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Abstract— This paper presents the iGP-SARSA(λ) algorithm
for temporal difference reinforcement learning (RL) with non-
myopic information gain considerations. The proposed algo-
rithm uses a Gaussian process (GP) model to approximate the
state-action value function, Q, and incorporates the variance
measure from the GP into the calculation of the discounted
information gain value for all future state-actions rolled out
from the current state-action. The algorithm was compared
against a standard SARSA(λ) algorithm on two simulated
examples: a battery charge/discharge problem, and a soaring
glider problem. Results show that incorporating the information
gain value into the action selection encouraged exploration early
on, allowing the iGP-SARSA(λ) algorithm to converge to a
more profitable reward cycle, while the ε-greedy exploration
strategy in the SARSA(λ) algorithm failed to search beyond
the local optimal solution.

I. INTRODUCTION

RL techniques train for profitable behaviours by explor-

ing the state and action space and observing the resulting

rewards [1]. Incorporating information gain considerations

can produce a more efficient and directed exploration of the

state-action space. GP regression can be used to provide

a probabilistic and continuous representation of the value

function from which the information gain can be computed.

Bayesian probabilistic representations for policy improve-

ment in RL have been investigated in prior work. In the

Bayesian Q-learning approach taken by [2], probability

distributions are maintained over the Q-values to compute

the value of information of the next action. The value of

information is defined as the the expected improvement

in future decision quality due to the information gained

from executing action a. This method is myopic by design

since it only considers how the knowledge gained in the

next action may affect the current preference over those

available actions. The use of GPs in temporal difference

learning tasks was introduced in [3] as a Bayesian approach

to approximating the value function in problems with con-

tinuous state spaces. This was extended in [4] with their

GPSARSA algorithm to include online action selection and

policy improvement. The authors only use the GP variance

to compute confidence intervals around the value estimate,

however they also note that this measure could be used for

various exploration strategies.

In a similar application, GPs have also been used for value

function approximation in dynamic programming problems.

In [5], a GP model is used to approximate the value function
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while a separate GP model is used to represent the uncertain

system dynamics. The estimates of both GPs are used for

policy iteration. In [6], both the V - and Q-functions are

modelled by GPs, however, only the V -function retains the

continuous space over the states since independent GP mod-

els are used to represent the Q-function at each state over the

space of the available actions. A method of Bayesian active

learning for action selection is described which weights the

entropy at the next possible state, computed from the V -

function GP variance, with the expected value of that state.

Currently, the only methods of incorporating information

gain into the action selection have been myopic. However,

given that in temporal difference learning techniques, the

value function encapsulates the sum of all future expected

rewards, it seems appropriate that this same approach should

be applied to compute the value of information at any

particular state-action.

This definition raises several issues that must be consid-

ered. Firstly, how should the information gain be measured?

Following that, how can future information gain be combined

in a disciplined manner? And finally, how can the informa-

tion gain value be included with the value estimate to ulti-

mately produce effective exploration-exploitation behaviour?

Prior work suggests using the entropy or expected variance

of the sample point as a metric; given a GP model of

the value function, these values can be readily computed,

however they do not give a faithful representation of the

uncertainty reduction over the entire state-action space, only

at the queried points. Therefore, it is proposed that the

reduction in the overall volume of the GP variance be used

as the information gain metric. Moreover, with an integrable

GP covariance function, a closed-form analytical solution can

be found to compute the variance volume across the entire

state-action space.

The proposed method for combining the future informa-

tion gain rewards is inspired by the concept of RL backup

using eligibility traces. In the SARSA(λ) method [1], the

Q-function of previously visited states is updated with a

discounted function (λ) of the current reward. This leaves a

trace of ‘eligibility’ over a state history, such that a particular

Q(s, a) value reflects the rewards received by transitioning

into that state as well as discounted rewards from states

visited later in the trajectory. This concept motivated the

current work which uses uncertainty in the value function

to direct exploration by determining the value of collecting

information along the range of possible future trajectories.

Our proposed iGP-SARSA(λ) algorithm for informative

exploration in reinforcement learning was trialled on two
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examples, a simple 1-dimensional battery charge/discharge

problem and a soaring glider problem inspired by [7], [8].

Results show that in the charge/discharge problem, the iGP-

SARSA(λ) algorithm encouraged exploration of the state-

action space to discover the global optimal solution while

the traditional SARSA(λ) algorithm using only ε-greedy

search could not explore beyond the local optimal solution.

In the higher dimensional soaring glider problem, the iGP-

SARSA(λ) algorithm was able to explore the state-action

space early on to converge to an energy gaining flight path

loop significantly faster than the SARSA(λ) algorithm.

Section II describes in further detail the use of GPs

for value function approximation. The proposed method

of incorporating information gain into the action selection

objective function is given in Section III. The setup of

the charge/discharge problem and soaring glider problem is

described in Section IV, with results reported in Section V.

Concluding remarks are provided in Section VI.

II. VALUE FUNCTION APPROXIMATION WITH GAUSSIAN

PROCESSES

Reinforcement learning methods are traditionally applied

to problems with discrete state and action spaces, this is

because the value function typically deals with discrete

and repeatable instances of state-action pairs. The policy

determines the action to take when a particular state is

encountered and is learnt by observing the reward received

from each state-action transition. Credit assignment during

each backup is applied only to the state-action pairs that

have been visited, i.e. the value at unobserved state-action

locations cannot be inferred from the observed set. In the

case of continuous state or action spaces, any arbitrary

state-action will almost surely never be visited more than

once, therefore the observed reward and the subsequently

computed value of that state-action does not provide any

usable information for determining policy improvements.

To overcome this, value function approximation tech-

niques have been developed to cater for problems where

either the state or action spaces are continuous. In the follow-

ing sets of experiments, we compare our proposed method

with two existing approximation methods, SARSA(λ) with

tile coding and GP-SARSA(λ).
Tile coding is a form of coarse coding which discretises

the continuous state or action space into sets of overlapping

tiles. Each tiling (set of tiles) is offset by a random amount

less than the size of one tile, and each tile represents the

receptive field for one binary feature of the value function

approximation. The greater the number of tilings, the greater

the resolution of the final approximation. The reader is

referred to [1] §8.3.2 for an in-depth discussion on the use

of tile coding as a value function approximation technique.

In contrast to the tile coding representation, the GP ap-

proximation provides a continuous representation of the es-

timated value function. The basic GP-SARSA(λ) algorithm

with ε-greedy exploration is shown in Algorithm 1. The

training inputs, X = {xi}Ni=1, to the GP are the observed

state-action pairs and the training targets y = {yi}Ni=1 are the

Algorithm 1 GP-SARSA(λ)

1: Initialise θ � GP hyperparameters

2: e ← 0 � Initialise trace

3: s, a← initial state and action

4: Q̂a ← 0 � Initial value estimate

5: for each step do
6: e (s, a) ← 1 � Replacing traces

7: Take action a, observe reward, r, and next state, s′

8: δ ← r − Q̂a

9: if m ≥ ε then
10: for all a′′ ∈ A (s′) do
11: Q̂a′′ ∼ GPQ � GP approximation for Q
12: end for
13: a′ ← argmaxa′′ Q̂a′′

14: else � Random exploration with probability ε
15: a′ ← a random action ∈ A (s)
16: Q̂a′ ∼ GPQ � GP approximation for Q
17: end if
18: δ ← δ + γQ̂a′

19: if (s, a) is a new state then
20: Append (s, a) to GPQ training inputs X
21: end if
22: y ← y + αδe � Update GPQ training targets

23: if retrain hyperparameters then
24: θ ← argminθ − log p (y|X, θ) � Minimise the

negative log marginal likelihood

25: end if
26: e ← γλe
27: s← s′

28: a← a′

29: end for

corresponding Q-values which are updated on the fly as the

eligibility trace decays (line 22). The estimated mean value

Q̄∗ and covariance cov (Q∗) for a test point x∗, covariance

function k and covariance matrix K = K (X,X) are

Q̄∗ = E [Q (x∗) |X,y,x∗]

= K (x∗, X)
[
K + σ2

nI
]−1

y (1)

cov (Q∗) = K (x∗,x∗)−K (x∗, X)
[
K + σ2

nI
]−1

K (X,x∗)
(2)

The underlying assumption captured by the GP approxima-

tion is that state-action pairs close to one another in the

covariance function space will produce similar Q-values.

This assumption is not limited to problems where the state

and/or action spaces are continuous, it can also be applied

to problems where the states and actions are discrete but the

transition function implies some sense of continuity, such as

in grid search problems. To some extent this continuity is

captured by the eligibility trace, however the trace is only

able to assign credit to state-action locations that have been

visited whereas the GP approximation is able to estimate the

value of locations that are yet to be visited.

The squared exponential covariance function is used in the

following experiments:

k (x,x′) = σ2
f exp

(
−1

2
(x− x′)T M (x− x′)

)
, (3)
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where M is a diagonal matrix with positive elements equal

to l−2, and l = [l1, l2, . . . , ln] are the lengths scales in each

dimension of the training input vector. The hyperparameters

of the covariance function (3) are the length scales, l, and

the process variance, σ2
f . The covariance matrix, K (X,X),

is the covariance function evaluated between each pair of

points in the observed set, X .

The hyperparameters used in the following experiments

were trained offline on a set of simulation data gathered

using an initial estimate of the hyperparameters. It is possible

to train the hyperparameters online as shown in lines 23-

25 of Algorithm 1, however the authors note that the initial

stages of learning tend to generate large changes in the value

function which may lead to instability in hyperparameter

training early on, thus offline training was preferred.

III. INCORPORATING INFORMATION GAIN

The GP model of the value function provides a measure of

uncertainty, in the form of a variance estimate, which can be

used to direct exploration. While traditional RL techniques

have induced exploration by either setting an initial biased

estimate of the value function, selecting random actions

with some small probability (ε-greedy) or a combination of

both, these methods are not adaptive in terms of actively

directing exploration to areas where information of the value

function is sparse. Because of this, traditional methods are

typically unable to explore beyond local optima and may fail

to discover the globally optimal solution if it exists further

away. There are other methods of promoting exploration

that apply instrinsic motivation in the design of the reward

function itself [9] [10]. However, since the ultimate goal of

accumulating reward is inherently tied to accurately mod-

elling the value function, using the GP variance to measure

the information gain maintains a desirable consistency across

the value function approximation and information reward. By

including this measure in the action selection criteria, it is

possible to direct exploration for more effective coverage of

the state-action space.

A. Information Measure

The variance computed by the GP represents a bounding

volume around the estimated function surface. The informa-

tion gain of observing a particular state-action value can be

computed as the change in this volume given the observation,

VboundN
=∫ xnb

xna

· · ·
∫ x1b

x1a

cov ([x1, . . . , xn] |XN )dx1 . . . dxn, (4)

Igain = VboundN
− VboundN+1

. (5)

The training inputs XN in (4) are n-dimensional state-action

pairs, with dimensions [x1, . . . , xn]; furthermore, XN+1 =
XN

⋃
xN+1.

Since the squared exponential covariance function given

in (3) is an integrable function, an analytical solution to (4)

can be found,

VboundN
=

∫ xnb

xna

· · ·
∫ x1b

x1a

k ([x1, . . . , xn] , [x1, . . . , xn])−

k ([x1, . . . , xn] , XN )K−1
XXk (XN , [x1, . . . , xn]) dx1 . . . dxn

= σ2
f

n∏
m=1

(xmb
− xma

)− σ4
f

(√
π

2

)n n∏
m=1

lm

×
∑
i,j

(
K−1

XX

)
i,j

exp

[
−

n∑
m=1

(
Xmi

−Xmj

2lm

)2
]
×

n∏
m=1

erf

(
xmb

− Xmi
+Xmj

2

lm

)
− erf

(
xma

− Xmi
+Xmj

2

lm

)
,

(6)

where k is the squared exponential covariance function,

K−1
XX =

[
K (X,X) + σ2

nI
]−1

is the inverse of the covari-

ance matrix of all the observed locations including additive

white noise drawn from N (
0, σ2

n

)
, and σ2

f is the process

variance hyperparameter of the covariance function.

The limits of integration can be chosen to incorporate the

entire space or only a local portion of it, e.g. a reachable set

within a finite time horizon. In the following experiments,

the integral is taken over the entire state-action space.

B. Rollout

To facilitate nonmyopic exploration, the total information

gain values for the action set include the information gained

from the next proposed transition, s′, a′ → s′′ where a′ ∈
A (s′) and A (s′) is the set of available actions from state

s′, summed with the discounted information gain from all

possible future state-actions rolled out from s′′ up to a

threshold discount factor. Given a discount parameter γr, the

total information gain of an action a is computed as

Iatotal
= Igain0

+γrIgain1
+γ2r Igain2

+ . . .+γpr Igainp
, (7)

where p is the highest integer for which γpr is greater than

the discount threshold γthres. The value of Igain for each

rollout level is the sum of the information gain of each state-

action pair that can be reached at that level. See Fig. 1 for

a graphical description.

s ��

s�

s ���

a�

a ��

a ���

�

��

� �asIgain ��,
0

� �
� �

� �����
����� sa
gaingain asII

A
,

1

� �
� �

� � �������
��� �������s sa

gaingain asII
A

,
2

�

Fig. 1: Rollout diagram showing how the information gain at each rollout
level is incorporated into the total information gain calculation. The infor-
mation gain of each level is computed as the sum of the information from
all reachable state-actions at that level.
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C. Action Selection

In traditional SARSA(λ) and basic GP-SARSA(λ), the

action with the maximum value Qa is selected for execution.

Incorporating the information gain into the action selection

raises a number of questions; firstly, should information

gain be included in the value function approximation, and

if not, how can the value estimate and the information

gain components be consolidated to produce a meaningful

objective function?

The value function expects repeatable rewards for re-

visiting a particular state-action pair, but an information

gain value cannot be treated in the same way since repeat

observations usually result in reducing the informative value

of the observation. Furthermore, each observation changes

the variance across the entire state-action space according

to the covariance function. Therefore, the information gain

value computed by (7) cannot be included into the value

function approximation.

In the following experiments, we have chosen to combine

the normalised estimated value and the normalised informa-

tion gain reward through a time-dependent weighting,

Q̃i =
Q̂i

|max Q̂i|
+

(
1− i

Nsteps

)
Itotali

|max Itotali |
, (8)

where i is the current timestep and Nsteps is the total number

of timesteps. Note that the value estimate component lies

within [−1, 1] while the information gain component lies

within [0, 1]. It is desirable to normalise the two components

before combining them since their magnitudes are typically

of different scales, which would cause one to dominate the

other if normalisation was not carried out. The weighting

of the information gain component is included to promote

exploration early on while decreasing its contribution in the

later stages. This is motivated by prior examples of decreas-

ing ε values over the course of training in other reinforcement

learning examples [11], [12]. A decrease naturally occurs

in the original Itotal value due to the increasing number

of observations included in the training set but its effect is

removed by the normalisation step; we have reintroduced it

as a linear decrease, however other profiles could also be

considered to produce different exploration behaviours.

The action selection objective function can be written as

a = argmax
a∈A(s)

Q̃i (s, a) , (9)

which replaces the ε-greedy action selection of Algorithm 1

to give the iGP-SARSA(λ) algorithm shown in Algorithm 2.

IV. EXPERIMENT SETUP

The iGP-SARSA(λ) algorithm was compared against

the SARSA(λ) algorithm with tile coding and the GP-

SARSA(λ) algorithm shown in Algorithm 1 in two simula-

tion experiments. The first is a battery charging/discharging

problem and the second is a higher dimensional soaring

glider problem.

Algorithm 2 iGP-SARSA(λ)

1: Initialise θ � GP hyperparameters

2: e ← 0 � Initialise trace

3: s, a← initial state and action

4: Q̂a ← 0 � Initial value estimate

5: for each step i do
6: e (s, a) ← 1 � Replacing traces

7: Take action a, observe reward, r, and next state, s′

8: δ ← r − Q̂a

9: for all a′′ ∈ A (s′) do
10: Q̂a′′ ∼ GPQ � GP approximation for Q
11: Ia′′

total
← Igain0

+ γrIgain1
+ . . .+ γpr Igainp

12: end for
13: Q̃a′′ ← Q̂a′′

|max ˆQa′′ | +
(
1− i

Nsteps

) Ia′′
total

|max Ia′′
total

|
14: a′ ← argmaxa′′ Q̃a′′

15: δ ← δ + γQ̂a′

16: if (s, a) is a new state then
17: Append (s, a) to GPQ training inputs X
18: end if
19: y ← y + αδe � Update GPQ training targets

20: if retrain hyperparameters then
21: θ ← argminθ − log p (y|X, θ) � Minimise the

negative log marginal likelihood

22: end if
23: e ← γλe
24: s← s′

25: a← a′

26: end for

A. Charge/Discharge Problem

Consider the task of providing energy above a particular

rate from a battery with the charging and discharging profiles

shown in Fig. 2. A reward of 0.01 is received when the

discharge rate of the battery is greater than the reward

threshold of dthres = 0.045, while a cost of −0.01 is

incurred when the battery is charging or is discharging

below the reward threshold. The two profiles generate a

non-convex reward surface where local optima exist between

40% ≤ energy ≤ 100%.

At each step, two discrete actions are available: the battery

can either charge up or discharge. The energy state of the

battery is continuous between 0% and 100%, i.e. empty and

full, respectively.

For the tile coding experiments, m = 10 tilings with 50
state partitions over 2 actions were used to discretise the

state-action space. The step-size was chosen as, α = 0.5
m ,

with discount parameters, γ = 0.9, λ = 0.7, and random

exploration probability, ε = 0.01.

In the GP- and iGP-SARSA(λ) experiments, the same

discount parameters were used, while the step size was set

to α = 0.5. In the latter, the ε-greedy exploration probability

was set to 0, thus any exploration relied solely on the

information gain factor in (8). For each experiment, the

battery began at a random energy state. The set of random

starting states was consistent across the iGP-, GP-SARSA(λ)
and SARSA(λ) experiments.
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Fig. 2: Battery charging and discharging profiles as a function of the energy
state. The discharge reward threshold is shown as the dashed line.

B. Soaring Glider Problem

In the soaring glider problem, the search space is dis-

cretised into an hexagonal grid world with an underlying

wind energy field as shown in Fig. 3. The glider state is

defined by (x, y, ψ), the location and heading of the platform.

The headings are discretised according to the six faces of

the hexgrid cells, however, since this state is angular, the

wraparound condition must be enforced when computing

the squared distances for the GP covariance function. The

glider is only able to travel within the defined search space

and receives a penalty for choosing actions which attempt

to move it beyond the boundaries. For each experiment, the

glider began in the centre of the field facing north.

At each state, the glider has the choice of three actions:

turn left, go straight or turn right. The state transition for

each action is shown in Fig. 4. Headings are defined as 0◦

north, then 60◦, 120◦, etc., travelling in an anti-clockwise

direction from north. Since the state-action space is discrete,

tile coding was not necessary for these experiments and

standard SARSA(λ) [1] was applied.

The reward functions for the hexgrid example are based

on a simple glider aircraft model. During flight in no wind

the aircraft is assumed to lose energy at a constant rate while

travelling forwards with an additional penalty when turning.

This is equivalent to a glider travelling at a constant airspeed

which loses energy in proportion to the lift to drag ratio L
D ,

the vehicle mass m and the acceleration due to gravity g. For

an electric vehicle these can be considered constant values

during flight. An additional penalty is applied to turns due

to the drag from increased wing loading. With the fixed turn

angles of 60◦ in the hex grid example, the additional turn

penalty is approximated as 1.3 times the steady-level energy

loss over the same distance. The resulting cost function for

a movement action between cells spaced distance d apart is

rmove = −mgd
L
D

×
{
1 if action = go straight

1.3 otherwise.
(10)

The energy sources in the field are either rising air (static

soaring) or wind gradient (dynamic soaring) sources. A rising

air energy source is placed at (17, 12) with a defined core

wind speed wt and radius lt. Energy is gained from rising

0 5 10 15
0

5

10

15

20

x

y

Wind Energy Field

 

 

0

50

100

150

200

Fig. 3: Wind energy field for the soaring glider simulation. A thermal is
centred at (17, 12) and a wind shear field is present between the limits of
5 ≤ x ≤ 15 and 10 ≤ y ≤ 20.

air simply by flying through it (independent of heading) and

is proportional to the strength of the wind. At a distance dt
from a thermal the reward is

rtherm =

⎧⎨
⎩1−

(
dt

lt

)2

if dt < lt

0 if dt ≥ lt.
(11)

Dynamic soaring is the process of collecting energy by

moving through a spatial wind gradient which effectively

increases the airspeed of the aircraft. By flying cyclic

patterns through wind shear it is possible to continuously

increase airspeed. Typically, dynamic soaring is performed

in a vertical wind gradient (with respect to altitude) rather

than the planar wind gradient used here. Whilst an in-depth

discussion of dynamic soaring is beyond the scope of this

paper, suitable descriptions can be found in [8], [13], [14].

The dynamic soaring sources are modelled as a planar linear

shear gradient, as noted by the wind vectors in Fig. 3. Energy

capture from a wind gradient is due to the increased air-

relative kinetic energy from the increase in airspeed from the

wind gradient. For a linear wind gradient ∂Wx

∂y , the kinetic

energy and power are

Ekinetic =
1
2mV

2, (12)

dEkinetic

dt
= 1

2m

(
2V

dV

dt

)
(13)

= 1
2m

(
∂Wx

∂y V 2 cosψ sinψ
)
. (14)

Turn left 

Go straight 

Turn right 

s

s�

Fig. 4: State transition for each available action. Each action involves an
initial forward step, the following step is either into the cell on a bearing
of 60◦ to the left or right, or into the cell directly ahead.
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This is effectively the projection of the wind gradient in

the airspeed direction, for this simulation the resulting reward

function for travelling distance d through a linear gradient
∂Wx

∂y at heading ψ is

rshear = 1
2md sinψ cosψ ∂Wx

∂y

(
2V + d sinψ cosψ ∂Wx

∂y

)
.

(15)

Finally, the reward function includes a penalty term for

flight outside the specified area. The edge penalty is twice

the magnitude of the strongest wind energy source,

redge =

{
−2maxW if outside flight area

0 otherwise.
(16)

The resulting reward function is the sum of these four

components,

r = rmove + rtherm + rshear + redge. (17)

V. RESULTS

A. Charge/Discharge Problem

The experiment was repeated over 100 trials of 500s
simulations to compare iGP-SARSA(λ) from Algorithm 2

against GP-SARSA(λ) from Algorithm 1 and the baseline

SARSA(λ) algorithm with tile coding. In each of the trials,

the SARSA(λ) and GP-SARSA(λ) algorithm with replacing

traces and ε-greedy search tended to converge to the locally

optimal solution. The set of simulation results shown in

Fig. 5 highlight this behaviour. The ε-greedy search was

not able to encourage exploration beyond the local optimum

around energy = 80%, which produced an average reward

of r = 0.0033, whereas the information gain component

in the iGP-SARSA(λ) action selection objective function

(8) promoted early exploration over the state-action space

to discover the globally optimal charge/discharge cycle be-

tween 40% ≤ energy ≤ 50%, which produced an average

reward of r = 0.005. Furthermore, since more of the state-

action space was explored in the iGP-SARSA(λ) trials, the

approximated value function in these cases gave a better rep-

resentation of the desired reward-gaining policy. The dashed

white lines in Fig. 5 indicate the energy state above which

discharging the battery will produce a reward. The learnt

policy from iGP-SARSA(λ) always favours the discharging

action above the charging action in these states, and prefers

charging to discharging when in states to the left of this line.

The mean cumulative reward over all trials and the average

rewards for one trial are shown in Fig. 6. The steeper

gradient of the cumulative reward for the iGP-SARSA(λ)
case shows that overall, more profitable reward cycles were

discovered. The average rewards plotted in Fig. 6 (b) show

an initial dip in the reward as the iGP-SARSA(λ) algorithm

explores but it is able to discover the global optimal loop

after approximately 45s.
The collated results over all 100 trials are shown in Table

I. Taking the mode of the average reward per step once

the SARSA(λ) algorithm converged to a solution as the

benchmark, r = 0.0033, the iGP-SARSA(λ) method was
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Fig. 5: Battery charge/discharge paths for one set of trials overlaid on top of
the approximated value function. The dashed white line shows the energy at
which the discharge rate is above the reward threshold. A cost is incurred if
the battery attempts to discharge anywhere to the left of the dashed line. The
SARSA(λ) trial coverges early on to the nearest locally optimal solution,
around energy = 80%, while the iGP-SARSA(λ) algorithm is able to
find the globally optimal cycle between 40% ≤ energy ≤ 50%. The final
state-action location is indicated by the cross.
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Fig. 6: Comparison of the mean cumulative reward over all 100 trials
for SARSA(λ) and GP-SARSA(λ) against iGP-SARSA(λ). The average
reward received for the particular trial shown in Fig. 5 is given in (b).

able to converge to a better solution in 86% of the trials,

with a 40% chance of converging to the optimal solution

of r = 0.005. In 14% of the cases, the iGP-SARSA(λ)
algorithm converged to a poorer solution than the benchmark.

In comparison, the SARSA(λ) algorithm was able to find the

optimal solution in only 12% of the trials with a total of only

33% of solutions greater than the mode, GP-SARSA(λ) was

unable to discover the optimal solution and was only able to

perform better than the benchmark in 4% of the trials. It is

hypothesised that poor GP initialisation resulted in the cases

where iGP-SARSA(λ) and GP-SARSA(λ) failed to find a

better solution than the SARSA(λ) algorithm. Providing a

sparse spread of state-action observations at the start may

avoid over-reliance on the trace for awarding credit in the

opening stages of learning; this is an avenue of future inves-

tigation and should be compared against the SARSA(λ) and

GP-SARSA(λ) methods with the same initial observation

set.

TABLE I

RESULTS FROM 100 SIMULATION TRIAL SETS

Average reward
(×10−3

)
r > 3.3 r = 3.3 r < 3.3

% SARSA(λ) trials 33 59 8
% GP-SARSA(λ) trials 4 54 42
% iGP-SARSA(λ) trials 86 0 14
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B. Soaring Glider Problem
In the higher dimensional soaring glider problem, the iGP-

SARSA(λ) algorithm encourages early exploration of the

state-action space but is able to balance exploration and

exploitation to converge to an energy gaining flight plan loop

much earlier than other two algorithms. As shown in Fig. 7,

the three algorithms converge to different loops. Investigation

of the cumulative reward of each loop, plotted in Fig. 8,

shows that the reward gradients are similar despite the

different flight paths. In this experiment, the iGP-SARSA(λ)
algorithm converges to a solution after approximately 200

timesteps while the ε-greedy exploration strategy of GP-

SARSA(λ) and SARSA(λ) do not discover and settle on an

energy gaining flight loop until approximately 1700 and 3600

timesteps, respectively. Inspection of the complete flight logs

shows that 156 state-actions were observed in the iGP-

SARSA(λ) experiment, while 1616 and 3372 state-actions

were visited in the GP-SARSA(λ) and SARSA(λ) exper-

iments. This shows that directed informative exploration

is much more effective than random exploration in higher

dimensional problems, especially in problems where reward

gain is critical, such as the soaring glider example where the

platform must gain energy to stay aloft.

VI. CONCLUSIONS

The results presented in this paper show that the in-

formative exploration component of the action selection in

the proposed iGP-SARSA(λ) algorithm encourages effective

exploration of the state-action space early on in the learning

process to converge quickly to high reward gaining loops.

iGP-SARSA(λ) was shown to outperform SARSA(λ) and

GP-SARSA(λ) which explore via random actions. An ex-

tension to this can be to include a continuous and dynamic

weighting factor between Q̂a and Iatotal
, such as that pro-

posed in [15], which adaptively reflects the current desire for

exploration or exploitation depending, for example, on the

accumulated reward. This would have particular applications

to tasks such as the soaring glider problem.
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Fig. 7: The final flight plan loops learnt by the iGP-SARSA(λ) algorithm,
shown by the thick blue line, GP-SARSA(λ), shown by the black broken
dashed line, and the SARSA(λ) algorithm, shown by the dashed green line.
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Fig. 8: (a) The cumulative rewards for the iGP-SARSA(λ), GP-SARSA(λ)
and SARSA(λ) simulations and (b) the average reward during the simula-
tion for the three experiments.
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