAGS. RAGS is
able to mitigate against severely high cost outcomes by

trading off the means and variances of available routes as
well as maintaining more future path options, demonstrat-
ing the benefits of risk-aware planning. Furthermore, the
difference between the path cost results for the greedy plan-
ner and RAGS shows that although the initial sweep for
the non-dominated path set can remove the most severely
expensive path options, the more sophisticated decision
making used in the RAGS plan execution contributes sig-
nificantly to the overall success of RAGS. Owing to the
myopic nature of its planning, greedy is fallible to arriv-
ing at vertices with few path alternatives that all turn out
to have high cost. RAGS does not suffer from the same
performance decay because it accounts for the full path-to-
goal cost distribution at each decision instance. The greedy
results suggest that similar replanning strategies based only
on the immediate edge cost updates may suffer from simi-
lar one-step lookahead myopia if downstream risks are not
incorporated into the planning.

The sampled A* approach can account for variability
in costs along the edges as long as it can sample enough
paths. However, similar to naïve A*, this method is also
prone to risky paths that yield high-cost outliers because
it cannot incorporate dynamic local information in the way
that RAGS does. In fact, for this set of trials, sampled A*
produced the poorest path choices compared to all other
methods. This is partly because the domination threshold
for these trials was set relatively low, and so the number
of equivalent Monte Carlo graphs used by sampled A* was
also relatively low.

The collated results from 100 unique graph configu-
rations, with each graph sampled 100 times, are shown
in Figure 5. Figure 5a shows the final path cost perfor-
mance for a range of domination threshold values, dthresh ∈
[0.50, 0.75]. As the domination threshold is increased, the
performance of greedy planning on the non-dominated path
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set deteriorates rapidly. On the other hand, the performance
of sampled A* improves as dthresh increases. This is largely
because the computation time for RAGS increases as well,
allowing sampled A* to use a larger number of Monte
Carlo graph samples to determine the final executed path.
For dthresh ∈ [0.5, 0.65], RAGS outperforms naïve A* but
begins to perform poorly for larger values of the domina-
tion threshold. This confirms that the additional paths intro-
duced into the non-dominated path set at higher thresholds
are less likely to produce better paths. In fact, these results
indicate that those paths become confounding factors dur-
ing the online path execution. RAGS is most beneficial at
lower values of dthresh since it is able to identify the critical
subset of paths that ultimately provide the best path options
when traversing a graph with fluctuating edge costs.

Figure 5b shows the path search and execution times
for each method and the total number of Monte Carlo
graph queries performed by sampled A*. Graph search and
execution was calculated on a 2.1 GHz Intel® Core™ i7-
3612QM laptop. The computation time for the greedy plan-
ning method on the non-dominated path set closely follows
that of RAGS, indicating that the majority of the compu-
tation cost is incurred during the initial sweep rather than
during the online path execution. As expected, the computa-
tion time for A* planning is stable and the number of Monte
Carlo graphs queried by sampled A* is proportional to the
RAGS computation time. By comparing Figures 5a and 5b,
we can see that sampled A* requires over 50 Monte Carlo
samples of the graph to improve upon the performance of
RAGS.

The number of paths stored in the non-dominated path
set for increasing dthresh values are also plotted against the
number of sampled A* graphs in Figure 5c. Note that all
paths in the RAGS non-dominated set are unique, whereas
the sampled A* paths may not be. RAGS is able to con-
sider a significantly larger set of possible paths compared
with sampled A* for two main reasons. First, sampled A*
needs to draw values from all edge cost distributions and
run the A* search for each Monte Carlo query. In compar-
ison, RAGS only runs a single search through the graph
during the initial sweep and leverages the path domination
metric to handle the node expansion ordering throughout.
Second, as mentioned above, the RAGS online execution is
relatively fast compared with the initial sweep. This is due
in part to the natural path set pruning that occurs during
execution, where after each edge traversal, the remaining
path segments to goal in the non-dominated set successively
shrinks, thereby making the calculation of Equation (3)
faster.

6. Satellite data experiments

We also applied RAGS to a real-world domain using
satellite data. In robotic path planning there is often prior
information available on the environment, but this infor-
mation is not necessarily reliable. An example of this is

using overhead satellite imagery to provide prior informa-
tion for path planning. In these trials, we collected and
filtered satellite images to identify potential obstacles for
a low-flying unmanned aerial vehicle (UAV). To convert
the image into a useful mapping of obstacles, we filtered
the satellite images to identify trees. The filtering process
begins by applying a Gaussian filter to locally homoge-
nize the images. Then the trees were extracted from the
filtered images based upon pixel color; an example satel-
lite image input and the resulting obstacles are shown in
Figures 6a and 6b.

After the filtering process, the images provided a rough
estimate of obstacles that could force the vehicle to slow
down or alter its path. Unfortunately, due to the resolution
of the satellite imagery, limitations of the tree/obstacle fil-
ter, and temporal differences between when the images were
taken, the satellite imagery cannot be used to provide a
guaranteed cost to traverse an area. For example, the obsta-
cle detection cannot determine the height of the detected
trees to determine if the UAV can fly above them or will be
forced to detour around them. Consequently, the imagery
can only be used as an estimate of the obstacles in the envi-
ronment and the additional costs the obstacles will add to
the flight path. Using the same method as before, we ran-
domly sampled the space to generate a connected graph of
flight paths. To estimate the costs of flight paths we calcu-
lated the mean and variance of the detected obstacle pixels
over each edge and used these values to characterize the
edge cost distributions. This process was then repeated for
every edge in the graph. Example graph means and vari-
ances are shown in Figures 6c and 6d. The mean pixel
lightness of the obstacle map along an edge was used to
scale the Euclidean distance to generate mean edge costs.
This was used to represent a penalty for the increased likeli-
hood of an obstacle and a slower flight speed. The variance
in pixel lightness across an edge in the obstacle map was
directly used as the edge cost variance in our calculations.
After the edges were assigned distributions, RAGS with
dthresh = 0.60 was used to search through the graph for a
path from the top left start vertex to the bottom right goal
vertex. Here dthresh = 0.60 was chosen because it allows for
exploration while not growing the non-dominated set to be
too large. Actual values of the edge costs were drawn from
the distribution as the simulated robot moved through the
terrain.

6.1. Results

We compared the performance of RAGS with the three
other planning algorithms across 96 satellite images. The
images are of fields with trees of varying tree densities and
may also contain houses or other built structures. Images
were captured at different resolutions as well as at differ-
ent altitudes. The majority of the data have tree clusters
scattered throughout the image to provide interesting path-
planning dilemmas. Four distinct environments are shown
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(a) (b)

(c) (d)

Fig. 6. An example of a raw satellite image (a) and the extracted obstacles shown in white (b). The mean estimated obstacle edge costs
(c) and variance (d) for the raw satellite image in Figure 6a. Lower values are black and higher values transition to red, best viewed in
color.

in Figures 7, 8, 9, and 10. To avoid visual clutter, only the
RAGS, A*, and hindsight optimal paths are shown here. The
hindsight optimal path contains no notion of risk and is cal-
culated solely on the “true” edge traversal costs, which are
not observable to the planners until they reach a neighbor-
ing node. As in the previous experiments in Section 5, for
each sample of an image, we draw the true costs from the
computed distributions and use these to evaluate the exe-
cuted paths of each planner. Compiled results for all four
planning algorithms on the satellite imagery dataset are
presented in Figure 11.

In Figure 7, the paths through an empty field are straight
from start (magenta triangle) to goal (cyan circle). As
expected, there is little variance in edge costs across the
open field, and the trajectories for RAGS and A* are iden-
tical and follow the optimal path. In Figure 8 the two plan-
ners, RAGS and A*, again follow identical paths in the
presence of an obstacle field with limited options. This map
results in one obvious intuitive path for the planners to find
and demonstrates their ability to plan a trajectory around
obstacles.

Analyzing the paths found in Figure 9 is more inter-
esting than the previous two examples. Here we start to
see the benefit of RAGS in obstacle-dense environments.
The path from start to goal is blocked by large clusters
of semi-permeable forest. A* executes a path through the
center of the cluster that has a low cost in the mean but

does not allow for easy deviations if the path is found to
be untraversable. On the other hand, the path executed by
RAGS demonstrates the non-myopic nature of this algo-
rithm. RAGS executes a path that travels around the main
cluster to minimize the portion of the path within the dense
section of the forest. The executed path balances the risk of
traversing high-cost edges at the start and end of the path
with the benefit of exploiting the sections of open field in
the bottom left. Although the RAGS path length is longer
than the A* path, it ultimately achieves a lower total cost.
Values are drawn from the edge distributions to calculate
what would have been the optimal path in hindsight. The
optimal path (known only after execution) is shown in red,
and we can see that it also avoids the center route executed
by A*.

The final test case can be seen in Figure 10, here A*
actually outperforms RAGS. In this test case the hindsight-
optimal and A* path is to push through the center of the
cluster along edges with potentially higher penalties, but a
shorter Euclidean distance. The RAGS planner alternatively
takes a path that largely avoids the cluster along a safer,
although ultimately slightly higher-cost, path.

The compiled results for all tested algorithms are shown
in a box plot of percentage above the hindsight optimal in
Figure 11. From the comparison on the three randomly gen-
erated graphs in Section 4.3, we showed that the relative
performance of RAGS increases as edge variance increases.



192 The International Journal of Robotics Research 38(2-3)

Fig. 7. The RAGS, A*, and the global optimal (known only in
hindsight) paths with the final path costs. The goal is to traverse
from the top left start vertex to the bottom right goal vertex.
The empty field is a test case showing that both algorithms plan
direct paths as expected in an obstacle-free environment. Note that
although only the final executed RAGS path is shown, the entire
non-dominated path set is considered during the online traversal.

Fig. 8. Test case demonstrating that both A* and RAGS plan an
intuitive path in the presence of obstacles. The planners remain
in the empty fields for the duration of the path and only enter the
forest briefly as expected.

This is accounted for by the fact that the other planning
algorithms are merely searching over the single heuristic
of mean traversal cost. If variance is low then this can be
enough to solve for a path that is close to the optimal solu-
tion. However, Figure 11 reveals that real-world datasets can
contain significant noise, and it is valuable to account for
that variability during planning.

7. Flight trials

In addition to the satellite data experiments, the RAGS plan-
ner was tested on a quadrotor traversing through an unstruc-
tured wooded environment. The quadrotor is provided a
graph representation of the environment, consisting of the
edge cost distributions calculated from satellite imagery of
the area. It then uses either A* to plan a route, or RAGS
to generate the non-dominated path set, from the start to
finish locations. The goal of the quadrotor is to fly to the fin-
ish location as quickly as possible while avoiding obstacles

Fig. 9. The RAGS path traveling through an initial cluster of trees
to take full advantage of the clear route over the open field. In con-
trast, A* finds a path that attempts to navigate straight to the goal
through the dense forest without consideration of the cost variabil-
ity of that region. The costs after execution show that the RAGS
path is actually cheaper due to balancing the risk of finding a path
through the initial tree cluster that connects to a less-risky path to
goal. This demonstrates the benefit of RAGS, knowing when to
take risks and when to act conservatively.

Fig. 10. Paths planned through a dense cluster of trees surround-
ing the goal. Here we can see RAGS plans around the cluster,
where the path is ultimately shorter but has a higher risk, before
traversing through a less-cluttered area. RAGS takes advantage of
the wide open region instead of searching for narrow tracks within
the tree cluster.

in the environment and following either the A* or RAGS
path, the latter of which is updated online given sensor feed-
back. The quadrotor uses on-board sensing and computing
to plan its trajectory, detect and avoid obstacles, and re-plan
as needed autonomously and in real time while navigating
the path.

The quadrotor used in these experiments is the DJI
Matrice M100 equipped with a ZED RGBD camera3 and
Nvidia Jetson TX2 Development Board,4 as shown in Fig-
ure 12.5 The Jetson TX2 uses Ubuntu 16.04 and Robot-
Operating System (ROS) Kinetic-Kame.6 The motion of
the Matrice is restricted to a 2D plane by controlling the
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Fig. 11. Results from satellite data experiments, using 100 sam-
ples of 96 images. Box plots represent the path cost percentage
above what would have been, in hindsight, the optimal path. The
same trends in performance are seen as with the simulated graphs.
By accounting for the uncertainties in travel cost, RAGS is able to
reduce the risk of executing expensive paths.

Matrice to a fixed altitude of 10 m above ground level. The
Matrice’s heading is controlled to orient the ZED RGBD
camera in the direction of travel; effectively always facing
the Matrice forward. The ZED’s depth image, accessed via
the ZED-ROS-wrapper,7 is used to detect obstacles at the
quadrotor’s operating altitude. As obstacles are detected,
they are inflated and added to a 2D occupancy map at 100
Hz. The Matrice then uses the ROS navigation package to
plan a path in the 2D occupancy map from the Matrice’s
current location to the next goal vertex in the A* or RAGS
route at 1 Hz.

The movement of the Matrice is controlled at 50 Hz
using proportional–derivative controllers for heading, alti-
tude, and horizontal velocities to follow the path to the
next vertex. The DJI on-board ROS SDK8 is used to
acquire positioning information and control the motion of
the Matrice. The Matrice’s horizontal velocity is determined
by the mean distance reading in the platform’s operating
plane. In an open environment with few obstacles, the
Matrice’s velocity increases. As more obstacles are detected
and become closer to the Matrice, the platform slows down.
Using this method, the Matrice controller guides the plat-
form along the path between vertices. When it reaches a
distance within 3 m of the intermediate goal vertex, the
Matrice queries either the A* or RAGS on-board planner
for the next vertex and repeats this process.

The hardware experiments were conducted in the
unstructured wooded environment shown in Figure 13. This
environment was chosen because it provides multiple paths
from the start location, green triangle, to the goal location,
red circle. The length of the trial was constrained by the
limited battery life of the Matrice and the foot speed of
the safety pilot. As seen in Figure 13 the Matrice executed

Fig. 12. The DJI Matrice M100 used in the hardware trials.

Table 1. Comparison of results from hardware trials between
RAGS and A*. Note that although the RAGS path is 8.0 m longer,
RAGS is 12.1 s faster as it selects a lower-risk path containing
fewer obstacles.

Method Path length (m) Travel time (s)

RAGS 209.7 162.7
A* 201.7 174.8

different paths for the RAGS and A* planners, metrics are
provided in Table 1. The RAGS planner took the slightly
longer path, 209.7 m compared with 201.7 m for the A*
path. However, the RAGS path can be seen to be less risky,
with fewer nearby obstacles, which allowed the quadrotor
to travel at a faster speed. The Matrice was able to com-
plete the RAGS path in 162.7 s, compared with the A* path,
which was completed in 174.8 s. The time and distance
reported is from when the Matrice autonomously departs
the starting vertex and autonomously reaches within 3 m of
the goal vertex. See Extension 1 for a video of the flight
trial.

We note that this experiment serves as a case study of
the performance of RAGS and does not represent a statisti-
cally meaningful result. However, it does confirm a number
of properties of the algorithm in a real-world field trial.
First, these hardware trials verify that the RAGS algorithm
can be run online in real time on existing hardware in
an unstructured environment. Second, it confirms both the
trends found in the simulations, that RAGS will attempt to
mitigate risk by choosing a safer path, and our own intu-
ition about how the RAGS algorithm should perform, i.e. it
chooses the uncluttered path along the road over the shorter
path through the trees, which is qualitatively safer and easier
for the vehicle to traverse.

8. Conclusion

In this paper, we have introduced a novel approach to incor-
porating and addressing uncertainty in planning problems.
The proposed RAGS algorithm combines traditional deter-
ministic search techniques with risk-aware planning. RAGS
is able to trade off the number of future path options, as well
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Fig. 13. The paths taken in the hardware trials by the Matrice for the RAGS and A* planners. The RAGS path is slightly longer, 209.7 m,
compared with the A* path, 201.7 m. However, the RAGS path allowed for a slightly higher travel speed and was completed in 162.7 s
compared with the 174.8 s taken along the A* path. Note that although the RAGS path is 8.0 m longer than the A* path, it is completed
12.1 s faster. This is because the RAGS planner accounts for risk along the path and chooses a path from the non-dominated set with
fewer obstacles, allowing the quadrotor to travel at a higher speed.

as the mean and variance of the associated path cost distri-
butions to make online edge traversal decisions that mini-
mize the risk of executing a high-cost path. The algorithm
has been compared against existing graph search techniques
on a set of graphs with randomly assigned edge costs, as
well as over a set of graphs with traversability costs gen-
erated from satellite imagery data. In all cases, RAGS has
been shown to reduce the probability of executing high-cost
paths over A*, sampled A*, and a greedy planning approach.

In addition to simulation experiments, we have also
implemented the RAGS algorithm in a hardware demon-
stration on board a DJI Matrice M100 platform equipped
with a ZED RGBD camera. Our experiments compared the
A* and RAGS flight trajectories and showed that although
the RAGS planner selected a longer path, the Matrice was
able to complete the full RAGS trajectory in shorter time
than the A* trajectory. RAGS traded off a slightly longer
path to maintain greater distance to the nearest obstacles. As
a result, the Matrice was able to fly the RAGS path at faster
speeds compared with flying the A* path when the platform
needed to slow down and maneuver around obstacles.

Our RAGS code is available open source at
https://github.com/osurdml/RAGS.

8.1. Future work

In this work, we have experimented on graphs with edge
costs represented by normal distributions. However, the
RAGS framework is designed to accommodate any edge
cost distribution function. Indeed one argument against
using normal distributions to represent costs in path-
planning problems is that they result in non-zero proba-
bilities for sampling negative values. Thus, they may be a
poor representation of the true cost distribution. Other dis-
tributions, such as the log-normal or beta distributions, may
be more accurate. However, computing the non-dominated
path set and the pairwise comparisons for general distribu-
tions is a non-trivial task that is worth further investigation.

Another promising extension of this work is to consider
RAGS as applied to planning for information optimiza-
tion. In this case, edge cost probability distributions would
represent environmental information, and paths would be
generated based on the amount of information the vehi-
cle may collect in different parts of the map. The foreseen
challenges of this work will be to manage the changes in
expected information gain on-the-fly in a principled man-
ner, since properties such as submodularity of the data will
mean that future observations downstream no longer reap
the gains expected at the start. We believe that incorporating
information theoretic planning into the RAGS framework
could potentially lead to wider applications in probabilistic
planning.
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Notes

1. See https://www.dji.com/matrice100
2. Note that knowledge of the true neighboring edge costs is not

required for RAGS to formulate a path. The immediate tran-
sition costs cA0 and cB0 can be included as distributions in
Equation (3) to determine a path from start to goal. Dynamic
replanning is only necessary if new edge cost information is
discovered.

3. See https://www.stereolabs.com/
4. See http://www.nvidia.com/object/embedded-systems-dev-

kits-modules.html
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5. The hardware flight trials were conducted under Oregon
State University’s (OSU) Federal Aviation Administration
Certificate of Authorization and logged in OSU’s compliance
software, Drone Complier.

6. See http://wiki.ros.org/kinetic
7. See http://wiki.ros.org/zed-ros-wrapper
8. See https://developer.dji.com/onboard-sdk/
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video RAGS flight demo




