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Abstract

This paper examines temporal difference reinforcement learning with adaptive and directed exploration for resource-

limited missions. The scenario considered is that of an unpowered aerial glider learning to perform energy-gaining flight

trajectories in a thermal updraft. The presented algorithm, eGP-SARSA(l), uses a Gaussian process regression model to

estimate the value function in a reinforcement learning framework. The Gaussian process also provides a variance on

these estimates that is used to measure the contribution of future observations to the Gaussian process value function

model in terms of information gain. To avoid myopic exploration we developed a resource-weighted objective function

that combines an estimate of the future information gain using an action rollout with the estimated value function to gen-

erate directed explorative action sequences. A number of modifications and computational speed-ups to the algorithm are

presented along with a standard GP-SARSA(l) implementation with e-greedy exploration to compare the respective learn-

ing performances. The results show that under this objective function, the learning agent is able to continue exploring for

better state-action trajectories when platform energy is high and follow conservative energy-gaining trajectories when

platform energy is low.
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1. Introduction

The trade-off between exploration and exploitation heavily

influences the rate of learning in reinforcement learning

(RL) problems and is of particular importance in cases

where the cost of taking observations can limit the opera-

tion of the learning agent, for example, an unpowered aerial

glider learning to perform energy-gaining flight trajectories

in a wind energy field. To handle such resource-constrained

circumstances, a management scheme must effectively

quantify the exploration and exploitation utilities and con-

solidate these in an exploration strategy that can adapt the

learning behavior according to available resources and also

direct exploration to areas of high uncertainty. This paper

draws ideas from existing methods for informative explora-

tion in RL and the wider robotic exploration literature, and

leverages these in a framework that can address the addi-

tional resource constraints of this problem.

Information-based exploration and planning under

uncertainty is a richly studied area in robotics research.

Active and informative path planning algorithms developed

by Singh et al. (2009) and Hollinger et al. (2013) have

exploited the submodularity property of information gain

to select the most informative set of sensing locations,

while Stachniss et al. (2005), Amigoni and Caglioti (2010)

and Levine et al. (2010) also consider trade-offs between

the information gathered and the cost of travel. These

exploration approaches have typically been used for infor-

mative mapping, but can be incorporated into RL problems

where the task is to learn a resource-gathering policy in an

unknown environment.

In the RL literature, there have also been a number of

proposed strategies that feature implementations of infor-

mative exploration. Dearden et al. (1998) maintained prob-

ability distributions over the value function, while Engel

et al. (2003, 2005) demonstrated the use of Gaussian pro-

cess (GP) modeling for value function approximation and

noted that the GP covariance could provide confidence

bounds on the value estimate to direct exploration. More

recently, Brochu et al. (2010) outlined methods drawn from
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Bayesian experimental design to combine the GP covar-

iance and mean to form acquisition functions; and in the

authors’ prior work (Chung et al., 2013) an information

gain rollout was applied to produce a nonmyopic informa-

tion value to direct exploration.

However, exploratory actions can be expensive and the

learning problem considered in this work draws a tight cou-

pling between what is observed and the agent’s ability to

continue to make new observations. Specifically, we con-

sider the problem of a glider (an under-powered aircraft)

learning to soar in a wind field. The goal of the glider agent

is to learn and perform resource- (in this case, energy) gath-

ering flight trajectories in the state-action space. In order to

do so it must spend that resource to explore the space to

gather information. This raises the question of how to rep-

resent exploration value and exploitation value quantita-

tively in the RL framework and how to consolidate these

two in an adaptive and nonmyopic way.

By approximating the value function with a GP, the GP

covariance can be manipulated to obtain a measure of the

information value of future actions. However, this cannot be

naı̈vely combined with the RL value function since the abil-

ity to explore is now dependent on the available resources.

An adaptive weighting factor is introduced to represent the

current level of available resource and this is used to scale

exploration against exploitation.

The proposed resource-constrained RL algorithm was

tested on a 3D six-degree-of-freedom (6DOF) soaring gli-

der simulation with a single thermal updraft wind profile.

Two information measures were compared: the first consid-

ers the information gain of all reachable state-action loca-

tions within a specified horizon (eGP-SARSA(l)); the

second considers only the information gain of those state-

actions to be visited within the specified horizon given the

current policy (greedy rollout). These were also compared

against the performance of an e-greedy policy, a sparse-

eGP approach (Csató and Opper, 2002) using the full infor-

mation value (that is, the first information measure) and a

timestep-weighted policy, iGP-SARSA(l), adapted from

Chung et al. (2013). The results show a clear performance

improvement of eGP-SARSA(l) over the other simulated

cases in terms of exploration and energy gain. Furthermore,

each of the tested algorithms incorporated different

amounts of information, and a general decline in perfor-

mance, in terms of successful soaring episodes, is observed

as less information is retained in the value function approx-

imation and the action selection policy.

In the following section, we briefly describe the

SARSA(l) algorithm upon which our proposed algorithm

is built. Section 3 outlines the value function approxima-

tion method using GPs. Section 4 describes the computa-

tion of the information measure using the GP covariance

and includes details of the rollout method for nonmyopic

exploration. The resource-constrained exploration–

exploitation objective function is introduced in Section 5

and the full eGP-SARSA(l) algorithm is given in Section

6. Sections 7 and 8 present the soaring glider simulation

setup and results, respectively. Concluding statements and

suggestions for future work are given in Section 9.

2. SARSA(l) RL

SARSA(l) is an on-policy temporal difference (TD) con-

trol method first introduced in Rummery and Niranjan

(1994) under the name Modified Connectionist Q-learning

or MCQ-L. Its current name arises from the algorithm pro-

cedure where the learning agent begins in a state s, per-

forms an action a, observes the transition reward r and next

state s0, and then selects the next action a0 according to its

learned policy. The l refers to the use of eligibility traces

to assign discounted credit along the trajectory history as

new transition rewards are observed. The SARSA(l) state-

action value function Q(s,a) is computed as the discounted

sum of all future rewards leading out from each state-action

transition. The state-action value update equation for

SARSA(l) is

Qt + 1 s, að Þ= Qt s, að Þ+ adtet s, að Þ ð1Þ

where the TD error is given by the difference between the

observed transition reward rt + 1 and the expected reward,

dt = rt + 1 + gQt st + 1, at + 1ð Þ � Qt st, atð Þ ð2Þ

and the eligibility trace with replacing traces is updated by

et s, að Þ= 1 if s = st and a = at

glet�1 s, að Þ otherwise

�
8s, a ð3Þ

The step size, 0 \ a \ 1, weights how far, in the direc-

tion of the TD error, to shift the current state-action value

estimate. The discount rate, 0 � g � 1, determines the

contribution of future rewards to the current return value.

Finally, the eligibility trace discount factor 0 � l � 1

determines how much of the current update to assign back

along the state-action history. Values of l approaching 1

mean that the proportion of the current transition reward

passed back along the trajectory decays more slowly. For

l = 1 all state-actions in the history are updated by the

same (full) amount, whereas if l = 0, only the most recent

state-action is updated by the full amount, which is equiva-

lent to one-step SARSA. In this way, eligibility traces allow

more efficient reward tracking along entire trajectories,

which can lead to faster convergence rates as shown in

Sutton and Singh (1994).

The motivation for using a SARSA(l) framework in this

investigation is its on-policy learning characteristic, which

allows the trace to develop over the full state-action trajec-

tory. Credit assignment continuity is lost whenever the

trace is reset, discarding relevant information and essen-

tially treating one continuous trajectory as two (or more)

separate trajectories. In off-policy methods such as Q-learn-

ing, presented in Watkins (1989), the trace is reset when-

ever an exploratory action is taken. Therefore, despite the

physical connection, credit received after an exploratory
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action cannot be assigned back to state-actions visited

before that action. Since the number of exploratory actions

depends on the sampling policy, in cases where they occur

frequently, the effect of the eligibility trace is diminished.

In another Q-learning method, presented in Peng and

Williams (1996), the trace is not reset; however, regardless

of the action taken, the most recent transition reward is

taken to be the maximum reward achievable by the avail-

able action set. This algorithm uses a hybrid of on- and off-

policy updates and as a result converges neither to the

state-action values of the current policy, Qp, nor to the opti-

mal policy, Q*. As opposed to these off-policy methods,

SARSA(l) takes full advantage of the eligibility trace,

allowing it to form over the entire trajectory of an episode

without needing to reset the trace whenever an exploratory

action is taken. This is most relevant in problems where

state-actions along a trajectory are highly correlated, that is,

they cannot easily be reached from any other state-action,

and learning is expected to occur over long trajectories.

3. Value function approximation

The value function Q(s, a) encapsulates the expected sum

of all future rewards leading out from each state-action

transition. From the backup equation shown in equation (1)

we see that SARSA(l), and in fact RL in general, relies on

repeat observations of the reward at each state-action loca-

tion to learn the value function. This may be achievable in

discrete (tabular) state-action learning cases, however in

problems with either continuous states and/or continuous

actions, the learning agent will almost surely never revisit

any particular state-action and thus cannot take advantage

of any experience gained along its trajectory. The algorithm

is unable to extrapolate the value of state-action pairs that

have not yet been visited, thus even when dealing with

purely discrete spaces, a problem can be computationally

infeasible if its state-action space is prohibitively large.

To extend RL to problems with continuous state-action

spaces, methods for approximating the value function must

be employed. While any function approximation technique

could be used within the RL framework to model the value

function, it is desirable to choose a method that is best able

to generalize the available observations to the full state-

action space. The interested reader is directed to Chapter 8

of Sutton and Barto (1998) for a survey of common RL

function approximation techniques.

3.1. GP modeling

GP regression is a function approximation method that pro-

duces a continuous estimate of the function mean as well

as a measure of the estimation uncertainty over the function

space in the form of a variance: see Rasmussen and

Williams (2005). This technique has previously been

employed to approximate the value function in various RL

frameworks: for example, Engel et al. (2003) applied GP

regression to learn the continuous state-action value

function inside a standard SARSA(l) procedure.

Deisenroth et al. (2009) combined GP regression with

dynamic programming and demonstrated the ability of the

regression technique to estimate the state-action value at

unobserved locations.

The training inputs XN = fxigN
i = 1 to the GP are the

observed state-action pairs

xi = si, ai½ � ð4Þ

and the training targets yN = fyigN
i = 1 are the corresponding

Q-values which are updated on the fly as the eligibility trace

decays,

yi = Q si, aið Þ ð5Þ

For a test point x*, covariance function k, covariance matrix

K = K(X,X) and additive white noise drawn from

N 0,s2
n

� �
, the estimated mean value �Q� and covariance

cov (Q*) are

�Q� = E Q x�ð ÞjX , y, x�½ �
= K x�,Xð Þ K + s2

nI
� ��1

y
ð6Þ

cov Q�ð Þ= K x�, x�ð Þ � K x�,Xð Þ K + s2
nI

� ��1
K X , x�ð Þ

ð7Þ

The underlying assumption captured by the GP approxi-

mation is that state-action pairs close to one another in the

covariance function space will have similar associated Q-

values. This assumption is not limited to problems where

the state and/or action spaces are continuous; it can also be

applied to problems where the states and actions are dis-

crete but the transition function implies some sense of con-

tinuity, such as in grid search problems. To some extent this

continuity is captured by the eligibility trace, however, the

trace is only able to assign credit to state-action locations

that have been visited whereas the GP approximation is able

to estimate the value of locations that are yet to be visited.

For this reason, the GP approximation has particular appli-

cations to RL problems where the state-action space is con-

tinuous or where the problem has a discrete state-action

space that is too large to explore exhaustively.

Prior assumptions regarding the properties of the value

function surface can be incorporated via judicious design

of the GP covariance function. For example, in the follow-

ing experiments we make the assumption of stationarity in

the value function model, which assumes that the uncer-

tainty and mean estimate at a location is dependent only on

its relative (covariance space) distance to the training inputs

and their observed values. We use the stationary squared

exponential covariance function to compute the GP model:

k x, x0ð Þ= s2
f exp �

1

2
x� x0ð ÞTM x� x0ð Þ

� �
ð8Þ

where M is a diagonal matrix with positive elements equal

to l22, and l = [l1, l2,., ln] are the length scales in each
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dimension of the training input vector. The hyperparameters

of the covariance function shown in equation (8) are the

length scales, l, and the process variance, s2
f . The noise var-

iance, s2
n, due to the additive white noise shown in equation

(7) is the only other hyperparameter of the GP model. The

covariance matrix, K, is the covariance function evaluated

between each pair of points in the observed set, X. It is

worth noting that angular dimensions in the training inputs

invoke wrap-around conditions that must be catered for in

the squared distance computation of the exponential in

equation (8).

The hyperparameters used in the following experiments

were trained offline on a set of simulation data gathered

using an initial estimate of the hyperparameters. While it is

possible to train these hyperparameters online, offline train-

ing was preferred since the initial stages of learning tended

to generate large changes in the value function which would

lead to instability.

4. Explicit exploration

Traditional methods for invoking exploration actions, such

as e-greedy sampling and the softmax method described in

Chapter 2 of Sutton and Barto (1998), are susceptible to

local minima and fail to actively direct exploration to areas

where information of the value function is sparse. With suf-

ficient prior knowledge of the problem, it is possible to

initialize the value function to bias exploration towards

areas of high expected reward. However it is often the case

that the agent begins the task with little or no knowledge of

the field. A uniformly high expected value applied across

the value function space will promote exploration to areas

that have not yet been visited since the value function will

gradually be driven down in locations where the agent has

repeat observations of lower than expected rewards. This

method can equivalently be thought of as applying an arbi-

trary information gain reward at each state-action at the

start of exploration whose value decreases as observations

are made at those locations. As discussed in Section 3 how-

ever, in a continuous state-action space, the agent will

almost surely never revisit any single location, and so this

method of promoting exploration would only serve to add

a constant bias over the value function approximation.

Nevertheless, the task of exploring a value function

space can be equated to an information-gathering task

where observations at different locations in the space

reduce the uncertainty of the value estimate at, and possibly

around, the observation location depending on the estima-

tion algorithm. In such a scenario, the information gain can

be measured as the uncertainty reduction. Given a GP

framework for modeling the value function, it is intuitive to

use the GP variance measure to quantify and compare the

information gain of possible state-action observations for

directing exploration. Furthermore, since the ultimate goal

of accumulating reward is inherently tied to accurately

modeling the value function, using the GP variance to

measure the information gain maintains a desirable consis-

tency across the value function approximation and informa-

tion reward.

Continuing along this line of thought, we draw inspira-

tion from the definition of the value function as the dis-

counted sum of all future rewards to define the information

value as the discounted sum of all possible future informa-

tion gain rewards extending from a state-action transition.

This can be estimated using the rollout method proposed in

the authors’ prior work (Chung et al., 2013), and is

described in Section 4.2. Using an information value intro-

duces nonmyopic exploration, and by including this mea-

sure in the action selection criteria, it is possible to direct

exploration for more effective coverage of the state-action

space.

4.1. Information measure

The informative sampling literature outside of the RL com-

munity is rich with suggestions of how to measure and

incorporate the notion of uncertainty reduction when choos-

ing sampling locations. The alphabet optimality criteria are

derived from maximizing properties of the information

matrix such as maximizing the minimum eigenvalue in E-

optimality, or minimizing various properties of the covar-

iance matrix, such as the trace or determinant for A- and D-

optimality, respectively, as applied in Kollar and Roy

(2008) and Binney et al. (2013). Entropy and mutual infor-

mation are also common information measures that have

been investigated in many informative path planning appli-

cations such as in Singh et al. (2009) and Hollinger et al.

(2013). These metrics are popular due to their submodular-

ity property which provides performance guarantees on the

associated greedy policy.

The idea of using information gain rewards to direct

exploration in RL has been gaining momentum. Engel et al.

(2005) suggested using confidence intervals derived from

the GP covariance to expand the repertoire of exploration

strategies used in RL. More recently, Still and Precup (2012)

used the Kullback–Liebler divergence between successive

estimates of the value function to quantify exploration util-

ity, and in our prior work (Chung et al., 2013), we suggested

using the change in the GP variance volume as a measure of

information gain.

The GP variance over the state-action space represents a

bounding volume around the estimated value function sur-

face. Each consecutive observation results in a reduction in

this volume and we define this reduction as the information

gain of the corresponding state-action observation,

VboundN
=

Z xnb

xna

. . .

Z x1b

x1a

cov x1, . . . , xn½ �jXNð Þdx1 . . . dxn ð9Þ

Igain = VboundN
� VboundN + 1

ð10Þ

The training set XN consists of n-dimensional state-action

pairs, with dimensions [x1,., xn] = [s1,., su, a1,., av] ;
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furthermore, XN + 1 = XN

S
xN + 1. The limits of integration

in equation (9) can be chosen to incorporate the entire space

or only a local portion of it, for example, a reachable set

within a finite time horizon. In the following experiments,

the integral is taken over the entire state-action space, that

is, the limits are chosen as the max and min values for each

dimension, {[x1a, x1b],., [xna, xnb]} = {[x1min, x1max],.,

[xnmin, xnmax]}.

Since the squared exponential covariance function given

in equation (8) is an integrable function, an analytical solu-

tion to equation (9) can be found:

VboundN
=

Z xnb

xna

. . .

Z x1b

x1a

k x1, . . . , xn½ �, x1, . . . , xn½ �ð Þ

� k x1, . . . , xn½ �,XNð ÞK�1
XX k XN , x1, . . . , xn½ �ð Þdx1 . . . dxn

= s2
f

Yn

m = 1

xmb
� xma

ð Þ � s4
f

ffiffiffiffi
p
p

2

� �nYn

m = 1

lm

×
X

i, j

K�1
XX

� �
i, j
exp �

Xn

m = 1

Xmi
� Xmj

2lm

� �2
" #

×

Yn

m = 1

erf
xmb
� Xmi

+ Xmj

2

lm

 !
� erf

xma
� Xmi

+ Xmj

2

lm

 ! !

ð11Þ

where k is the squared exponential covariance function, and

KXX = ½K(X ,X )+ s2
nI � is the covariance matrix of all the

observed locations including additive white noise drawn

from N 0,s2
n

� �
.

4.2. Rollout

The information reward of taking an observation at a par-

ticular state-action is simply computed as equation (10),

however, approaching this from an RL perspective, it is

more meaningful to consider the nonmyopic information

value, that is, the total future information gain possible due

to performing a particular action. There is one key differ-

ence to note between the RL state-action value and this

information value: the RL reward for any state-action is

constant whereas the information reward for reobserving a

particular state-action decreases with the number of obser-

vations. The main consequence is that the information

reward cannot be directly included in the computation of

Q, and similarly, information gain credit cannot be mean-

ingfully assigned back along the eligibility trace. Instead,

we take the approach of looking at all the possible future

state-action observations leading out from a particular

action and use the discounted sum of those rewards to com-

pute the information value.

The information gain rollout technique is illustrated in

Figure 1. The information value sums the information

gained from the next proposed transition s0,a0!s$, where

a0 2 A s0ð Þ and A s0ð Þ is the set of available actions from

state s0, with the discounted information gained from all

possible future state-actions rolled out from s$ up to a

threshold discount factor. Given a discount parameter gr,

the total information gain of an action a is computed as

Iatotal
= Igain0

+ grIgain1
+ g2

r Igain2
+ . . . + gp

r Igainp
ð12Þ

where p is the highest integer for which gp
r is greater than

the discount threshold gthres.

5. Action selection

The goal of the action selection function in the RL problem

is to consolidate the two competing objectives of explora-

tion and exploitation to improve the overall value function

estimate. In this regard, the task of designing an action

selection objective function is similar to the problem of

designing acquisition functions in the Bayesian optimiza-

tion framework, as surveyed in Brochu et al. (2010), which

similarly combines the GP variance and mean in various

ways to promote exploration. The information value and

state-action value are our two respective metrics and a judi-

cious combination of the two into a single objective func-

tion can produce the desired behavior from the learning

agent. There are a number of factors to consider: firstly, the

scale of each value may be very different, resulting in one

dominating the other if combined naı̈vely. Secondly, as

noted in Section 4.2, having defined the information reward

as the change in the GP variance volume, the value of infor-

mation naturally decreases as more observations are taken.

Finally, given a system subject to resource constraints, such

as available platform energy, the desire to explore or exploit

should adapt according to the current available resources.

These issues will be addressed in the following subsections.

5.1. Reward trade-off

The ranking of the available actions according to the objec-

tive function ultimately determines which action is exe-

cuted. Thus, it is useful to normalize the values when

Fig. 1. The rollout method introduced in Chung et al. (2013).

The information gain of each rollout level considers all the

reachable state-actions at that level. The total information gain is

a discounted sum of the information gain of each level.

162 The International Journal of Robotics Research 34(2)
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combining them as this also removes the problem of their

differences in scaling. Given the estimated values �Q, let the

normalized values Q̂ be

Q̂i =
�Qi

max j�Qij
ð13Þ

and similarly for the information values,

Îi =
Iitotal

max jIitotal
j ð14Þ

where i is the current timestep. Note that the value estimate

component lies within [21, 1] while the information gain

component lies within (0, 1].

5.1.1. Timestep-weighted information decay (iGP-

SARSA(l)). A side-effect of this normalization is that the

natural decline in information value as more observations

are taken is also eliminated. Generally it is desirable to

maintain this decline in the final action selection objective

function to encourage the learning agent to explore more at

the start and less later on when the number of observations

increases and confidence in the learned map increases.

Chung et al. (2013) demonstrated that this decline in infor-

mation value could be reintroduced as a time-dependent

decreasing weighting factor on the normalized information

value, and the overall effect of this was to scale the agent’s

behavior from exploratory to exploitative as learning pro-

gressed. If there is no set mission length or if no clear defi-

nition of a ‘good enough’ estimate of the value function is

readily available, then it is difficult to decide how to repre-

sent the overall decline of information value if we do not

allow the data to present this itself. For the purposes of

comparison, we have adapted the timestep weighting pre-

sented in Chung et al. (2013) for use in the following

experiments. The decay in the information weighting is

introduced as

vti =
1

1 + i
t

ð15Þ

giving the action selection function as

Jti = Q̂i + vti Îi ð16Þ

Without a set mission length, the variable t was intro-

duced to define the ‘half-life’ of the information value

influence on the sampling policy. In the following trials,

the value t = 100 was chosen by taking into account

the expected mission length of each episode, particularly

during the early stages of learning when it is desirable to

perform exploration as well as begin to reinforce reward-

gaining behavior.

5.1.2 Resource-limited information weighting (eGP-

SARSA(l)). RL research has typically dealt with problems

where the single goal is to efficiently find an optimal state-

action trajectory for an agent (or multiple agents) as the

number of observations increases to infinity. Limitations on

available resources such as platform energy, etc., have

largely been neglected from such problems in existing

research, and in cases where exploration costs are explicitly

considered they are dealt with independently of the reward

function (Kim et al., 2012). However, when the RL prob-

lem is a resource-seeking mission, the reward and the abil-

ity to continue collecting rewards become tightly coupled

and such limitations can no longer be ignored. In the fol-

lowing experiments we consider a soaring glider learning

to gather energy from a wind field. In order to do so it must

expend energy to explore the space for profitable flight tra-

jectories. The resource in this problem is the available plat-

form energy, which determines the continuation or (critical)

termination of a mission. For simplicity, in the following

discussions we will focus solely on platform energy as the

resource and reward of interest.

We propose a dynamic scaling of the exploration beha-

vior according to the available platform energy by combin-

ing equation (13) and equation (14) to produce the resource-

constrained exploration–exploitation objective function

Jei
= Q̂i + vei

Îi ð17Þ

The dynamic weighting factor is defined as

vei
=

2

p
arctan hið Þ×

Ei

Emax

� �
ð18Þ

where Ei is the available platform energy at timestep i, Emax

is the maximum amount of energy that can be stored on the

platform (e.g. corresponding to a maximum speed at a max-

imum altitude), and

hi =
zi

zmax

� �
× 100% ð19Þ

where zi 2 [0,zmax] is the current altitude. The purpose of

including hi is to explicitly penalize states at low altitudes,

regardless of available platform energy (which also includes

the altitude in the potential energy component). The height

penalty is squeezed into an arctan profile in [0, 1) so that

for the most part it does not greatly affect ve, which is dom-

inated by the energy ratio term; however, at critically low

altitudes, it drives ve to zero, ultimately penalizing trajec-

tories that send the platform into the ground at high speeds.

The effect of the dynamic weighting factor in the objec-

tive function is to increase the influence of the information

value when platform energy and altitude is high so that the

agent tends to explore areas of the state-action space which

have high uncertainty. When platform energy and/or alti-

tude is low, the state-action value dominates the action

selection objective function so that the agent tends to

exploit areas of the state-action space which are believed to

produce high energy reward, thereby replenishing the

resource.
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6. eGP-SARSA(l)

The energy-weighted action selection objective function is

applied directly into the SARSA(l) algorithm with GP

value function approximation. We present the full algo-

rithm, eGP-SARSA(l), in Algorithm 1.

For each action selection, Algorithm 1 requires simula-

tion of the motion model and estimation of the resulting

information gain across a tree with branching factor in the

number of possible actions and search depth imposed by the

limit gr. It is possible, at each depth, to compute the infor-

mation gain components of each branch in parallel, reduc-

ing the exponential complexity of traversing the tree to a

constant multiple of the search depth. However, practically

speaking, it would be a challenge to mount the number of

processors required to maintain this computational speed.

6.1. Greedy rollout

To prevent the exponential branching of the information

gain rollout tree, a directed sampling method can be

applied to restrict the rollout to only include the expected

future state-actions. In other words, only consider the

information gain from future state-actions where the

actions are selected from an approximation of the current

policy,

~Jea
= Q̂a + ve

Iagain0

max jIagain0
j ð20Þ

when computing the information value. The rollout diagram

for this greedy rollout method is similar to the backup dia-

gram for Q-learning and is shown in Figure 2.

Algorithm 1 eGP-SARSA(l)

1: �Qa  0 x Initial value estimate
2: Initialize u x GP hyperparameters
3: for each episode do
4: e 0 xInitialize trace
5: s,a initial state and action
6: for each step i do
7: e(s, a) 1 xReplacing traces
8: Take action a, observe reward r, next state s0, and current energy Ei

9: d r � �Qa

10: for all a00 2 A s0ð Þ do

11: �Qa00;GPQ xGP approximation for Q

12: Ia00
rotal
 Igain0

+ grIgain1
+ . . . + gp

r Igainp

13: end for
14: ve  2

p
arctan hið Þ× Ei

Emax


 �
15: Q̂a00  

�Qa00
max j�Qa00 j

xNormalized state-action value

16: Îa00  
Ia00

total

max jIa00
total
j xNormalized information value

17: Jea00  Q̂a00 + veÎa00

18: a0 argmaxa$Jea$

19: d d + g �Qa0

20: if sparsify then
21: if bi . btol then
22: Append (s, a) to GPQ training inputs X
23: if jBVj. budget then
24: Delete training input with lowest score
25: end if
26: end if
27: else
28: if (s, a) is a new state-action then
29: Append (s, a) to GPQ training inputs X
30: end if
31: end if
32: y y + ade xUpdate GPQ training targets
33: if retrain hyperparameters then
34: u argminu2 log p(y|X,u) xMinimize the negative log marginal likelihood
35: end if
36: e gle
37: s, a s0,a0

38: end for
39: end for
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Enforcing this restriction on the state-actions considered

in the information gain rollout ensures that the computation

of the information value is linear in the rollout depth. That

is, the cost of computing the information value becomes

O N 2tMð Þ, where the N2 term arises from the evaluation of

the GP covariance, there are t layers in the search tree, and

the motion model computation has complexity O Mð Þ. It is

expected that when the current policy is in a state of flux,

the greedy rollout information value will poorly represent

the actual future information gains since the state-action

value function, and consequently the policy, is likely to

change. In contrast, this issue does not exist when the full

information rollout is taken since all possible actions are

considered and contribute to the information value.

6.2. Sparsification

One of the main drawbacks of using GP regression for

value function approximation is the O(N3) inversion of the

covariance matrix at each update step in equation (6) and

equation (7), where N is the number of training inputs to

the GP. By updating a single observation at a time, we can

take advantage of the matrix inversion lemma to reduce

this to O N 2ð Þ, however, this operation is still prohibitive

over the long training sequences which are a feature of RL.

To bound the computation time, we place a budget on the

number of inputs used to train the GP and apply the sparsi-

fication method described by Csató and Opper (2002).

This sparsification technique provides a method for select-

ing observations to include in the GP training input set, or

basis vector BVð Þ set, that best reconstructs the underlying

value function according to a linear independence test.

Briefly, the variance at the current observation point xi + 1

gives a measure of its linear independence or ‘novelty’,

bxi + 1
= k xi + 1, xi + 1ð Þ � K xi + 1,XNð ÞK XN ,XNð Þ�1

K XN , xi + 1ð Þ
ð21Þ

Intuitively, bx computes the uncertainty of the estimate at x

given the current training set XN and assuming a noise-free

observation model. As described in Csató (2002), points

with b greater than the tolerance value btol are included in

the training set. If the number of points in the BV set

exceed the budget, then the observation with the lowest

score as defined by

ei =
K�1

XX yi

K�1
ii � K�1

XXii

ð22Þ

where K�1
ii is the ith diagonal element of K21 and similarly

for K�1
XXii

, is removed from the BV set. By keeping track of

the relevant inverse matrices and applying the matrix inver-

sion lemma at each update/downdate step, it is possible to

bound the GP computation time to O N2
max

� �
, where Nmax is

the maximum number of training inputs as defined by the

computation budget.

7. Experimental setup

The algorithm was tested on a 3D 6DOF soaring glider

simulation under a static (thermal) soaring scenario. As

explained in Section 5.1.2, we wish to investigate RL prob-

lems where the reward and the ability to seek reward are

tightly coupled. In the soaring scenario, the reward is the

energy gained by the glider agent flying particular trajec-

tories in the wind field; to learn these trajectories, the agent

must expend energy to explore the state-action space. The

goal of these experiments was to show that given a wind

energy field consisting of a single thermal, the proposed

resource-constrained learning algorithm is able to effec-

tively explore the state-action space to generate energy-

positive trajectories. In the early stages of learning, it was

expected that many of the trajectories would result in fail-

ure or with the glider exiting the field, thus the problem

was formulated as an episodic learning task where each

episode was terminated due to the glider either crashing or

exiting the designated field.

Fig. 2. Rollout diagram for the greedy rollout method. Only the

information gain from the expected state-actions of the current

policy are considered in the calculation of the information value.
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Fig. 3. Toroidal thermal model of a thermal updraft. The model

is dominated by the central column of rising air that is offset by

the thinner surrounding ring of sinking air. Small lateral wind

components also exist outside the flight boundary at the upper

and lower extremities of the thermal to maintain the toroidal flow

of the air.
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7.1. Thermal wind field

The toroidal thermal model is a realistic 3D updraft model

that is commonly used in the autonomous soaring literature

(Bencatel et al., 2013). The toroidal thermal model devel-

oped in Lawrance and Sukkarieh (2011) and shown in

Figure 3 was the 3D wind field used in the following simu-

lations. The thermal model is conservative in its flow,

meaning that there is no net horizontal or vertical flow.

This is achieved via symmetry in the horizontal flow at the

upper and lower extremities of the thermal, and balanced

rising and sinking volumetric flow in the vertical plane. In

this way, the thermal core of strong rising air is offset by a

surrounding column of slow sinking air, while the lateral

transitions from rising to sinking air at the top of the ther-

mal are equal and opposite to the transitions from sinking

to rising air at the bottom of the thermal.

The shape of the thermal model is determined by three

main terms: the core vertical wind speed, wcore = 3m/s; the

major radius, Rtherm = 100m; and the elliptical factor,

ktherm = 100. The core vertical wind speed is scaled against

a sinusoidal function of the thermal radius to form a smooth

vertical wind profile. The elliptical factor determines the

contribution of the lateral wind components: by choosing a

high value for ktherm the thermal model was dominated by

the vertical wind flow.

7.2. Glider platform

The dynamic model for the glider is a non-linear aerody-

namic point mass model based on the RnR SBXC 4.32m

wingspan scale model glider (see the Appendix for platform

specifications). The applied forces are the aerodynamic

force (decomposed into lift and drag) and the weight force.

Lift is limited by the maximum lift coefficient and load fac-

tor constraints. Body force due to sideslip is not considered.

A flat Earth model is assumed due to the relatively small

scale of the aircraft and flight paths, so the weight force is

directed down. Since this is a glider model the effect of

wind is an important consideration. This model includes

effects for the changes in lift and drag due to the wind and

locally linear spatial wind gradients but does not account

for moments imparted by differential wind across the lifting

surfaces. The model equations can be found in detail in

Lawrance (2011). The simulation is performed using

numerical integration of the non-linear equations of motion.

Control is modeled using commanded inputs of roll and pitch

rates. At each control timestep there are three discrete commands

available for both roll and pitch, such that a single action

a= a _f, a _u

h i
ð23Þ

gives rise to a total of nine available actions in the action

set. Intuitively, the roll rate commands result in banking

further to the left or right, or maintaining the current bank

angle, and similarly for the pitch rate commands which

control the aircraft climb angle. The actions are limited

such that they will not generate commands for bank angles

over 6 45� or pitch angles which would result in a stall or

dive steeper than 50� so that all actions in the action set

should always be achievable.

In the state-action value function approximation, the

pitch and roll commands were regarded as separate dimen-

sions in the training input space since they generated

responses in orthogonal axes of the aircraft’s body frame.

As such, no meaningful length scale or metric could be

defined to measure the ‘difference’ between banking and

pitching, and so it was left to the GP to model the interac-

tions between these commands and the expected value.

7.3. Reward function

The reward function used was based on the specific energy

gained by the platform during each state-action transition;

penalties were also applied when the glider stalled and if it

dropped below an altitude of 0m. While the former condi-

tion was recoverable, the latter indicated a critical failure;

thus the reward function was designed to reflect the severity

of these states. The penalty incurred for stalling was com-

puted as 25% of the specific kinetic energy at stall velocity,

rstall = � 25%× 1

2
v2

stall ð24Þ

while the penalty for crashing (altitude � 0 m) was

defined as twice the maximum allowable specific energy in

the flight envelope,

rcrash = � 2Emax

m
ð25Þ

where Emax corresponds to the platform energy when flying

at the maximum allowable speed and altitude, m is the plat-

form mass and vstall is the stall velocity of the platform. The

complete reward function was computed as

ri =
Ei

m
+ stall× rstall + crash× rcrash ð26Þ

where stall and crash are Boolean indicators for the two

respective conditions.

7.4. Relative states

To use the full glider state space would require learning over

13 state dimensions in addition to the two action dimen-

sions, rendering the learning task infeasible given the prohi-

bitively large number of points required to generate a

reasonable GP model of the entire state-action space. The

problem can be simplified if it is assumed that the thermal

center is known. The states of interest, that is, primary contri-

butors to the reward function by virtue of wind field geome-

try, can therefore be defined as the distance to the thermal

center, the bearing to the thermal center and the airspeed:

s= rtherm,ctherm, va½ � ð27Þ
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The value function then becomes a function of the states

and actions presented in equation (27) and equation (23).

The full glider state is still maintained since it is required

in the rollout (where the state transition is performed under

the assumption of no wind) and the reduced relative states

are not Markovian in this regard. In fact, without full infor-

mation of the wind field, the full glider state is also not

strictly Markovian, however, we rely on smoothness in the

GP model to handle variability in the states introduced by

the unknown thermal wind field.

It is noted that although the rcrash component of the

reward is a function of the altitude, this variable is not

included as a dimension in the relative learning state. In

fact, the event of crashing is linked to the climb angle and

airspeed of the aircraft, and these two variables are them-

selves linked through the glider dynamics shown in

Lawrance (2011). In the results given in the next section,

we show that the RL algorithm learns to avoid high air-

speeds since there is a strong correlation between this and

receiving a strong negative reward due to rcrash.

8. Results

The following five learning algorithms were tested:

� eGP-SARSA(l) with full rollout information value;
� iGP-SARSA(l) with full rollout information value,

tr = 100 (outlined in Section 5.1.1);
� eGP-SARSA(l) with greedy rollout information value

(outlined in Section 6.1);
� sparse eGP-SARSA(l) with full rollout information

value, 1000 BV, btol = s2
n (outlined in Section 6.2);

� GP-SARSA(l) with e-greedy exploration, e = 0.01.

Each algorithm was run over 10 trials, each with a learn-

ing period of 50 episodes. The learning agent began each

episode in a random location in the field with a bearing of

0� to the thermal center: these starting locations were con-

sistent across all the tested learning algorithms.

8.1. Learning rates

The progression of the average reward across the episodes

for each tested algorithm is shown in Figure 4; the average

of each set of 10 trials is plotted for each episode along with

95% confidence intervals at five-episode intervals. The

confidence intervals plotted for each algorithm are offset by

one episode each to improve clarity, however, the confi-

dence intervals for all of the tested algorithms are shown

for the final episode. The graph shows that both the greedy

and full rollout eGP-SARSA(l) algorithms promptly con-

verge to a higher average reward and are followed closely

by GP-SARSA(l) with e-greedy sampling; however, the

latter has a larger confidence interval than either of the

eGP-SARSA(l) cases. The iGP-SARSA(l) trials produce

the lowest initial average rewards and also display a high

level of variation between the rewards gained in each

simulation. The graph also shows the departure of the

sparse-eGP approach in terms of reward-gaining perfor-

mance as the training input set is reduced during the early

episodes. Indeed, the average reward achieved begins to

decrease during the later episodes and even drops below

that of iGP-SARSA(l) after episode 37. This suggests that

the size of BV may be insufficient for representing the full

state-action space or that the linear independence metrics

used to reject and discard observations from BV are inade-

quate for this learning task.

Table 1 presents the average number of observations and

the average size of the training input set at the end of each

simulation case. The sparse-eGP case encountered the fewest

total observations, followed by the e-greedy case.

Furthermore, the sparse-eGP case on average rejected 435

observations from the BV set, which is over half the final

average BV size. The linear independence test used to reject

observations from BV uses the squared exponential covar-

iance function, and therefore favors observations taken in iso-

lated state-action locations. However, for the problem of

learning to soar in a static thermal, energy-gaining flight can

only occur in a local region around the thermal center where

it is necessary to have a more refined policy. In regions fur-

ther away from the thermal center, a reasonably coarse policy

can be applied to direct the glider towards the energy-gaining

regions. Therefore, a uniform density of training inputs over

the entire state-action space may not provide as good a model

for learning the policy as a distribution of inputs that concen-

trate observations in the regions of interest.

The progression of the average specific energy gain

across the episodes is shown in Figure 5. The average
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Fig. 4. Progression of the average reward across the episodes.

The plots compare the performance of eGP-SARSA(l) with

full rollout, iGP-SARSA(l) with full rollout, eGP-SARSA(l)

with greedy rollout, sparse eGP-SARSA(l) with btol = s2
n, and

GP-SARSA(l) with e-greedy sampling. The average of each set

of 10 trials is plotted along with 95% confidence intervals at five-

episode intervals, and the episodes plotted for each algorithm are

offset by one episode each to improve clarity; however, the data at

episode 50 are shown for all the tested algorithms.
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specific energy profiles are similar to the average reward

profiles, since a large portion of the reward is derived from

the energy gain, however, the reward also includes the rstall

and rcrash components. Looking purely in terms of energy

gain, it can be seen that the sparse-eGP case performs the

worst of all the tested algorithms, with iGP-SARSA(l)

overtaking its energy-gaining performance much earlier in

episode 5. The average specific energy gain per step for

the sparse-eGP case dropped to 25.5J/kg by the final epi-

sode; to place this value in context, it is approximately the

specific drag induced by the glider flying straight and level

at a speed of 15.0m/s over one timestep.

Aside from sparse-eGP, all learning algorithms were

able to achieve a positive average specific energy gain by

episode 50. Figure 5 shows that GP-SARSA(l) with e-
greedy sampling achieves a higher average specific energy

gain than eGP-SARSA(l) with greedy rollout despite the

latter achieving a greater average reward in Figure 4. Both

algorithms have much lower average energy gain profiles

than eGP-SARSA(l) with full rollout information value.

Furthermore, eGP-SARSA(l) with full rollout has a more

consistent energy-gain performance as shown by the signif-

icantly smaller confidence intervals.

The reason for the disparities between Figures 4 and 5

comes down to the number of crash incidents each algo-

rithm experiences; while stall events also lower the average

reward, it is the heavy cost of crashing that has the greatest

influence on the average reward. The termination statistics

for all 10 trials of each algorithm are shown in Table 2: a

successful termination is defined as one in which the glider

gains enough energy to soar out through the upper flight

boundary. Although eGP-SARSA(l) with greedy rollout

and GP-SARSA(l) have similar termination statistics, the

four fewer crash incidents of eGP-SARSA(l) with greedy

rollout boost its reward-gaining performance above that of

e-greedy, despite having slightly fewer successful termina-

tions. The iGP-SARSA(l) terminations also help to explain

its poor reward-gaining performance; although iGP-

SARSA(l) has the second-highest number of successful

terminations, 141, it also has the highest number of crash

terminations at 77. These termination statistics show that

eGP-SARSA(l) with full rollout performs the best overall

in terms of successful flights. Over half of all the episodes

for full rollout eGP-SARSA(l) terminated with the glider

gaining enough energy to soar out through the upper flight

boundary. Although it also experienced 33 crash

terminations, this only represents 12.9% of the number of

successful terminations, as compared to 54.6% for iGP-

SARSA(l), 23.1% for eGP-SARSA(l) with greedy rollout,

725% for sparse-eGP, and 26.8% for e-greedy.

Of the four different sampling policies, Figures 4 and 5

show that eGP-SARSA(l) is more efficient at learning

energy/reward-gaining trajectories than eGP with greedy

rollout, e-greedy and iGP with full rollout. This is due to

the ability of the resource-constrained policy to manage

platform energy such that the agent could fly consistently

longer trajectories in each episode, shown in Figure 6,

thereby visiting more state-action locations and learning a

better model of the value function. The curves plotted in

Figure 6 are consistent with the successful termination sta-

tistics given in Table 2, however, it is interesting to observe

the progression of the sparse-eGP curve, which initially fol-

lows the iGP-SARSA(l) plot but diverges rapidly after epi-

sode 25. Greedy rollout eGP-SARSA(l) and GP-

SARSA(l) with e-greedy sampling have very similar pro-

files that, from the very first episode, are slower than full

rollout eGP-SARSA(l) and iGP-SARSA(l) to accumulate

Table 1. Average observations and training inputs.

Algorithm Average
observations

BV size

eGP-SARSA(l), full rollout 3448 3448
iGP-SARSA(l), full rollout 2702 2702
eGP-SARSA(l), greedy rollout 2118 2118
sparse-eGP, btol = s2

n 1264 829
GP-SARSA(l), e-greedy 2072 2072
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Fig. 5. Progression of the average specific energy gain across

the episodes.

Table 2. Episode termination conditions.

Algorithm Successes
Crash
terminations

Lateral
boundary
termination

eGP-SARSA(l),
full rollout

256 33 211

iGP-SARSA(l),
full rollout

141 77 282

eGP-SARSA(l),
greedy rollout

78 18 404

sparse-eGP,
btol = s2

n

8 58 434

GP-SARSA(l),
e-greedy

82 22 396
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steps. The reason for the initial divergence between the full

and greedy rollout can be attributed to the poorly modeled

value function at the start of learning. While the full rollout

accounts for the information gain of all the possible future

state-actions, the greedy rollout only considers the informa-

tion gain of those state-actions it expects to visit according

to the current value function estimate. Since the value func-

tion is poorly modeled at the start of learning, the greedy

rollout information value consequently computes a poor

estimate of the information value.

8.2. Learned value function

The learned value function for one trial of eGP-SARSA(l)

at 10m/s velocity intervals up to the maximum allowable

airspeed is shown in Figure 7. The plots show the estimated

state-action value for the best set of turning actions,

½a _f, a _u�, at each state. As expected, higher values are
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predicted for states close to the thermal center; at states fur-

ther away, bearings closer to 0� produced higher values.

The wraparound condition enforced by the GP distance

measure can also be observed along the bearing axis.

There is a distinct change from positive values to nega-

tive values as the airspeed increases showing the agent

learned that the event of crashing, which generates a strong

negative reward from rcrash, tended to occur at high veloci-

ties. In this way, the two negative reward components, rcrash

and rstall, effectively placed an upper and lower bound on

the glider airspeed.

It was expected that the value function would be symme-

trical in the bearing axis since, if all else was equal, turning

clockwise or anticlockwise should give equivalent energy-

gain profiles. Figure 7 gives a hint of this symmetry, how-

ever, it appears that during the learning process, the agent

favored making anticlockwise loops around the thermal

center. This may be due to the fact that the agent traveled in

an anticlockwise trajectory during the first episode in which

it successfully gained enough energy to soar out through

the upper boundary, thereby creating an initial bias for later

trajectories.

8.3. Flight trajectories

Successive flight trajectories from one trial of the eGP-

SARSA(l) simulation are shown in Figure 8.

Unsurprisingly, in the first episode, the actions executed by

the agent are unsuccessful in gaining energy and the epi-

sode ends with the glider exiting the lateral boundary of

the field. Episode 20 is the first instance in which the agent

gains enough energy from the thermal throughout the tra-

jectory, allowing the glider to soar out through the upper

boundary of the field. The trajectory in this episode is not

a smooth rise, nor does it have a smooth circling motion,

which would result in higher energy losses due to increased

drag. This is in contrast to the trajectory executed in the

final episode, which features both consistent altitude gain

and a more regular turn radius. Incidentally, both episodes

took 107 steps to completion; however, the agent began at

a higher altitude in episode 20 but only achieved a lower

energy gain rate of 12.6J/kg per step, as compared to the

energy gain rate of 15.1J/kg per step achieved in episode

50.

The aerial view of the flight paths for episodes 20 and

50 is also shown in Figure 9. These paths illustrate the

exploration behavior generated by eGP-SARSA(l). In epi-

sode 20, the glider traverses a range of radial distances as it

gains more platform energy and can afford to explore more

of the state-action space, and in episode 50, the flight path

resembles a superhelix, which is able to rapidly sample a

range of radial distances and bearings.

9. Conclusions and future work

This paper presented the eGP-SARSA(l) algorithm for

directed, adaptive and nonmyopic exploration in resource-

constrained RL problems. Two modifications to this algo-

rithm were also presented to improve the computational

performance. The eGP-SARSA(l) algorithm with greedy

rollout considers only the information gain from the

expected state-action values according to the current esti-

mate of the policy, and the sparse-eGP algorithm uses a

sparsification method for reducing the number of observa-

tions used to train the GP. The results presented in this

paper demonstrate the ability of the full rollout information

value eGP-SARSA(l) algorithm to learn complex reward-

gaining trajectories under resource-constrained conditions.

The normalized information value provided a quantitative

measure of exploration utility such that by applying a

dynamic weighting factor between the state-action value

and information value, it was possible to scale exploration
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Fig. 8. Evolution of the learned flight path for one trial of the eGP-SARSA(l) case. The glider operates in a flight boundary defined

by a 300 × 300 × 300m3 volume. In these figures, the glider is enlarged by a factor of 10 so that it can be seen more easily. During

the first episode, the glider performs largely random actions; in episode 20 the agent successfully gains enough energy to exit the field

via the upper boundary; the flight path of episode 50 shows a consistent looping trajectory.
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and exploitation according to the available platform

energy. The resulting behavior produced consistently suc-

cessful energy-gaining trajectories while also exploring

the highest number of state-action locations of all the

compared algorithms. Over a simulated learning period

of 50 episodes, the eGP-SARSA(l) algorithm with full

rollout information value outperformed the e-greedy,

sparse-eGP, eGP-SARSA(l) with greedy rollout, and

iGP-SARSA(l) sampling policies in terms of average

reward per step and average specific energy gain per step

for an autonomous glider agent learning to soar in a ther-

mal wind field.

The presented learning algorithm is able to incorporate

resource constraint considerations into the action selection,

however, it provides no strong guarantees for remaining

within the resource budget when performing exploration,

as evidenced by the early trajectories when the glider exited

the field or crashed. Future research will involve generating

robust policies with known safe routes to avoid breaching

hard resource constraints.

This work aims towards developing practical solutions

for guidance of a gliding aircraft in large unknown wind

fields consisting of multiple types of wind features. Soaring

flight in unknown wind fields is a high-dimensional prob-

lem, and the solution presented in the current work

addressed this issue by identifying a lower-dimensional fea-

ture set to represent a known wind feature. The work pre-

sented here does not attempt to estimate the parameters of

the wind field and has not addressed any robustness issues

associated with imperfect knowledge of the distance and

bearing to the thermal center. Future work will examine

hierarchical methods to autonomously identify lower-

dimensional feature spaces and consider how multiple poli-

cies could be learned and then integrated into an adaptive

global policy for exploration of unknown spaces with

resource constraints.
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Csató L and Opper M (2002) Sparse on-line Gaussian processes.

Neural Computation 14(3): 641–668.

Dearden R, Friedman N and Russell S (1998) Bayesian Q-learn-

ing. In: Proceedings of the national conference on artificial

intelligence, pp. 761–768.

Deisenroth MP, Rasmussen CE and Peters J (2009) Gaussian

process dynamic programming. Neurocomputing 72(7–9):

1508–1524.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East (m)

N
or

th
 (m

)

(a) Episode 20

0 50 100 150 200 250 300
0

50

100

150

200

250

300

East (m)

N
or

th
 (m

)

(b) Episode 50

Fig. 9. Aerial view of the flight paths shown in Figure 8: the glider has been enlarged by a factor of five so that it can be seen more

easily. These paths illustrate the exploration behavior generated by eGP-SARSA(l). In episode 20, the agent explores across the range

of radial distances to the thermal center, while in episode 50 the aerial view shows that the agent flight path resembles a superhelix

that samples over a range of bearings and radial distances.

Chung et al. 171

 at OREGON STATE UNIV LIBRARY on July 1, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Engel Y, Mannor S and Meir R (2003) Bayes meets Bellman: The

Gaussian process approach to temporal difference learning. In:

Proceedings of the 20th international conference on machine

learning, pp. 154–161.

Engel Y, Mannor S and Meir R (2005) Reinforcement learning

with Gaussian processes. In: Proceedings of the 22nd interna-

tional conference on machine learning, pp. 201–208.

Hollinger GA, Englot B, Hover FS, et al. (2013) Active planning

for underwater inspection and the benefit of adaptivity. The

International Journal of Robotics Research 32(1): 3–18.

Kim D, Kim KE and Poupart P (2012) Cost-sensitive exploration

in Bayesian reinforcement learning. In: Advances in neural

information processing systems 25, pp. 3077–3085.

Kollar T and Roy N (2008) Trajectory optimization using reinfor-

cement learning for map exploration. The International Jour-

nal of Robotics Research 27(2): 175–196.

Lawrance NRJ (2011) Autonomous soaring flight for unmanned

aerial vehicles. PhD Thesis, The University of Sydney,

Australia.

Lawrance NRJ and Sukkarieh S (2011) Autonomous exploration

of a wind field with a gliding aircraft. Journal of Guidance,

Control, and Dynamics 34(3): 719–733.

Levine D, Luders B and How JP (2010) Information-rich path

planning with general constraints using rapidly-exploring ran-

dom trees. In: AIAA Infotech@Aerospace conference, Atlanta,

GA.

Peng J and Williams RJ (1996) Incremental multi-step Q-learning.

Machine Learning 22(1–3): 283–290.

Rasmussen CE and Williams CKI (2005) Gaussian Processes for

Machine Learning. Cambridge, MA: The MIT Press.

Rummery GA and Niranjan M (1994) On-line Q-learning using

connectionist systems. Technical report, Department of Engi-

neering, University of Cambridge, UK.

Singh A, Krause A, Guestrin C, et al. (2009) Efficient informative

sensing using multiple robots. Journal of Artificial Intelligence

Research 34(2): 707–755.

Stachniss C, Grisetti G and Burgard W (2005) Information gain-

based exploration using Rao-Blackwellized particle filters. In:

Proceedings of robotics: Science and systems, Cambridge,

MA.

Still S and Precup D (2012) An information-theoretic approach to

curiosity-driven reinforcement learning. Theory in Biosciences

131(3): 139–148.

Sutton RS and Barto AG (1998) Reinforcement Learning: An

Introduction. Cambridge, MA: The MIT Press.

Sutton RS and Singh SP (1994) On step-size and bias in temporal-

difference learning. In: The proceedings of the eighth Yale

workshop on adaptive and learning systems, pp. 91–96.

Watkins CJCH (1989) Learning from delayed rewards. PhD

Thesis, King’s College London, UK.

Appendix: Glider platform specifications

The glider platform simulated in the experiments was mod-

eled on the RnR SBXC glider. The aircraft parameters used

in the simulations are given in Table 3.

Table 3. Simulated aircraft parameter values.

Aircraft parameter Parameter value

Parasitic drag coefficient 0.012
Wing reference area 0.95677 m2

Wing aspect ratio 19.54
Oswald’s efficiency factor 0.85
Vehicle mass 5.44 kg
Maximum positive load factor 2.0
Maximum negative load factor 0
Maximum lift coefficient 1.2
Maximum roll rate 30�/s
Maximum roll angle 60�
Maximum air relative climb angle 50�
Approximate glide ratio 30
Stall speed 9.54 m/s
Maximum allowable airspeed 36.6 m/s
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