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Abstract—This paper examines temporal difference reinforce-
ment learning (RL) with adaptive and directed exploration for
resource-limited missions. The scenario considered is for an
energy-limited agent which must explore an unknown region to
find new energy sources. The presented algorithm uses a Gaussian
Process (GP) regression model to estimate the value function
in an RL framework. However, to avoid myopic exploration we
developed a resource-weighted objective function which combines
an estimate of the future information gain using an action rollout
with the estimated value function to generate directed explorative
action sequences. The results show that under this objective
function, the learning agent is able to continue exploring for
better state-action trajectories when platform energy is high and
follow conservative energy gaining trajectories when platform
energy is low.

I. INTRODUCTION

Adaptive and informative exploration in RL can improve the
rate of learning and this is especially critical when the learning
agent must operate under limited resources, such as limited
platform energy. Including resource constraint considerations
into the action selection can enable long term operation and
learning by scaling the exploration and exploitation according
to the available platform resources.

In terms of information-based control and planning under
uncertainty, active and informative path planning algorithms
developed by Singh et al. [9] and Hollinger et al. [6] have
exploited the submodularity property of information gain to
select the most informative set of sensing locations. These ex-
ploration approaches have typically been used for informative
mapping, but can be incorporated into RL problems where
the task is to learn a resource gathering policy in an unknown
environment.

Various informative exploration implementations have also
been a feature of RL strategies. Dearden et al. [3] main-
tained probability distributions over the value function; Engel
et al. [4] and Engel et al. [5] demonstrated the use of GP
modelling for value function approximation and noted that
the GP covariance could provide confidence bounds on the
value estimate to direct exploration; Brochu et al. [1] outlined
methods of combining the GP covariance and estimate to
form acquisition functions; and more recently, Chung et al.
[2] applied information gain rollout to produce a nonmyopic
information value to direct exploration.

The standard goal of RL problems is to learn a good policy

as the number of observations increase (generally with the
aim of generating optimal policies in the limit), however, they
do not consider the cost of taking observations. The problem
that we are concerned with draws a tighter coupling between
what is observed and how the agent may continue to make
observations. In this work, the goal of the agent is to learn
resource gathering trajectories in the state-action space, in
order to do so it must spend that resource to explore the space
and gather information.

This raises the question of how to represent exploration and
exploitation value quantitatively in the RL framework and how
to consolidate these two in an adaptive and nonmyopic way.

As shown in Chung et al. [2], by approximating the value
function with a GP, the GP covariance can be manipulated
to measure the information value of future actions. However
this cannot be naı̈vely combined with the RL value function
since the ability to explore is now dependent on the available
resources. An adaptive weighting factor is introduced to rep-
resent the current level of available resource and this is used
to scale exploration against exploitation.

The resource constrained RL algorithm was tested on a
soaring glider problem where the agent must search for energy
gaining trajectories while expending energy during exploratory
flight. These results were compared against the directed infor-
mation gain algorithm presented in Chung et al. [2].

In the following section, we outline the value function
approximation method using GPs. Section III describes the
computation of the information measure using the GP covari-
ance and includes details of the rollout method for nonmyopic
exploration. The resource constrained exploration-exploitation
objective function is introduced in Section IV, with the soaring
glider simulation setup and results presented in Section V and
Section VI, respectively. Concluding statements and sugges-
tions for future work are given in Section VII.

II. GAUSSIAN PROCESSES FOR VALUE FUNCTION
APPROXIMATION

Traditional RL methods were designed for use on problems
with discrete state-action spaces, requiring learning to take
place over multiple revisits to any particular state-action pair.
Value function approximation techniques have been commonly
applied to extend the RL framework to approximate the
value of state-action pairs that have not yet been visited.



While any function approximation technique can be used
within the RL framework to model the value function, it is
desirable to choose a method that is best able to generalise
the available observations to the full state-action space. The
interested reader is directed to Sutton and Barto [10] for a
survey of common RL function approximation techniques. In
the following discussions and experiments we build upon a
SARSA(λ) RL framework using a GP to model the value
function.

GP modelling is a function approximation technique that
not only provides a continuous estimate of the value function
but also quantifies the uncertainty of the estimate across the
function space in the form of a mean and a covariance,
respectively, see Rasmussen and Williams [8]. The training
inputs XN = {xi}Ni=1 to the GP are the observed state-action
pairs,

xi = [si,ai] , (1)

and the training targets yN = {yi}Ni=1 are the corresponding
Q-values which are updated on the fly as the eligibility trace
decays,

yi = Q (si,ai) . (2)

For a test point x∗, covariance function k and covariance
matrix K = K (X,X), the estimated mean value Q̄∗ and
covariance cov (Q∗) are

Q̄∗ = E [Q (x∗) |X,y,x∗]

= K (x∗, X)
[
K + σ2

nI
]−1

y, (3)

cov (Q∗) = K (x∗,x∗)−K (x∗, X)
[
K + σ2

nI
]−1

K (X,x∗) .
(4)

Simply stated, the GP approximation assumes that state-
action pairs close to one another in the covariance function
space will have similar associated Q-values. This assumption
can be applied to problems with continuous state and/or
action spaces, as well as in discrete state-action problems
where the transition function implies some sense of continuity,
such as in some grid search problems. Prior assumptions
regarding the properties of the value function surface can also
be incorporated via judicious design of the GP covariance
function. For example, in the following experiments we make
the assumption of stationarity in the value function and use
the squared exponential covariance function to compute the
GP:

k (x,x′) = σ2
f exp

(
−1

2
(x− x′)

T
M (x− x′)

)
, (5)

where σ2
f is the process variance, M is a diagonal matrix with

positive elements equal to l−2, and l = [l1, l2, . . . , ln] are the
length scales in each dimension of the training input vector.
While it is possible to train these hyperparameters online,
offline training on a set of simulation data was preferred since
the initial stages of learning tended to generate large changes
in the value function which would lead to instability.

III. INFORMATIVE EXPLORATION

The goal of exploration in RL is to reduce the uncertainty in
the value function estimate. Traditional methods for invoking
exploration actions, such as ε-greedy sampling, are susceptible
to local minima and fail to actively direct exploration to areas
where information of the value function is sparse. Given that
we are using a GP to approximate the value function, it is
intuitive to use the GP variance measure to quantify and
compare the information gain of possible state-action observa-
tions. Furthermore, we can achieve a nonmyopic measure of
information value by considering the discounted information
gain of all the future observations which are possible after
executing an action. This can be estimated using the rollout
method proposed by Chung et al. [2], which is described
briefly in Section III-B.

A. Measuring Information Gain

The GP variance over the state-action space represents a
bounding volume around the estimated value function surface.
Each consecutive observation results in a reduction in this
volume and this reduction represents the information gain of
the corresponding state-action observation,

VboundN =

∫ xnb

xna

· · ·
∫ x1b

x1a

cov ([x1, . . . , xn] |XN )dx1 . . . dxn,

(6)

Igain = VboundN − VboundN+1
. (7)

The training set XN consists of n-dimensional state-action
pairs, with dimensions [x1, . . . , xn] = [s1, . . . , su, a1, . . . , av]
(typically, v = 1); furthermore, XN+1 = XN

⋃
xN+1.

Since the squared exponential covariance function given in
(5) is an integrable function, an analytical solution to (6) can
be found,

VboundN =

∫ xnb

xna

· · ·
∫ x1b

x1a

k ([x1, . . . , xn] , [x1, . . . , xn])−

k ([x1, . . . , xn] , XN )K−1
XXk (XN , [x1, . . . , xn]) dx1 . . . dxn

= σ2
f

n∏
m=1

(xmb
− xma)− σ4

f

(√
π

2

)n n∏
m=1

lm

×
∑
i,j

(
K−1
XX

)
i,j

exp

[
−

n∑
m=1

(
Xmi

−Xmj

2lm

)2
]
×

n∏
m=1

(
erf

(
xmb
− Xmi

+Xmj

2

lm

)
− erf

(
xma
− Xmi

+Xmj

2

lm

))
,

(8)

where k is the squared exponential covariance function,
K−1
XX =

[
K (X,X) + σ2

nI
]−1

is the inverse of the covariance
matrix of all the observed locations including additive white
noise drawn from N

(
0, σ2

n

)
.

The limits of integration can be chosen to incorporate the
entire space or only a local portion of it, e.g. a reachable set
within a finite time horizon. In the following experiments, the
integral is taken over the entire state-action space.
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Fig. 1: The rollout method introduced in Chung et al. [2]. The information
gain of each rollout level considers all the reachable state-actions at that level.
The total information gain is a discounted sum of the information gain of each
level.

B. Nonmyopic Exploration via Rollout

The information reward of taking an observation at a
particular state-action is simply computed as (7), however
approaching this from an RL perspective, it is more mean-
ingful to consider the nonmyopic information value, i.e. the
total future information gain possible due to performing a
particular action. There is one key difference to note between
the RL state-action value and this information value: the RL
reward for any state-action is constant whereas the information
reward for reobserving a particular state action decreases over
the number of observations. The main consequence of this
is that the information reward cannot be directly included in
the computation of Q, and similarly, information gain credit
cannot be meaningfully assigned back along the eligibility
trace. Instead, we take the approach of looking at all the
possible future state-action observations leading out from a
particular action and use the discounted sum of those rewards
to compute the information value.

The information gain rollout technique is illustrated in Fig 1.
The information value sums the information gained from the
next propsed transition, s′, a′ → s′′ where a′ ∈ A (s′) and
A (s′) is the set of available actions from state s′, with the
discounted information gained from all possible future state-
actions rolled out from s′′ up to a threshold discount factor.
Given a discount parameter γr, the total information gain of
an action a is computed as

Iatotal
= Igain0

+ γrIgain1
+ γ2

r Igain2
+ . . .+ γpr Igainp

, (9)

where p is the highest integer for which γpr is greater than the
discount threshold γthres.

IV. ACTION SELECTION

With both the information value and the state-action value,
the action selection task now becomes one of consolidating
the two competing objectives of exploration and exploitation.
There are a number of factors to consider when combining
these two values into a single objective function: firstly, the
scale of each value may be very different, resulting in one

dominating the other if combined naı̈vely. Secondly, as noted
in Section III-A, having defined the information reward as the
change in the GP variance volume, the value of information
naturally decreases as more observations are taken. Finally,
given a system subject to resource constraints, such as avail-
able platform energy, the desire to explore or exploit should
adapt according to the current available resources. These issues
will be addressed in the following subsections.

A. Reward Tradeoff

The role of the action selection objective function is to rank
the available actions in a way which reflects the objectives of
the learning task, which in this case is to discover the optimal
trajectory through the state-action space. Since it is only the
ranking which ultimately determines which action is executed,
it is useful to normalise the values when combining them as
this also removes the problem of their differences in scaling.
That is, let

Q̂i =
Q̄i

max |Q̄i|
, (10)

Îi =
Iitotal

max |Iitotal
|
, (11)

where i is the current timestep. Note that the value estimate
component lies within [−1, 1] while the information gain
component lies within (0, 1].

A side-effect of this normalisation is that the natural decline
in information value as more observations are taken is also
eliminated. Generally it is desirable to maintain this decline
in the final action selection objective function to encourage
the learning agent to explore more at the start and less
later on when the number of observations increases. Chung
et al. [2] demonstrated that this decline in information value
can be reintroduced as a decreasing weighting factor on the
normalised information value, the overall effect of this was to
scale the agent’s behaviour from exploratory to exploitative as
learning progressed.

B. Resource Limitations

RL research has typically dealt with problems where the
single goal is to efficiently find an optimal state-action tra-
jectory for an agent as its number of observations increases
to infinity. To the authors’ best knowledge, limitations on
available resources such as platform energy, etc. have largely
been neglected from such problems in existing research.
However, when the RL problem is a resource seeking mission,
the reward and the ability to continue collecting rewards
become tightly coupled and such limitations can no longer be
ignored. In the following experiments we consider a soaring
glider learning to gather energy from a wind field. In order
to do so it must expend energy to explore the space for
profitable flight trajectories. The resource in this problem is the
available platform energy, which determines the continuation
or (critical) termination of a mission. For simplicity, in the
following discussions we will focus solely on platform energy
as the resource and reward of interest.



Algorithm 1 eGP-SARSA(λ)

1: Initialise θ . GP hyperparameters
2: e← 0 . Initialise trace
3: s, a← initial state and action
4: Q̄a ← 0 . Initial value estimate
5: Einit ← initial energy
6: for each step i do
7: e (s, a)← 1 . Replacing traces
8: Take action a, observe reward, r, next state, s′, and

current energy Ei
9: δ ← r − Q̄a

10: for all a′′ ∈ A (s′) do
11: Q̄a′′ ∼ GPQ . GP approximation for Q
12: Ia′′total

← Igain0
+ γrIgain1

+ . . .+ γpr Igainp

13: end for
14: ω ← max

(
0,min

(
1, Ei

Einit

))
. Resource limited
exploration weight

15: Q̂a′′ ← Q̄a′′
max |Q̄a′′ | . Normalised state-action value

16: Îa′′ ←
Ia′′

total

max |Ia′′
total

| . Normalised information value

17: Ja′′e ← Q̂a′′ + ωÎa′′

18: a′ ← arg maxa′′ Ja′′e
19: δ ← δ + γQ̄a′

20: if (s, a) is a new state then
21: Append (s, a) to GPQ training inputs X
22: end if
23: y← y + αδe . Update GPQ training targets
24: if retrain hyperparameters then
25: θ ← arg minθ − log p (y|X, θ) . Minimise the

negative log marginal likelihood
26: end if
27: e← γλe
28: s← s′

29: a← a′

30: end for

We propose a dynamic scaling of the exploration behaviour
according to the available platform energy using the weighting
factor,

ω = max

(
0,min

(
1,

Ei
Emax

))
, (12)

combined with (10) and (11) to produce the resource con-
trained exploration-exploitation objective function:

Jie = Q̂i + ωÎi, (13)

where Ei is the available platform energy at timestep i and
Emax is the maximum amount of energy that can be stored on
the platform (e.g. corresponding to a maximum altitude). The
effect of this objective function is to increase the influence of
the information value when platform energy is high so that the
agent tends to explore areas of the state-action space which
have high uncertainty. When platform energy is low, the state-
action value dominates the action selection objective function
so that the agent tends to exploit areas of the state-action space
which are believed to produce high energy reward, thereby
replenishing the resource.
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Fig. 2: Wind energy field for the soaring glider simulation. A thermal is
centred at (17, 12) and a wind shear field is present between the limits of
5 ≤ x ≤ 15 and 10 ≤ y ≤ 20.

The full eGP-SARSA(λ) algorithm is presented in Al-
gorithm 1. For each action selection, Algorithm 1 requires
simulation of the motion model and estimation of the resulting
information gain across a tree with branching factor in the
number of possible actions and search depth imposed by the
limit γr.

V. EXPERIMENTAL SETUP

We revisit the soaring glider problem presented by Chung
et al. [2]. The glider, representing the learning agent, operates
in a discretised hexagonal grid world with an underlying
wind energy field shown in Fig. 2. The cell location and
platform heading constitute the glider state, (x, y, ψ), where
the headings are discretised along the six faces of the hexgrid
cells. Note that since the platform heading is an angular state,
care must taken to ensure that the wraparound condition is
enforced when computing the squared distances in the GP
covariance function (5).

At each decision instance, the glider has the choice of
three actions: turn left, go straight or turn right, as shown
in Fig. 3. Headings are defined as 0◦ north, then 60◦, 120◦,
etc., travelling in an anti-clockwise direction from north. The
glider is only able to travel within the defined search space
and receives a penalty for choosing actions which attempt to
move it beyond the boundaries.

The reward functions for the hexgrid example are based
on a simple glider aircraft model. During flight in no wind

Turn left 

Go straight 

Turn right 

s

s

Fig. 3: State transition for each available action. Each action involves an initial
forward step, the following step is either into the cell on a bearing of 60◦ to
the left or right, or into the cell directly ahead.



the aircraft is assumed to lose energy at a constant rate while
travelling forwards with an additional penalty when turning.
This is equivalent to a glider travelling at a constant airspeed
which loses energy in proportion to the lift to drag ratio L

D ,
the vehicle mass m and the acceleration due to gravity g. For
an electric vehicle these can be considered constant values
during flight. An additional penalty is applied to turns due
to the drag from increased wing loading. With the fixed turn
angles of 60◦ in the hex grid example, the additional turn
penalty is approximated as 1.3 times the steady-level energy
loss over the same distance. The resulting cost function for a
movement action between cells spaced distance d apart is

rmove = −mgd
L
D

×

{
1 if action = go straight
1.3 otherwise.

(14)

The energy sources in the field are either rising air (static
soaring) or wind gradient (dynamic soaring) sources. A rising
air energy source is placed at (17, 12) with a defined core
wind speed wt and radius lt. Energy is gained from rising air
simply by flying through it (independent of heading) and is
proportional to the strength of the wind. At a distance dt from
a thermal the reward is

rtherm =

1−
(
dt
lt

)2

if dt < lt

0 if dt ≥ lt.
(15)

Dynamic soaring is the process of collecting energy by
moving through a spatial wind gradient which effectively
increases the airspeed of the aircraft. By flying cyclic patterns
through wind shear it is possible to continuously increase
airspeed. Typically, dynamic soaring is performed in a vertical
wind gradient (with respect to altitude) rather than the planar
wind gradient used here. Whilst an in-depth discussion of
dynamic soaring is beyond the scope of this paper, suitable
descriptions can be found in Lawrance [7], Wood [12] and
Weimerskirch et al. [11]. The dynamic soaring sources are
modelled as a planar linear shear gradient, as noted by the
wind vectors in Fig. 2. Energy capture from a wind gradient
is due to the increased air-relative kinetic energy from the
increase in airspeed from the wind gradient. For a linear wind
gradient ∂Wx

∂y , the kinetic power is

dEkinetic
dt

= 1
2m
(
∂Wx

∂y V
2 cosψ sinψ

)
. (16)

This is effectively the projection of the wind gradient in
the airspeed direction, for this simulation the resulting reward
function for travelling distance d through a linear gradient ∂Wx

∂y
at heading ψ is

rshear = 1
2md sinψ cosψ ∂Wx

∂y

(
2V + d sinψ cosψ ∂Wx

∂y

)
.

(17)
Finally, the reward function includes a penalty term for

flight outside the specified area. The edge penalty is twice
the magnitude of the strongest wind energy source,

redge =

{
−2 maxW if outside flight area
0 otherwise.

(18)
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(b) iGP-SARSA(λ)

Fig. 4: Cumulative energy over the course of the simulation for each of the
20 trials. Energies below the threshold value of 0 represent a critical failure.

The resulting reward function is the sum of these four com-
ponents,

r = rmove + rtherm + rshear + redge. (19)

In addition to the reward function, the energy gained from
thermalling and dynamic soaring as well as the energy lost due
to drag are used to compute the remaining platform energy. In
the experiments that follow, the agent is restricted to an upper
energy bound defined by the maximum energy and a lower
bound of zero which represents a critical failure. For each
experiment, the glider began in a randomly selected state with
a randomly selected action at maximum energy. The maximum
energy was chosen to be the amount of energy required to
fly straight and level for half of the total simulation time.
Considering the additional energy penalties for turning and
attempting to exit the field, it is not expected that a random
policy will be able to maintain positive platform energy levels
over the duration of the simulation.

VI. RESULTS

The glider experiment was repeated over 20 trials of
104s simulations to compare the performance of the eGP-
SARSA(λ) algorithm to the iGP-SARSA(λ) algorithm pre-
sented in Chung et al. [2]. Over the 20 trials, 5 of the eGP-
SARSA(λ) trials and 14 of the iGP-SARSA(λ) trials failed
to maintain positive energy levels.

The eGP-SARSA(λ) objective function adaptively prefer-
ences exploitation or exploration according to platform energy,
encouraging the agent to exploit energy gaining trajectories
when platform energy is low, while the iGP-SARSA(λ) only
applies a decline in the information (exploration) value over
time. The difference is highlighted in Fig. 4 where the spread
of the cumulative energy plots for the iGP-SARSA(λ) cases
decline rapidly, while the majority of the eGP-SARSA(λ)
cases are able to stay above the threshold value.

The number of observed state-actions over each trial are
shown in Fig. 5. The plots suggest that the number of newly
observed state-actions reach an asymptotic value in the iGP-
SARSA(λ) trials, whereas there appears to be a general trend
towards a constant increase in new observations as the eGP-
SARSA(λ) simulations progress. The asymptotic exploration
behaviour of the iGP-SARSA(λ) is expected since the objec-
tive function decreases the information value to 0 over the
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Fig. 5: The number of observed state-action pairs over the course of the
simulation for each of the 20 trials. Since the information value is decreased
to 0 in the iGP-SARSA(λ) trials, exploration declines in the latter stages
of the mission, whereas the eGP-SARSA(λ) trials continue to explore at a
constant rate over the entire mission.

course of the simulation. However the learning behaviour of
the eGP-SARSA(λ) algorithm may be more desirable in cases
where a final mission time is not given, rather the goal is to
continue operation until some terminal condition (such as a
threshold platform energy) is triggered.

Two energy gaining flight trajectories from a pair of trials
are shown in Fig. 6. Given the complexity of the field and the
reward function, there are many flight plan loops that result in
net energy gain, although some loops are more efficient than
others, as can be seen in Fig. 6.

VII. CONCLUSIONS AND FUTURE WORK

The results presented in this paper demonstrated that in-
troducing resource constraint considerations into the objective
function of the RL algorithm produced comparable exploration
capabilities whilst satisfying other critical platform constraints.
However, the proposed eGP-SARSA(λ) algorithm was unable
to provide hard guarantees on resource thresholding. A future
research direction is to consider the relationship between the
initial rates of learning and the required initial energy to
provide threshold energy guarantees.
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