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Abstract— Autonomous pedestrian-aware navigation in shared
human-robot environments is a challenging problem. Here we
consider a common situation in which a large crowd of pedes-
trians moves together in a limited space. Traditional planners
struggle to find collision-free paths in such situations since
the free space is limited and always changing. To solve this
problem, we proposed a flow map-based RRT* method (FM-
RRT*) containing a velocity layer and a minimally-intrusive
layer. The proposed method models the velocity of the pedestrian
flow and the area where the robot is less invasive to pedestrians.
Furthermore, we propose an adaptive bias sampling, which drives
the robot considering relative velocity, or minimal intrusion,
according to the pedestrian flow. The evaluation is conducted
in the Crowdbot Challenge simulator. The results show that our
method can find a feasible path considering collision risk while
simultaneously avoiding intrusive human movement.

Index Terms— Mobile robot, path planning, human awareness,
human–robot interaction.

I. INTRODUCTION

HUMAN-AWARE path planning for robots among human
crowds is both pervasive and challenging [1]. One spe-

cific situation frequently noticed is the masses of crowds
moving together at a high density in limited space, such as
at a public transportation hub or in shopping mall hallways.

Instead of static navigable free spaces, the dense and
complex pedestrian flow results in a limited and constantly
changing amount of open space. The pedestrian flow is made
up of high-density homogeneous masses of the crowd moving
together. Therefore, existing planners, such as [2], [3], and [4],
struggle to find collision-free paths in such situations because
of the highly dynamic and limited open space. This situation
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Fig. 1. Illustration of the scenarios. (a): simulation environment of pedestrian
flow with different directions. (c): simulation environment of pedestrian flow
in the direction opposite to the robot. (b), (d): examples of the corresponding
real-life scenarios. In (a) and (b), the direction of the flow of people in the red
area is opposite to that in the non-red area. The proposed navigation strategy
generates optimal plans based on pedestrian flow, and minimal intrusion on
pedestrians is achieved.

can be divided into two typical scenarios, which are shown
in Fig.1. The first type is that there is at least a flow of
pedestrians in the same direction as the robot, and the second
type is that the direction of pedestrian flow is opposite to
the robot. We define the positive direction if the pedestrian
flow has the same direction as the robot, and the negative
direction otherwise, that is, pedestrian flow against the robot’s
motion. To complete navigation tasks in a safe and humanly
acceptable way in each scenario, it is important to endow
robots with fundamental navigation capabilities that meet
the requirements of avoiding collisions [5] and minimally
intruding [6]. Therefore, we propose a flow map that contains
a velocity layer and a minimally-intrusive layer according to
the above two scenarios. Observing the fact that the collision
risk and intrusion are determined by the relative velocity
between robots and surrounding pedestrians, the velocity layer
is introduced [7]. The velocity layer aims to provide the
robot with information about the area where the pedestrian
flow is moving in the same direction. As for the negative
direction flows of the above scenarios, the minimally-intrusive
layer is proposed to present boundaries of walls and other
obstacles. Such areas have a repulsive force on pedestrians [8]
and the robot only needs to be cautious of pedestrians on
one side. Taking this context into account, we propose the
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Fig. 2. The system architecture of the proposed path planner. The path planner contains a global planner (FM-RRT* path planner) and a local planner to
generate the optimal path.

flow map-based RRT* (FM-RRT*) to drive the robot to
plan trajectories in these areas. FM-RRT* is based on the
rapidly-exploring random trees [9] framework. Compared to
traditional navigation methods, the proposed method aims to
generate optimal strategies depending on different types of
pedestrian flow. As exhibited in Fig. 1a, when there is a
pedestrian flow in the same direction as the robot, the proposed
method aims to plan a path following pedestrians in the same
direction as the robot. When the direction of the pedestrian
flow is opposite to that of the robot, as shown in Fig. 1c, the
proposed strategy makes the robot move alongside obstacles,
such as walls. The proposed strategies are designed to avoid
facing pedestrians head-on, which achieves minimal intrusion
on pedestrians.

In summary, this paper proposes a flow map-based planner
to improve robot navigation performance and enhance safety
in crowded pedestrian flow. The contributions of this paper are
summarized as follows:

• We propose a novel flow map-based model that comprises
a velocity layer and a minimally-intrusive layer to model
pedestrian flow and non-intrusive areas.

• An RRT-based path planner that incorporates the
flow-map model (FM-RRT*) is introduced, and biased
sampling is incorporated to guide the robot towards areas
with minimal intrusion or small velocity differences in
pedestrian flow.

The remainder of this paper is organized as follows.
Section II presents the related work. A series of experiments
demonstrating our method’s efficiency in comparison to prior

research are described in Section V. Finally, the conclusion of
the research study is presented in Section VI.

II. RELATED WORK

Generating a trajectory with low collision risk and min-
imal robot intrusion in a dense crowd environment is the
premise for realizing the harmonious coexistence of humans
and robots [10], [11]. Recently, there have been several
studies focused on generating human-aware paths in dynamic
environments. Everett et al. [12] proposed GA3C-CADRL,
a collision avoidance algorithm that is trained in simulation
using deep reinforcement learning (DRL) to reduce the col-
lision risk between multiple agents. Reference [13] solved
the distributed motion planning issue by a DRL-FMP hybrid
algorithm. Even though this strategy can reduce the probability
of collisions in dynamic environments, it does not consider
the encroachment of robots on pedestrian movement. Refer-
ence [14] discussed smooth path planning using pre-designed
steering sets to generate trajectories with smooth changes
in direction, while also taking into account the movement
of humans to avoid collisions. The authors extended their
method to work in the presence of moving obstacles and
experimentally evaluated its efficiency in an office environ-
ment using a new path evaluation method suitable for wheeled
robots. Choi et al. [2] introduced the Mobile robot Collision
Avoidance Learning with Path MCAL_P framework, which
used deep reinforcement learning to enable mobile robots
to avoid collisions in a decentralized manner. The frame-
work trains robots to navigate environments with dynamic
characteristics and optimize their paths with the soft actor-
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critic algorithm. With this approach, robots can independently
avoid obstacles and reach their targets while maintaining
path efficiency without requiring communication. Despite its
effectiveness, training in densely crowded environments can
be resource-intensive and time-consuming. Sun et al. [3]
presented a method for human-aware robot navigation in
environments with humans, which uses inverse reinforcement
learning and a time-dependent A* planner. The method takes
into account local vision characteristics and learns from
human demonstration trajectories to plan paths that comply
with human behavior patterns while avoiding disruptions to
their personal space and activities. However, the paper only
demonstrates the feasibility of this method in an environment
with a small number of pedestrians, and its performance in
dynamic crowds has not been shown. Zhou et al. [4] proposed
the Heterogeneous GAT-based Deep Reinforcement Learning
(HGAT-DRL) algorithm to encode the human-robot environ-
ment into a graph. This algorithm includes an interactive
agent-level representation for objects and incorporates kino-
dynamic constraints. The proposed method achieves a high
success rate for navigation tasks. However, the algorithm’s
performance in dense crowds cannot be guaranteed. Similar
approaches have also been published in [15], [16], [17], [18],
and [19] to address this issue. Although the above methods
achieve good performance in collision avoidance, they are
usually unable to handle crowds of pedestrians.

In recent years, crowd-aware [20] approaches for satisfying
navigation in crowded environments have been developed.
Paez-Granados et al. [21] presented a force-limited obstacle
avoidance controller incorporated into a time-invariant dynam-
ical system (DS), allowing the robot to react instantly to
pedestrian contact or abrupt arrival. A learning-based approach
called LM-SARL was proposed by Chen et al. [20] to pre-
dict human motion. This method can find an optimal path
in human-rich areas with the help of an attentive pooling
mechanism. Yao et al. [22] introduced a map-based DRL
method containing a sensor map and a pedestrian map to
achieve crowd-aware navigation with a variety of humans.
Another DRL-based path planner [23], which penalizes actions
interfering with human movement, is developed for safety
planning. Cai et al. [24] suggest a human-aware navigation
strategy that can drive the robot to bypass the crowd and avoid
collisions. Even though the above methods can navigate areas
in crowded environments, they cannot satisfy the situation of
high-density pedestrian flow. The reason is that free space is
limited and constantly changing.

To safely navigate in pedestrian flow environments, many
flow-aware methods have been put forward. Dugas et al. [25]
employed a novel pseudo-fluid model of crowd flow and a
formalized observation model to achieve flow-aware planning.
However, this method does not perform well when there is no
positive direction in the scenarios. Henry et al. [26] extended
inverse reinforcement learning (IRL) to teach mobile robots to
navigate crowded environments by learning human-like navi-
gation behavior based on example paths. This paper proposed
a method to estimate dynamic environmental features using
Gaussian processes and to learn a cost function that best
explains the expert behavior. The approach is demonstrated

using a realistic crowd flow simulator and is capable of guiding
the robot to safely navigate when the environment is crowded.
Chao et al. [27] introduced an adaptive dynamic programming
(ADP) approach, which allows the robot to adjust its motion
parameters to interact efficiently with pedestrians and regulate
the flow of pedestrians so that it tracks a desired velocity.
Fan et al. [7] similarly used deep learning methods to explore
whether crowd-flow modeling can be used to help with map-
ping and localization and social-aware planning by treating
crowd flow as a sensory measurement that encodes both the
scene’s traversability and the social navigation preference.
Although the above learning-based methods can have good
performance in pedestrian flow navigation, they have fairly
high computing requirements. Training is also time-consuming
and relies on large amounts of data, which may not always be
readily available.

Currently, rapidly exploring random tree-based methods are
an efficient traditional class of methods that play a big role in
robot navigation. Henderson and Ngo [28]. introduced a mod-
ified version of the social force model (SFM), called the social
intention model (SIM), to reshape the motion primitives (MP)
of the rapidly-exploring random tree (RRT) motion planner for
socially aware robot navigation. The proposed method signifi-
cantly enhances safe and social interactions between robots
and human agents compared to the typical RRT-embedded
MP. Chen et al. [29] designed a planner for pedestrian
avoidance that reduces control calibration by considering
uncertainties and tire force limits. The method consists of
trajectory planning and tracking phases using motion primi-
tives and an LQR-based funnel algorithm. Simulation results
confirm the effectiveness of the proposed method in avoiding
pedestrian collisions. Suh et al. [30] have proposed a new
cost-effective motion-planning algorithm for robots navigating
through complex and realistic environments. The algorithm
combines RRT* with a stochastic optimization method called
cross-entropy, which helps to efficiently find the minimum
cost path. By using two separate trees to grow the search
tree nonmyopically, the algorithm can quickly find low-cost
paths. A novel framework based on curiosity-driven explo-
ration in [31] helps robots navigate safely with localization
precision while considering human comfort in large-scale and
crowded environments where sparse landmarks and crowds
make localization a significant challenge. Other publications
such as [32], [33], [34], and [35], have also utilized rapidly
exploring random tree-based methods to tackle similar issues.
While the methods mentioned above perform well in col-
lision avoidance and safe navigation, they often struggle
with dense crowds that limit the available space for the
robot.

Based on the above analysis, it is clear that path planning
in dynamic and complex pedestrian flow is still a challenge.
In this paper, we propose a flow map-based model that
contains a velocity layer and a minimally-intrusive layer to
model pedestrian flow and non-intrusive areas. In addition,
we added the flow map model to the RRT framework, and we
propose bias sampling to drive the robot towards regions in the
pedestrian flow with a small velocity difference or minimally-
intrusive areas.
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III. PROBLEM FORMULATION

We propose an integrated framework for path planning that
ensures safe navigation while avoiding pedestrians in extreme
pedestrian flows. The j th path from node x0 ∈ R3 to node
x I ∈ R3 is denoted by T j = (x0, . . . , x I ), and the robot’s
dynamic model is represented as follows:

xi = g(xi−1, ui−1, Qt ), (1)

where g(·) is the motion model of the robot, ui−1 ∈ R2 is
the control vector of each node, and Qt ∈ R3 represents the
motion noise. Our objective is to find the optimal trajectory
Topt from a set of candidate trajectories T = T1, . . . , TJ by
defining a cost function C(·) that calculates the cost of each
candidate trajectories, and the trajectory with the minimum
cost is considered the optimal path Topt . The formulation is:

Topt = arg min
I∑

i=0

C(xi ), (2)

C(xi ) =

{
ζ(xi ) Case1
ζ ′(xi ) Case2

(3)

As discussed earlier, the pedestrian flow in the environment
can be divided into two scenarios, which are in Fig.1. We pro-
pose to use different optimal strategies in different scenarios.
We divided the total cost function C(·) into ζ(xi ) and ζ ′(xi ),
which correspond to the two typical scenarios of pedestrian
flow. Specifically, ζ(xi ) corresponds to Case1, where pedes-
trians are moving in the same direction as the robot, while
ζ ′(xi ) corresponds to Case2, where the pedestrian flow is in
the opposite direction.

IV. METHODOLOGY

A. Framework Design

In this section, we propose a flow map-based path planner
to plan the trajectory in the area where the pedestrians’
flow direction is the same as the robot’s direction or in
the minimally-intrusive area near the obstacles. The system
architecture of the proposed framework is illustrated in Fig.2.

The data streams (e.g., velocity, position, and direction)
of pedestrians, the robot, and obstacles obtained in the
environment are inputs into the planner. The proposed path
planner in this paper can be divided into a local planner
and a global planner. We propose FM-RRT* as the global
planner, which includes a Flow map establishment mod-
ule and a Trajectory generation module. For the global
planner, the direction-judging module is first implemented to
judge the similarities and differences between robot direc-
tion and pedestrian flow direction. Then the velocity layer
or minimally-intrusive layer of the flow map model is
built according to the directional similarities and differences.
In addition, the RRT*-based Trajectory generation module is
introduced, containing a generation step, an optimization step,
a B-spline step, and a filter step. The candidates in the same
direction as the robot or minimally-intrusive area are yielded
by bias sampling. The optimization step aims to optimize the
candidates’ distance. Because the candidates generated based

on RRT* are not suitable for robot operation, we use B-spline
to further optimize them to fit robot navigation. In addition,
we propose a cost function in the filter step to find the optimal
global path. Finally, we implemented a local planner to avoid
dynamic pedestrians when robots move along the global path.
The following section elaborates on the FM-RRT* planner in
detail.

B. Flow Map Establishment Module

1) Judgement of Direction: When the pedestrians in the
environment are in the negative direction, that is, the flow is
against the robot’s motion, the velocity layer cannot help the
robot to reduce collision risk and intrusion into pedestrians.
Therefore, we proposed the minimally-intrusive layer, which
can safely drive the robot to the destination with less robot
intrusion to pedestrians. To judge the direction of the pedes-
trian flow compared to the robot’s motion, we define −−−→rt−1rt

and
−−−→
ci

t−1ci
t as the two-dimensional vector of the robot and the

i th crowd, respectively. rt (ci
t ) is the current position of the

robot (i th crowd), and rt−1 (ci
t−1) is the last position of the

robot (i th crowd). The judgment equations are as follows:

∃

−−−→

ci
t−1ci

t ∈ C,
−−−→

ci
t−1ci

t ·
−−−→rt−1rt ⩾ 0, (4)

∀

−−−→

ci
t−1ci

t ∈ C,
−−−→

ci
t−1ci

t ·
−−−→rt−1rt < 0, (5)

where C is the set of crowd vectors. When (4) is satisfied,
we believe that there is pedestrian flow in the positive direc-
tion. Therefore, a velocity layer is established to represent
the motion of the pedestrian flow. When (5) is satisfied,
we consider that all pedestrians in the environment move in
the negative direction. Thus, we apply the minimally-intrusive
layer in this case.

2) JEstablishment of Velocity Layers: The velocity layer
aims to use pedestrian velocity to infer the impact of the flow
on an unoccupied area on the map, which can guide the robot
to navigate towards areas with a similar velocity. The velocity
layer is built based on a two-dimensional Gaussian model,
which is shown in Fig. 3. The probability density equation is
shown as:

N (q|µi , 6i ) =
1

2π
∣∣6i

∣∣1/2 exp{−
1
2
(q − µi )T6i−1

(q − µi )},

(6)

where µi
∈ R2 is the mean, and 6i

=
[
σ i00σ i ′

]
is the

covariance matrix. q ∈ R2 is a position in the map. The value
of µi and 6i are defined as:

µi
= hi

t , σ i
= vi

x1t + ρ, σ i ′
= vi

y1t + ρ, (7)

where (vi
x , vi

y) are the (x , y) velocity components of the i th
pedestrian, and hi

t represents the pedestrian’s current position.
1t is the time interval and ρ represents the noise introduced
by velocity estimation. In the implementation, we assume that
the velocity is accurately estimated and ρ = 0. The velocity
of the surrounding area of pedestrians is calculated by:

V i (q) =
−→

vi
·N (q|µi , 6i ), (8)
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Fig. 3. Schematic diagram of the velocity layer. Colors represent different
velocities. The corridor is divided into a yellow area and a blue & green area
depending on the direction of pedestrian movement.

Fig. 4. Schematic diagram of the minimally-intrusive layer. All the
pedestrians move in the negative direction. The environment is built by the
occupancy grid map [36]. The static layer represents the static obstacles in
the environment. The collision layer represents the area where the robot has
a high probability of colliding with the obstacles. The minimally-intrusive
layer is defined as the area where the robot encounters fewer pedestrians in
the environment.

where
−→
vi is the two-dimensional velocity vector of the i th

pedestrian. Because the density of pedestrians in the environ-
ment is high, one unoccupied area may be assigned different
velocities. Therefore, we used the following function to update
the velocity overlap.

V(q) = max(

∥∥∥V i (q)

∥∥∥) ·
−→

ni , i = 1, 2, . . . , I, (9)

where
−→
ni is the unit vector of the velocity. It is worth noting

that in situations where only a few pedestrians go retrograde
in the negative flow, it is not advisable for the robot to follow
them. This is because the robot will lose track of them in the
dense negative flow.

3) J Establishment of the Minimally-Intrusive Layers:
The purpose of the minimally-intrusive layer is to guide the
robot to navigate along the obstacles to be less intrusive
to pedestrians. We cluster different obstacles according to
their continuity and create different layers according to dif-
ferent clusters. The schematic diagram is shown in Fig. 4.
The obstacle layer is used to mark a dangerous area outside
the obstacle that needs to be avoided during path planning. The
minimally-intrusive layer is proposed to generate the trajectory
with less invasiveness to pedestrians in the environment. The
collision layer Lc ⊆ R2 and the minimally-intrusive layer

Algorithm 1 Trajectory Generation of FM-RRT*
Input: Map M, FlowMap 9, Start xini t , Goal xgoal
Output: A Trajectory T ′ from xini t to xgoal
T .ini t ();
for i = 1 to n do do

xs ← SampleBiasing(M, 9);
xnear ← Nearest (xs, T );
xnew ← Steer(xs, xnear , StepSize);
xnewcost ← Cost (xnearcost + D(xnear , xnew));
if ObstacleFree(xnew) then

xneighbor ← Find Near Neighbor(T, xnew);
xmin ← Parent (xneighbor , xnear , xnew);
T ree.add NodeEdge(xmin, xnew);
T ree← Rewire();

if xnew = xgoal then
Return trajectory T ;

T ∗ = Optimization(T, ObstacleList);
T ′ = B_Spline(T ∗);

Lm ⊆ R2 are:

lic =
{

p|∥po, p∥2 ⩽ r
}
, Lc = ∪

I
i=1 lic, (10)

lim =
{

p|r < ∥po, p∥2 ⩽ 2r
}
, Lm = ∪

I
i=1 lim, (11)

where po ∈ R2 is the position of the obstacles, and r is the
radius of the robot’s circumcircle. lic, lim ⊆ R2 are the subset
of Lc and Lm.

C. Trajectory Generation Module

1) JWorkflow of Trajectory Generation Module: The tra-
jectory generation module of FM-RRT* is based on the
rapidly-exploring random tree. Alg. 1 shows the procedure of
the trajectory generation module. Firstly, SampleBiasing(·)

is utilized to generate the random point in the flow map.
After that, Nearest (·) function searches for the closest point
xnear to xs . Steer(·) finds xnew between xnear and xs and
Cost (·) calculates the cost of the new node based on the dis-
tance factor. Before adding xnew to the tree, the obstacle-free
requirement needs to be satisfied, as shown in lines 7 to 11.
Find Near Neighbor(·) and Parent (·) are used to select the
neighbor point and parent node. After connecting two points,
Rewire(·) needs to be used for rewiring the path that is
selecting a new parent node and child node. Following the
above procedure, we get a preliminary global path. In addi-
tion, we use Optimization(·) to optimize the trajectory by
eliminating unnecessary length and we use B_Spline(·) to
smooth the trajectory to conform to robot operation. Finally,
the optimal global path is found by using the cost function to
navigate the robot.

2) J Bias Sampling: The proposed FM-RRT* framework
is based on a novel biased sampling technique (see line 3 in
Alg. 1). By using the biased sampling technique, the robot
can sample in the same direction as the pedestrians or in
a minimally-intrusive layer in the flow map. The sampling
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strategy in the flow map is:{
Xs = 9opt ∩Ofree, τ > τthr ,

xs = xgoal , τ ⩽ τthr ,
(12)

where Xs ⊆ R2 is the sampling area, Ofree ⊆ R2 represents
the obstacle-free area, and 9opt is intended to represent the
optimal one of all layers 9 ⊆ R2. xs is the sample point and
xgoal is the goal point. We sample the goal with probability
τthr . Because there may be more than one velocity layer,
or minimally-intrusive layer existing in the environments, 9opt
is calculated by equation (13) and (14). The cost function η

of different pedestrian flow or minimally-intrusive layers is
designed to find 9opt :

η(9 j ) = D(rc, N (9 j ))+

∣∣∣{hi
t |h

i
t ∈ 9 j }

∣∣∣ , (13)

9opt = arg
9 j⊆9

min η(9 j ). (14)

where rc ∈ R2 (hi
c ∈ R2) is the position of the robot (human).

N (·) finds the point on the 9 that is closest to the robot. The
cost function η aims to find the layer that is closest to the robot
with the fewest pedestrians. Each component of equation 13
is normalized.

As an instance of the optimal layer selection, in Fig. 4,
the minimally-intrusive layer of Wall A is closer to the robot
and has fewer pedestrians than the Wall B. Therefore, the
minimally-intrusive layer of Wall A is the optimal one.

3) J Cost Function Design: To find the optimal path
Topt = {x0, . . . , x I }, two cost functions ζ(xi ) and ζ ′(xi ) in
(3) are designed in (15) and (19), respectively. When there is
a flow of people in the environment moving in the positive
direction, equation (15) is used to find the optimal sampling
point whose velocity does not deviate too much from the robot.
This cost is able to avoid the discomfort caused by the robot’s
too-fast or too-slow motion with respect to the pedestrians in
the velocity layer.

ζ(xi ) = ξrs grs +D, (15)

where D is the distance assessment model which is similar to
the original RRT method. ξrs is the velocity difference, which
is designed to avoid discomfort caused by the robot’s too-
fast or too-slow velocity. grs is the impact factor of relative
velocities, which are defined as follows:

ξrs =
∥∥−→vr − V(xi )

∥∥ , (16)
grs = wr − (1− wr )cos θrs, (17)

cos θrs(t) =
−→vs (t) · −→vr (t)∥∥−→vs (t)

∥∥ ∥∥−→vr (t)
∥∥ . (18)

The parameter wr reflects the anisotropic nature of relative
velocities with the range (0,1). vr is the two-dimensional
velocity vector of the robot. θrs(t) is the angle between
velocity vector −→vsr (t) and −→vr (t). Each component of equation
(15) is normalized. The equation (15) is used to filter the
sampling points by minimizing the deviation.

Inspired by the social force model [8], the cost function
ζ ′(·) to find the optimal sampling points is defined as follows.

TABLE I
PARAMETER SETTING

The variables of this function are normalized.

ζ ′(xi ) =

∥∥∥−→frw
−1

∥∥∥+D, (19)

−→
frw = (Ai · e

r−diw
Bi + κ · g(r − diw)) ·

−→niw

−K · g(r − diw) · (−→vi ·
−→tiw) ·

−→tiw, (20)

where diw is the Euclidean distance from the robot to the
collision layer. Ai is the strength of the repulsive forces, and
Bi corresponds to the range of the social forces. Friction
parameter κ and K are constants [8]. We denote −→niw as the
tangential direction perpendicular to −→tiw. The function g(x) is
defined by

g(x) =

{
x, x > 0,

0, otherwise. (21)

The optimal trajectory has the minimum sum of the cost (ζ ′(·),
or ζ(·)) of each node xi on the trajectory.

V. SIMULATIONS AND RESULTS

A. Experiment Setup

In this work, we carry out experimental studies1 based
on the CrowdBot Challenge [37]. The CrowdBot Challenge
is a simulation benchmark for testing the performance of
different navigation planning algorithms in a variety of chal-
lenging scenarios. These scenarios are generally classified as
low-density and high-density crowds, crowds moving with
or against the robot, or both. In this paper, eleven scenarios
are designed in the simulator with different human numbers,
human movement strategies, pedestrian flow ranges, and flow
ratios. The parameter configuration of these scenarios is shown
in Table II. Throughout our experiments, we utilized the
CrowdBot Challenge simulator to obtain the position of the
robot and the motion of pedestrians.

For the simulated crowd, we employed one of three sim-
ulation algorithms (ORCA [15] with 0.5s planning horizon,
ORCA with 1.5s planning horizon, and Social Forces [16]) as
a motion strategy. The flow ratio is defined as the ratio of the
area occupied by the pedestrian flow in the positive direction.
A value of 0 for the flow ratio means that all pedestrian flow
directions in the environment are negative directions. Flow
position is defined as the y coordinate of the positive direction
pedestrian.

The parameters of Section IV in the simulation are pre-
sented in the table below. In our implementation, the design
parameters were manually defined. Specifically, we selected
these parameters based on a series of offline tests and chose
the optimal results to be used in the experiments.

1Video demonstration is available at https://youtu.be/X8rTFtFVXCc
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TABLE II
EXPERIMENTAL PARAMETER CONFIGURATION

TABLE III
MODULE FEASIBILITY VERIFICATION. AFFECTED TIMES REPRESENTS THE TIMES THAT THE ROBOT AFFECTS THE NUMBER OF PEDESTRIANS. PROX

REPRESENTS CROWD PROXIMITY. NBRREAC REPRESENTS CROWD EFFECTS THAT RELATE THE SPEED OF THE ROBOT’S NEIGHBORS TO THE
SPEED OF THE ENTIRE CROWD. NBRVEL IS CALCULATED BY COMPARING THE ANGULAR VELOCITY OF THE ENTIRE CROWD RELATIVE

TO THE ROBOT’S NEIGHBORS

B. Metrics Setup

We focus on nine metrics, which can be split into two
categories: path efficiency and crowd awareness. In terms of
path efficiency metrics, we calculate and compare the time
consumption of different algorithms, the length of the robot’s
trajectory, and the average velocity of the robot. The latter
six metrics focus on the effect the robot has on the crowd.
We evaluate each collision by using the simulator’s report of
the colliding human body component as the collision metric,
which is based on the contribution of the pedestrians’ inertia to
the kinetics of the impact [37]. We calculate the collision times
during the navigation tasks. Another collision metric is the
duration of collisions, which is the ratio of the accumulation
of collision time to the navigation time. In addition, this paper
also records the NBRreac, NBRvel [37], and affected times
to indicate how the robot under different algorithms affects
humans. Since humans have their own navigation strategy,
affected times are used to present the frequency of the human’s
motion changes due to the influence of the robot. We only
recorded the number of humans directly affected by the robot.
NBRreac is defined by NBRreac = vNeighbors/vAll where
vneighbors is the average speed of the robot neighbors (within
a 1m range) and vAll is the average speed of the whole
crowd. The higher the neighbors’ velocity, the bigger the
value. NBRvel is calculated by NBRvel = ωAll/ωNeighbors .
ωNeighbors is the angular velocity of the robot’s neighbors
and ωAll is that of the crowd. The more the neighbors rotate,
the smaller the NBRvel will be. When the robot’s influence
on pedestrians is small, the NBRvel (NBRreac) value is
close to 1. For the sake of fully representing the influence
of the robot, we also include the proximity metric Prox =
1− 1

t f inal

∑t f inal
t=0

dmin(t)
R , which is the metric presenting crowd

proximity in the Crowdbot Challenge simulator [37]. In this
function, dmin is the minimum distance from the robot to the
crowd and R is the range in meters.

C. Evaluation of Velocity Layer and
Minimally-Intrusive Layer

In order to test the proposed layers, we perform exper-
iments on the velocity layer and minimally-intrusive layer,

respectively. We use Reciprocal Velocity Obstacles (RVO) [38]
as well as a baseline approach. The baseline algorithm acts
as a benchmark, directing the robot to move straight towards
the goal without local collision avoidance. This causes the
robot to move continuously in a straight line towards the goal.
We designed the scenario (SEM1) with the positive direction
to test the velocity layer and the scenario (SEM2) with-
out the positive direction to test the minimally-intrusive layer.
The velocity layer and minimally-intrusive layer are added in
the RRT* path planner framework for the global path, respec-
tively. We compared the experimental results with and without
the designed layers to observe the difference. The experiment
is repeated ten times for each algorithm for each scenario.

The experimental results are shown in Table III. Accord-
ing to the efficiency of robot navigation tasks, the RVO
algorithm with the proposed layers has a faster average veloc-
ity, shorter time, and shorter trajectory length than the pure
RVO algorithm. Despite needing to travel a longer path than
the baseline algorithm, our method moves at a faster velocity
and results in significantly fewer collisions.

In terms of crowd awareness, collision times, duration of
collisions, and affected times, algorithms with the addition
of the velocity layer or the minimum-intrusive layer perform
better than those without these layers. This means that these
two layers have a good performance in crowd safety and
reduce the collision risk with the crowd. In addition, compared
with the RVO method and the baseline method, the pro-
posed layer has better performance in terms of NBRreac and
NBRvel, which are closer to 1. The crowd is less responsive
to the movement of the robot, indicating that the proposed
layers allow the robot to have less impact on the pedestrians
around it.

D. Contrast Experiment

In order to evaluate the feasibility and superiority of the
comparison algorithm, we implemented the proposed method
in the Crowdbot Challenge and compared its performance
to those of traditional planners like the Dynamic Win-
dow Approach (DWA) [39] and RVO. Furthermore, we ran
two versions of the FM-RRT* planner. The first version is
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TABLE IV
COMPARATIVE EXPERIMENTAL METRICS

FM-RRT*+Baseline. This method implies that there is no local
collision avoidance, while the baseline velocity tends to match
that of the crowd wherever feasible. The second version, FM-
RRT*+RVO, does not directly execute the baseline velocity
but rather modifies it depending on the local path planner
RVO. We designed nine scenarios for the experiment, which
are visualized in Fig.5.

As can be seen in Fig.5, in order to increase the challenge,
we designed the region of positive pedestrian flow to be far
away from the initial position of the robot, and the proportion
of flow in the positive direction was smaller than that of
the flow in the negative direction. In the second and fifth
rows, the velocity layers of the flow map visually show the
velocity distribution in the environment, which is consistent
with the trend of the pedestrian flow in the scenarios. From
a qualitative perspective, the trajectories of FM-RRT*+RVO
and FM-RRT*+Baseline are smoother and reduce unnecessary
detours that are generated when the robot avoids walking
toward humans.

The simulation results are shown in Table IV. The proposed
method still has good performance in the field of crowd
awareness. To be more specific, from the perspective of colli-
sions, FM-RRT*+Baseline and FM-RRT*+RVO have lower
collision times and the duration of collisions regardless of
whether the flow of people is moving in the positive direction
or the negative direction. In terms of the influence of the robot
on its neighbors, our algorithm achieves the least influence
on pedestrians indicated by NBRreac and NBRvel, and the
smallest affected times among all the algorithms. Because
the robot rushes into the opposite pedestrian flow under the
control of other algorithms (Baseline, DWA, and RVO), the
trajectories of its neighbors have to update in order to avoid
collision with the robot, which will cause a reduction in
their velocity and even change their direction. Therefore, the
NBRreac and NBRvel of other algorithms are lower and far
from 1. In addition, the affected times are higher.

Our algorithm comprises the global and the local planning,
and we recorded the computation times for each component in
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Fig. 5. Comparative experiments. (1)SEC1, (2)SEC2, (3)SEC3, (4)SEC4, (5)SEC5, (6)SEC6, (7)SEC7, (8)SEC8, (9)SEC9. The second and fifth rows are
the flow maps generated by FM-RRT* with arrows indicating the position and direction of the pedestrian. In scenario (1), (2), (6), and (7), the flow maps
represent the velocity layers, while in (3), (4), (5), (8), and (9), they illustrate the minimally-intrusive layers. The third and sixth rows display the trajectories
of different planners.

Table IV. The first value of the “Time (s)” metrics represents
the duration of local planning and execution, which occurs
simultaneously during the navigation process. The second
value represents the time taken for global planning. Because
the time consumption of planning is small, the velocity of the
pedestrian flow does not change significantly during the time
delay between planning and execution. Therefore, the initially
planned global path remains applicable throughout the exe-
cution. As for efficiency, although the focus of this study is
to reduce collision risk and invasive pedestrians in crowded
environments, our planner can obtain comparable efficiency
to other obstacle avoidance algorithms.

Furthermore, we designed highly dynamic and dense envi-
ronments (SEC8 and SEC9). Because the free areas in these
two highly dynamic scenarios are limited and constantly
changing, DWA, RVO algorithms, and FM-RRT*+RVO,
which use RVO as a local planner, cannot complete the robot
navigation task. However, the baseline algorithm and FM-
RRT*+Baseline can complete the navigation task. Although

FM-RRT*+Baseline is not the most path-efficient algorithm
due to the consideration of pedestrians, it performs better than
the baseline in terms of crowd awareness and average velocity.

VI. CONCLUSION

In this paper, we proposed a flow map-based planner (FM-
RRT*) to achieve navigation in highly dynamic and limited
open spaces, such as railway stations and hallways. Our
proposed approach introduces a flow map model that consists
of velocity layers and a minimally-intrusive layer, which con-
siders pedestrian velocity distribution and the encroachment
on human movement. We also present a biased sampling
strategy based on the flow map, which enables robot planning
in the above layers. If there is a pedestrian flow moving in
the same direction as desired by the robot, the robot goes
with the flow as enabled by the velocity layer, resulting in
a low collision risk and minimal invasiveness to pedestrians.
In the absence of such flow, the robot can reach its destination
safely without encroaching on pedestrians’ movement, with
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the help of the minimally-intrusive layer. Our proposed FM-
RRT* method, considering two layers, can effectively reduce
collision probability and intrusion into pedestrian movement
around counter-flows in highly dynamic environments with
limited open space.

In the future, we aim to further enhance the performance
of our system in unstructured and complex scenarios. We will
improve the FM model by combining human awareness. Addi-
tionally, we plan to address the impact of noise, specifically
addressing measurement and motion noise resulting from
robot motion systems and sensor uncertainty. To achieve this,
we intend to integrate a filter-based approach into our system,
which will help to reduce noise. Furthermore, we will include
algorithms for accurately locating dense crowds and recogniz-
ing pedestrians. We will then integrate these algorithms and
evaluate the proposed method in a real-world setting.
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