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Summary: The ARES (Aerial Regional-scale Environmental Survey of Mars) glider project
is a current NASA program that aims to send a fully autonomous glider system to survey the
Martian landscape from a gliding altitude of 1.5km. The design of the glider propulsion
system is complicated by issues of low atmospheric density and the lack of appreciable
amounts of O, in the Martian environment, thus it is desirable to make use of the glider’s
soaring capabilities to maximise gliding endurance by exploiting thermal energy sources in the
region whilst also considering the external mission goal of exploring the environment. This
paper discusses the application of a Bayesian Forecast-Decision System (BFS) to the
prediction of thermal motion, the detection and management of system uncertainties, and high
level risk assessment of available flight paths through the environment. The results of this
paper show that the forecast decision system requires very little a priori information to
effectively gauge the system uncertainties and manage platform energy to efficiently survey
the allocated search region. Furthermore, it is also shown that the system can run in real-time
on an autonomous sensing and reacting system operating in a dynamic environment.
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Introduction

ARES Scout Mission

The primary science objectives of the ARES Mars Scout Mission are to sample the Martian
atmosphere to characterise the structure and dynamics of the atmospheric boundary layer over
regional scales, measure water-equivalent hydrogen abundance and ice burial depth, and
investigate the crustal magnetism on Mars [1-3]. The mission design requires the ARES glider
to explore up to 610km of the Southern Highlands region from a gliding altitude of 1.5km [4].
However, low atmospheric density and the lack of appreciable amounts of O, in the Martian
environment pose a number of issues to the design of the glider propulsion system; thus it is
desirable to make use of the glider’s soaring capabilities. To maintain the level of autonomy
necessary to successfully carry out the mission, the glider system must be capable of seeking
out energy sources within the environment to extend gliding endurance whilst maintaining the
nominal pre-planned trajectory to ensure that sufficient data are collected.

The hardware system aboard the ARES glider is shown in Fig. 1. On board sensors are
capable of sampling the local atmosphere to determine air temperature and pressure to
characterise nearby thermals. Given this information, it is proposed that a Bayesian forecast-
decision system can quantify the uncertainties in the sensor measurements and forecast models
to plan a path through the environment that accounts for the risks associated with each
waypoint decision.
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Fig. 1: The NASA ARES platform is equipped with sensors to measure the crustal
magnetisation of Mars as well as sample the Martian atmosphere to determine sources of
biogenic, volcanic, and chemically active gases [4].

The Bayesian Forecast-Decision System for Time Series Data

The Bayesian forecast-decision system (BFS) was first presented by Krzysztofowicz for the
purpose of identifying and quantifying sensor observation and forecast model uncertainties
and was applied to meteorology forecasting and sensor fusion problems [5]. The BFS is able
to predict thermal motion according to a user defined forecast model, and applies the Bayesian
Processor of Forecast (BPF) to detect and manage the contribution of model and input
uncertainties associated with glider sensor data and forecast data to produce a posterior
distribution over future thermal positions. In general, the glider decision system receives and
processes information regarding the state of nature via the timing schematic shown in Fig. 2.
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Fig. 2: Schematic timing of information as processed by the BF'S. At the beginning of the n-th
time period, the system has observations of the previous states and knowledge of all the
forecasts including the current forecast, x,, upon which a manoeuvre decision is made. The
state of nature during the n-th time period, w,, is observed by the system at the end of this
time period and is used to formulate the next forecast x, ;.

The role of the decision model of the BFS is to select the next waypoint by assessing the risk
associated with traversing available paths through the environment, where risk is computed
according to goal point reachability and the map uncertainty as quantified by the BPF.
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Algorithm Design
Forecast Model

The purpose of the initial stage of the BFS is to gather the available raw data and generate a
forecast of the state of nature for the next period of time. In this case, a simplified forecasting
model is used, which assumes that over relatively short time intervals (within the space of one
minute), thermals travel at a constant velocity. Examination of the previous thermal locations
can provide a measure and spread of the thermal velocities, however the number of prior states
to use should be large enough to account for outliers but also small enough pick up changes in
thermal velocities over time. Additionally, an initial estimation of the thermal velocities is
required as no prior states have been recorded. The spread of the estimated velocities is later
used by the BPF to quantify the uncertainties stemming from this modelling method.

Bayesian Processor of Forecasts

The BPF judges the performance of the forecasting model by comparing previous forecasts
against known thermal locations to quantify the current forecast uncertainty. For time series
data, the BPF updates the prior distribution of the uncertain state with the new forecast x,,, and
employs Bayes’ theorem to produce a posterior distribution 77, over the possible future thermal
positions @,. Namely:

7. (@, | @, 11510, ) = £ x, | @0, )2, (@500, 0
EN@) 0, 13X, 50r X))

Where &, is the predictive density of the forecast:
EN@y s @, 11X, 0er X, )= J.fn (X) 50X, | @ seer 0, )2, (O, ..n 0, )d O, 2)

Densities f, and g, are the known joint and prior densities of the relevant variables,
respectively. The prior density describes the natural uncertainty regarding the process (in this
case, thermal motion) that exists before receiving the forecast. The joint density for fixed
forecasts represents the likelihood of the states, that is, the function calculates the forecast
uncertainty by judging how well the forecasting model has predicted the state in the past.

Krzysztofowicz [5] suggests a number of assumptions that can be made about the structure of
the likelihood function and the relationship of the states to simplify the posterior distribution
calculation.

Assumption 1: Conditional upon @y, ..., ®,, forecasts x, ...,x, are stochastically independent of
each other.

n

£ (X, | @y, ) = Hfi(xi | @, 0,) 3)

i=1

Assumption 2: Conditional upon a;, forecast x; is stochastically independent of ¢ for all j # 1.
Thus, for any i <n,
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Assumption 3: The time series of thermal locations, states @y, ..., @,, form a first-order Markov
process.

gn(a)la-"»wn):ﬁgi(a)i |a)i—l) (5

g (a)1 | 0, ) =g (0)1) is the initial state density, and g»,...,g, are one-stage transition densities.

Given Eqn 3, Eqn 4 and Eqn 5, Eqn 1 takes the form:
fo5s ] @,)2,(@, | @,.)

jf L1 o,)g, (o, o, Mo, (6)
=1, (a)n | a)n—lﬂxn)

nn(a)n | @iy @, |3 X,y X
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The full derivation can be found in [6]. According to Eqn 6, given the thermal positions
during the previous time period and the current forecast for the thermal positions at the next
time period, the posterior state transition density 77, ( | a)nfl,xn) over the possible thermal

locations in the next time period is a combination of the natural uncertainty about the state and
the uncertainty in the forecast x, of @,, the prior state transition density g, (-|®, ) and the

likelihood function £, (x, |-), respectively.

The natural uncertainty can be estimated based on on-site historical records, regional
information and any scientific knowledge or experience relevant to @,. For the purpose of
locating thermals, this could include the tendency for thermals to diminish within certain
periods of time (particularly if they are likely to disappear altogether in a space of time shorter
than the data sampling time), and other known thermal movement patterns and thermal
interaction behaviour.

The uncertainty in the forecast x, of @, is estimated from historical records; by observing J
joint observations of forecasted thermal locations and actual thermal locations {(x;,c)) : j =
1,...,J}, it is possible to determine the performance of the forecasting model. At the start of
operation, no adequate historical record of the forecast and actual states will exist.
Krzysztofowicz suggests that under this circumstance, a simulated record can be used;
however, care must be taken to ensure that the simulated model accounts for all uncertainties
and assumptions of the actual forecasting model. As the glider begins to receive sensor
observations, the significance of the historical records on the state estimate will decrease as a
sliding window is used to regulate the number of observation entries used in the estimation.

Given the estimates of £, and g,, the predictive density of the forecast can be calculated as:
§n(‘xn|a) J.f |a) gn(a) |a)nl)da) (7)
With & (a), | @, ) = (a)1 ) Combining Eqn 6 with Eqn 7 gives:

fn(xn |a)n) n(a)n |a)n71)
gn(xn |a)n—1)

n,(o,o,,.x,)= (8)
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Fig. 3 shows the layout of the BPF algorithm.
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Fig. 3: Simplified block diagram showing the steps involved in the BPF algorithm for a first-
order Markov Process [5].

With respect to the overall risk analysis system, the variables of interest from the BPF are the
posterior mean and variance of #,. Since the likelihood and prior densities are both assumed to
be normal, then it can be seen that g, is a conjugate prior of f,. Thus it is possible to derive a
closed form representation of the posterior distribution from which the two hyperparameters
of interest can be obtained.

Supposing that the relationship between the forecast x,, and the actual state w, can be modelled
using a linear forecast equation:

x,=a,0,+b,+0, 9)

where a, and b, are fixed parameters and 6, represents the residual noise with a normal
density distribution N(0), C,,Z). In the case of perfect forecasts, a, = 1 and b, = {,, = 0. Therefore
it is expected that the calculated values of these parameters converge to this ideal condition.
Computation of the parameters necessitates that b, and 6, are measured as one variable with a
distribution N(b,, C,,z) from which the required parameter values can be extracted.

From Eqn 9, the likelihood function can be represented as a normal distribution:
1,5, 10,)=Nla,o, +5,.¢}) (10)

Or in terms of the forecast:

fn(xn |a)n):N(,ufao-_;2f)
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In a similar fashion, since the states form a first-order Markov process, then:
o, =c0,  +d +v, (12)

where ¢, and d, are fixed parameters and v, represents the residual noise with a normal density
distribution N(0,7,°). Once again, if perfect thermal data are received from the sensors and the
thermals behaved exactly according to the linear motion assumption made in the forecast
model, then ¢, =1, d, = Atxv and t,, = 0, where Az xv is the time step multiplied by the thermal
velocity. Further, computation of d, and v, must also combine the two parameters into a single
distribution N(d,, r,,2 ') containing both values of interest.

Eqn 12 gives:

g,(,l0,,)=N(u,.0?) (13)
= N(cna)n_1 + dn,rf)

Applying Eqn 11 and Eqn 13 into Eqn 7 and Eqn 8, the mean and variance of the posterior
distribution can be calculated using the posterior hyperparameter relations derived by Raiffa
and Schlaifer [7]. That is, for:

n, =N,.0}) (14)
M, M
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SR
[2+ 2} (15)
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R
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Decision Model

The purpose of the decision model is to allocate a discrete action to any given state of nature.
In the BFS, the decision model receives the probability distributions calculated in the BPF to
create a map of the world including the glider’s own position and where it expects thermals to
be located. Given the estimated state and the respective probabilities associated with each
thermal’s existence, the model is able to choose a suitable target for the glider. The decision of
which option represents the ‘best’ choice is based on the calculated expected utility resulting
from each manoeuvre.

For the glider, utility is determined as a weighted combination of three factors:
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e Distance of detour as a fraction of the nominal path
e Deviation of glider heading angle from nominal path
e Energy/altitude gain available

The weighting is an operator defined heuristic and should reflect the mission objectives. For
the given exploration and survey missions outlined in this paper, a weighting ratio of 20:1:10
is applied, respectively. The low weighting for the glider heading angle deviation reflects the
manoeuvrability of the platform while the distance factor is weighted highest to drive the
glider to its goal location.

In addition to these factors, the decision model is also able to safely direct the glider when it is
operating below an operator defined critical altitude. Under such circumstances, the decision
model instructs the glider to apply powered flight to the nearest sensed thermal.

Glider Simulation Design

The glider simulation is set up such that for each trial, a random set of thermals are generated
in the field of operation. Each thermal has an associated 3-dimensional velocity and position,
which specifies the potential energy/altitude gain available to the glider (defined as the
effective maximum height) and the thermal radius of effect (estimated as one-tenth of the
effective maximum height). The glider parameters of interest are outlined in Table 1.

Table 1: Glider platform and sensor parameters

Parameter Value
Nominal gliding speed 25 m/s
Descent rate 1 m/s
Maximum banking angle 55°
Sensor range 1000m
Sensor sample interval 60s
Camera FOV 20° —30°

The sensor range of 1000m is an assumption based on the work in [8] which presents a
method for state estimation of non-linear wind fields. The time step used in [8] was 1.2 hours
and dealt with lower frequency dynamics of the wind field, however for our purposes, we are
concerned with the high frequency dynamics and thus have chosen a 40 second horizon for the
sensor range. The reader is referred to [6] for further simulation results that show the effect of
varying sensor ranges and platform gliding dynamics.

The waypoints for the glider mission are predefined and loaded at the start of the simulation.
Two main missions were examined in simulation:

1. Local area survey using a boustrophedon search pattern.

2. Cross-country exploration following a predominantly straight path.
These two paths best represent the ARES scout mission objectives of sampling regional
atmospheric and crustal properties, and following water trails to test for hydrogen content as
outlined in the introduction.

Fig. 4 gives a snapshot of the Matlab simulation. In the instance shown, the glider is adjusting
its course to intercept the thermal at (1020, 2024, -3400)'.
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Fig. 4: Matlab simulation of the glider mission, (a) 3D view, (b) aerial view. The glider is
represented as the blue point mass with a camera footprint shown in light-blue; red circles
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Simulation Results

The flight paths taken by the glider under the localised survey mission mode are shown in Fig.
5. In both flights, the BFS decision model selects intuitive thermal waypoints to maintain
altitude and navigate the surveyed region. It is evident from Fig. 5b that the system is capable
of predicting the movement of the thermals as previously visited thermals travel significant
distances (up to 500m) between survey loops.
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Fig. 5: Flight path taken by the glider to survey a region of slow-moving thermals (a), flight
path taken by the glider to survey a region of fast-moving thermals (b).
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The flight paths show that the basic boustrophedon search pattern is maintained while the
glider exploits thermal sources for altitude gain. Fig. 6 shows the glider altitude over the
flight. For both flights, the glider remains near the nominal gliding altitude of 1.5km, thus
maintaining image resolution whilst correcting when the critical flight altitude of 750m was
violated.
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Fig. 6. Glider altitude over the flight paths shown in Fig. 5a and Fig. 5b, respectively.

The 20° FOV sensor coverage over the flight path is given in Fig. 7. Fig. 7a shows that apart
from a few isolated pockets, the entire 4000m>x4000m survey region is captured. In Fig. 7b,
the gaps in the sensor coverage are due to the placement of thermals within the field causing
the glider to deviate further from the nominal search path to gain energy from nearby thermals.
Despite these path deviations, over 90% of the search area was captured.
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Fig. 7: 20°FOV sensor footprint coverage across the flight paths shown in Fig. 5a and Fig.
5b respectively. Observations taken at a glider bank angle > 10 °are discarded due to poor
image resolution. Such images would be taken when the glider is turning around waypoints or
circling thermals and would be subject to higher levels of noise.

Given the 30° FOV sensor, the coverage across the flight paths is shown in Fig 8. The entire
surveyed region is now captured in case (a) and Fig. 8b shows a significant improvement from
the 20° FOV camera in case (b). Over 99% of the surveyed region is captured with the wider
lens camera. It is also noted the poorer quality sensor observations taken while the glider is
circling may still be used to resolve coverage ‘black spots’ if necessary.
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Fig. 8: 30°FOV visual camera footprint coverage across the flight paths shown in Fig. 5a
and Fig. 5b respectively.

Cross-Country Exploration

The performance of the system while the glider is operating under the cross-country
exploration mode is shown in Fig. 9. Fig. 9a shows the glider’s ability to maintain its search
track whilst locating and exploiting nearby thermals to increase gliding endurance. Fig. 9b
shows that the 20° FOV sensor footprint provides consistent coverage along the nominal path.
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Fig. 9: Glider performing autonomous exploration traversal over a 50km straight stretch.
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Fig. 10: Glider altitude over the cross-country flight path shown in Fig. 9a.

The glider altitude over the 50km flight is shown in Fig. 10. The maximum acceptable glider
altitude was increased to 2500m for this simulation to ensure glider safety; due to this, the
glider’s altitude varies mainly between 1000m to 2500m over this flight plan. It is noted that
over the course of the flight, the glider only drops below the critical altitude once and rarely
deviates further than 500m off the allocated track.
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Fig. 11: BFS computation time over the flight plan shown in Fig. 5a. Simulation was run on
an Intel® Core™ 2 Duo CPU E8400 @ 3.00GHz 4.00GB RAM.

Fig. 11 shows that the BFS computation time scales proportionally to the number of thermals
detected by the glider. It is evident from the graph that although previous sensor observations
and forecasts are retained in the BFS, the computational load does not increase over samples
when no new thermals are detected. The BFS computation time of 3.25ms/thermal is
compatible to the sensor sample rate (once every 60 seconds) and the dynamics of the glider.
However, over extended flights, it will be desirable to remove thermals that have not been
observed for a period of time to free on board memory space and reduce the computational
load. These thermals may have moved out of the region of interest or have dissipated their
energy altogether.
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Conclusion

The application of a Bayesian forecast-decision system to an autonomous glider operating in
an unknown and dynamic environment has been shown in this paper. The BFS is capable of
seeking out and exploiting available thermal energy sources in the environment to maintain
gliding altitude whilst considering an external mission goal such as the ARES glider missions
of regional surveys and cross-country exploration.

Future work in this area may involve the use of terrain modelling from camera observations to
enable another layer of probability modelling focusing on the coupling between geographical
features such as mountain ranges and ridges and sources of rising air (orographic effect).
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