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Abstract— Recently, groundbreaking results have been pre-
sented on open-vocabulary semantic image segmentation. Such
methods segment each pixel in an image into arbitrary cate-
gories provided at run-time in the form of text prompts, as
opposed to a fixed set of classes defined at training time. In
this work, we present a zero-shot volumetric open-vocabulary
semantic scene segmentation method. Our method builds on
the insight that we can fuse image features from a vision-
language model into a neural implicit representation. We show
that the resulting feature field can be segmented into different
classes by assigning points to natural language text prompts.
The implicit volumetric representation enables us to segment
the scene both in 3D and 2D by rendering feature maps from
any given viewpoint of the scene. We show that our method
works on noisy real-world data and can run in real-time on
live sensor data dynamically adjusting to text prompts. We
also present quantitative comparisons on the ScanNet dataset.

I. INTRODUCTION

A key component of building intelligent robots capable of
operating in unstructured and cluttered human environments
is the representation used to model the robot’s surround-
ings. Often times representations have to trade-off properties
which depend on the usage scenario. These properties in-
clude the quality of the reconstruction, the ability to integrate
sensor data continuously, and the computational complexity
to query the representation. The importance of these aspects
differs based on what components of a robotic system
needs to use the representation, dictating the requirements
for available capabilities, sensor data throughput, or query
latency. For instance, an obstacle avoidance system needs
to query for occupancy at high frequency, while a high-
level planning system needs access to semantic knowledge,
and finally a grasp planning system requires fine-grained
segmentation information.

While in the past occupancy was the main information of
interest, robotics has moved towards richer representations
using semantics in recent years. A challenge is that most se-
mantic approaches use a fixed, closed set, of pre-determined
semantic labels. However, real environments contain more
than a few dozen classes, and thus methods capable of han-
dling arbitrary semantic classes, i.e. open set, are desirable.
Additionally, objects in an environment do not necessarily
belong to distinct, mutually exclusive classes. Certain objects
might belong to several classes. A bookshelf is also a piece
of furniture, for example. For high-level planning purposes,
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Fig. 1. Our method enables real-time segmentation of scenes into arbitrary
text classes provided at run-time.

being able to reason about relations between their semantics
might also be useful.

An environment representation that has wide applicability
has several desirable properties, including: (1) can be built
incrementally as the robot explores the environment, (2)
enables real-time integration of new measurements, (3) has
a compact memory footprint, (4) represents geometry at a
high-level of detail, (5) is differentiable, (6) supports open
set semantic queries, and (7) allows fast querying by down-
stream modules. Previously introduced 3D semantic scene
representations are either built from global scene information
[1], use closed set semantics [2]–[5], operate on a fixed level
of detail [2], [3], or are not differentiable [2], [3]. In this
paper, we take a step towards a representation which has the
above-mentioned properties.

Vision-language models (VLM) have shown remarkable
performance on open vocabulary object detection [6], [7].
Recently, these results have been extended to dense semantic
segmentation [8]–[11]. Some of these methods [8], [9] asso-
ciate each pixel with a semantically meaningful vector, which
is embedded in the same high-dimensional vector space as
natural language prompts through a text encoder. This allows
direct computation of the similarity between text prompts and
image features at run-time.

As vision-language models can be trained on massive web-
scale datasets that can be collected automatically without
human supervision, they often show better generalization ca-
pabilities than models trained on smaller closed-set manually
curated datasets. Additionally, VLMs can capture the long
tail of scenarios and classes that are so rare that they are
unlikely to be included in curated datasets. These properties
offer great promise for applications in robotics, where we
might want our robots to be able to perform new tasks in
never-before-seen environments.

In this paper, we present a method for grounding dense



vision-language features into a 3D implicit neural repre-
sentation that can be built up incrementally, in real-time,
as new observations come in. We jointly model radiance,
vision-language model features, and density in the scene
using an implicit neural representation. Our representation
can be incrementally built up given posed images of the scene
and a pre-trained language model. We can directly compute
the similarity between natural language text prompts and
either 3D points or 2D image coordinates for any given
viewpoint of the scene through volumetric rendering. This
enables semantically segmenting a scene zero-shot into text
categories provided at run-time, without having to fine-tune
the system on any domain specific semantics.

In experiments, we showcase results in real-world ex-
periments where we build up our scene representation in
real-time on a real system, and demonstrate the ability to
segment the scene into different classes provided as natu-
ral language prompts at run-time. We additionally present
quantitative segmentation results on the large and diverse
ScanNet dataset. To the best of our knowledge, our method is
the first real-time capable 3D vision-language neural implicit
representation. Our implementation will be made available
through the Autolabel project 1.

II. RELATED WORK

Open Vocabulary Semantic Segmentation and Vision-
Language Models

CLIP [12] introduced a visual-language model capable of
mapping images into the same vector space as natural lan-
guage queries by correlating images to their text descriptions
mined from the open web. Open vocabulary segmentation
methods typically learn dense features which are compared
to text queries given at run-time [8], [9]. Others take a
multi-task learning approach, fusing a task prompt with
the architecture [10], [11]. Other methods such as Clippy
[13] explored learning pixel-aligned visual-language models
from large scale web datasets without requiring segmentation
labels, potentially enabling large-scale open set training, if
the results can be extended to full semantic segmentation.

Language Models in Robotics

Large language models have been explored as an approach
to high-level planning [14]–[18] and scene understanding
[19], [20]. Vision-language models embedding image fea-
tures into the same space as text have been applied to open
vocabulary object detection [16], [17], natural language maps
[15], [17], [21]–[23], and for language-informed navigation
[24]–[26].

Recent methods have explored fusing global CLIP fea-
tures [22], image caption embeddings [27], or dense pixel-
aligned [1] visual-language model features into a point cloud
representation for scene understanding. Concurrent work
ConceptFusion [28] explores building multi-modal semantic
maps by fusing features from vision-language models as well
as audio into a reconstructed 3D point cloud. Similar to these,

1https://github.com/ethz-asl/autolabel

we also fuse VLM features into a 3D representation. Unlike
[1], [22], [28], we use a continuous neural representation
of geometry and semantics which we learn jointly through
volumetric rendering. [1], [27] fuse image features from a
pre-built point cloud using a multi-view fusion method and
learn a 3D convolutional network to map scene points to
dense features. Our representation can be built incrementally
as measurements are collected and does not require global
scene geometry upfront.

Semantic Scene Representations

Voxel-based map representations have been proposed to
store semantic information about a scene [2], [3], [29]–[31].
These methods assign a semantic class to each individual
voxel in the scene. Voxel-based dense semantic represen-
tations typically operate on static scenes, but some have
explored modeling dynamic objects [32], [33].

Scene graphs [34]–[36] have also been proposed as a
candidate for a semantic scene representation that can be
built-up online. Such methods decompose the scene into
a graph where edges model relations between parts of the
scene. The geometry of the parts are typically represented
as a signed distance functions stored in a voxel grid [15].

Neural implicit representations infer scene semantics [4],
[5], [37]–[42] jointly with geometry using a multi-layer
perceptron or similar parametric model. These have been
extended to dynamic scenes [43]. Neural feature fields [5],
[38], [44], [45] are neural implicit representations which
map continuous 3D coordinates to vector-valued features.
Such representations have shown remarkable ability at scene
segmentation and editing. [44] also presented some initial
results on combining feature fields with vision-language
features, motivating their use for language driven semantic
segmentation and scene composition.

III. METHOD

Our method consists of two components: i) a NeRF-like
feature field mapping points in a volume to color, density,
and feature vector and ii) a vision-language model which
both extracts features from image frames and can embed
text prompts into the same vector space.

A. Volumetric Scene Representation

We want to associate 3D points in the volume of our
scene to density, color, and a feature vector. From this, we
can render corresponding maps of color, depth, and feature
vectors through a NeRF-like [46] volumetric rendering func-
tion, visualized in Figure 2. We model these maps using a
positional encoding function and three multilayer perceptrons
(MLP). The first MLP, indicated as (1), outputs density and a
geometric code. The second MLP, labeled (2), outputs color
from the geometric code and an encoded viewing direction.
The third MLP, denoted by (3), takes the geometric code and
outputs the feature vector.

To encode the x, y, and z position in the volume, we
use the hybrid positional encoding introduced by [38]. We
concatenate the vector valued hashgrid encoding introduced
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Fig. 2. A diagram of the model used for our feature field.

in [47] with the low-frequency values of traditional NeRF
[46] frequency encoding with L = 2. The low-frequency
components allows us to model the coarse spatial location
in the scene, whereas the parameters in the hashgrid grid
allow us to quickly learn high-frequency details.

The resulting encoding is fed into an MLP, (1) in Figure 2,
which outputs a 15-dimensional geometric code vector and
scalar density σ. The geometric code is fed into two different
MLPs. The first one outputs a feature vector f . The other one
takes as additional input the encoded viewing direction and
outputs a color vector c. To encode the viewing direction,
we use the same spherical harmonic encoding as [46].

We use these outputs to volumetrically render color images
and feature outputs using the rendering function:

R(r, h) =

N∑
i=1

Ti(1− exp(−σiδi))h(xi), (1)

Ti = exp

−
i−1∑
j=1

σjδj

 , (2)

where h is a function outputting a vector or scalar quantity
for points xi within the volume, Ti is the transmittance
function, δj is the distance between samples and σi is the
predicted density for encoded point samples xi along a ray
r. We use R to produce rendered quantities:

ĉ(r) = R(r, c),

d̂(r) = R(r, z),

f̂(r) = R(r, f),

(3)

using z for the depth component of samples, c for the color
MLP output and f for the feature vector output of our MLP.

These quantities are learned by optimizing photometric,
depth, and feature rendering error terms:

Lrgb(r) = ∥ĉ(r)− c̄(r)∥22 , (4)

Ld(r) =

{∥∥∥d̂(r)− d̄(r)
∥∥∥
1
, if d̄ is defined for r

0, otherwise
(5)

Lf (r) =
∥∥∥f̂(r)− f̄(r)

∥∥∥2
2
/D (6)

where c̄(r) is the ground truth and ĉ(r) the predicted color
for ray r, d̄(r) is the ground truth depth (if available),
d̂(r) the predicted depth predictions along ray r, f̂ rendered
feature outputs, f̄ extracted image features for ray r, and D
the dimensionality of the image features.

The parameters in the hashgrid encoding volume and in
the MLPs are jointly learned by optimizing the objective:

L(r) = Lrgb(r) + λdLd(r) + λfLf (r) (7)

using stochastic gradient descent on a set of rays sampled
uniformly from input images I along with corresponding
feature vectors f̄ . The parameters λd and λf are weighting
parameters to weight the different components of the loss
function. To learn the representation online, while our robot
is exploring the environment, keyframes with image features
can be added to the image set as they are captured.

B. Vision-language Features and Zero-shot Segmentation

Our framework presented above is capable of making
use of arbitrary feature maps. Thus, we can use features
from any feature extractor that produces dense pixel-aligned
feature maps from images. To enable open set semantic
queries in both 2D and 3D at run-time, we choose to use
learned features for which the similarity with text prompts
can be computed through a simple dot product. LSeg [9] and
OpenSeg [8] are both suitable candidates for this purpose. In
our experiments, we use LSeg features, as pretrained models
are readily available. The model comes both with an image
feature extractor F̄ and text encoder E.

Given a pose in the world frame of the volume, we
can render color, depth, and feature maps using volumetric
rendering, using equations 1 and 3. We compute the semantic
class by assigning the feature f̂ to the most similar class
given a set of user defined natural language class descriptions
ti ∈ T into which we want to segment our scene:

ŝ(r) = argmaxiE(ti) · f̂(r). (8)

For 3D queries at point x, we can simply evaluate the
feature MLP at x, i.e.:

s(x) = argmaxiE(ti) · f(x). (9)

IV. EXPERIMENTAL RESULTS

In the following experiments we provide quantitative
results on the ScanNet dataset. We compare our method
to the OpenScene [1] work in terms of mean intersection
over union (mIoU) and mean accuracy (mAcc). Then, to
highlight the utility of our approach in robotics application
we integrate our approach with a SLAM framework. Finally,
we report run-time information to demonstrate the feasibility
of running our algorithm on a real robotic system.

In all our experiments, we use LSeg features [9] trained
on the ADE20k dataset [48]. For the loss function, we
use λd = 0.1 and λf = 0.5 throughout all experiments.
Having tried a range of different values, we found that they
perform similarly and settled on these values in the middle
of the range. In case less noisy and more accurate depth
measurements are available, a higher λd value might yield
better results.

A. ScanNet

On the ScanNet dataset we perform evaluation both in 3D,
by segmenting the provided ground truth point cloud, as well
as in 2D by comparing our rendered segmentation maps to
the ones provided in the dataset. We use the 20 classes from
the ScanNet benchmark. Points or pixels that do not belong
to these classes are ignored.



Fig. 3. Randomly sampled 2D segmentation examples from the ScanNet validation set. Top row shows the original RGB images, second row shows our
segmentation and the bottom row shows the ground truth segmentation from the ScanNet dataset. Black pixels in the ground truth segmentation correspond
to classes not included in the 20 ScanNet evaluation classes.

We first fit our representation using the given RGB,
depth frames and camera poses using 20 000 optimization
iterations. For 3D point cloud segmentation, we look up the
feature vector for each point in the point cloud and assign it
to the nearest text class using the ScanNet class label names
as the text prompts. For 2D segmentation, we segment feature
maps from each viewpoint in each scan and compare against
the reference segmentation map.

ScanNet mIoU ScanNet mAcc

OpenScene - LSeg (3D) 54.2 66.6
OpenScene - OpenSeg (3D) 47.5 70.7
Ours - LSeg (3D) 47.4 55.8
Ours - LSeg (2D) 62.5 80.2

TABLE I
MEAN INTERSECTION-OVER-UNION AGREEMENT WITH THE SCANNET

VALIDATION SET.

Table I shows mean intersection-over-union (mIoU) re-
sults on the ScanNet validation set, averaging over scenes
and classes. LSeg [9]/OpenSeg [8] denotes the 2D image
features used. 3D denotes segmentation agreement on the
given ground truth point cloud whereas 2D shows agreement
against the semantic segmentation maps.

OpenScene [1] performs better overall, but it should be
noted that it makes use of the ground truth scene point cloud,
whereas we only use the color and depth frames and implic-
itly reconstruct the geometry. We only use the scene point
cloud for evaluation. We additionally show 2D segmentation
results compared with the ground truth segmentation frames
in the dataset. As OpenScene only segments the point cloud,
only 3D segmentation accuracy is shown.

Figure 3 shows qualitative 2D segmentation masks. Our
method mostly performs well, but often struggles to distin-
guish between semantically similar classes such as “desk”
and “table” or “curtain” and “shower curtain” in the ScanNet

evaluation, as we do not make use of any tuning to align the
semantics of the dataset with the semantics of the vision-
language vector space. The ScanNet label quality is also not
perfect and our method often gets details correct which are
missed by the ScanNet ground-truth labels, such as legs of
tables and chairs or other thin structures.

B. Real-time SLAM Experiment

To test our scene representation in a real-world robotics
scenario, we integrate our system with a SLAM pipeline
2 using a Luxonis OAK-D Pro stereo camera. While the
system is running, we integrate color, depth, and features
extracted using LSeg from keyframes at 5Hz with poses
obtained from the SLAM system. In experiments, we use
either the left (grayscale) camera image or RGB camera.
Depth is computed using stereo matching and aligned to the
keyframe camera’s frame.

To test our system we give it classes in the form of text
prompts while it is running and inspect the quality of the seg-
mentation. Using the odometry poses provided by the SLAM
system, we render color, depth maps and segmentation maps
from the current camera viewpoint in real-time, segmenting
the camera image into the given classes.

Figure 5 shows snapshots of a real-time experiment per-
formed with a handheld camera in a regular office environ-
ment. The prompts used to produce the segmentation map
are shown, but note that these can be changed at run-time
to re-segment the scene. Figure 4 shows how quickly our
representation is able to fit to a new scene when learned from
scratch and integrating frames in real-time. After a dozen
seconds, our method is able to produce good segmentation
maps and scene reconstructions.

2Specifically the SpectacularAI SDK available here:
https://github.com/SpectacularAI/sdk



Fig. 4. Snapshots from real-time zero shot volumetric segmentations from a fixed viewpoint at given intervals. Our representation is able to learn in
real-time and is already useful after a dozen seconds. Each image shows RGB rendering output for the viewpoint, overlayed with the semantic segmentation
given the 6 class prompts shown.

Fig. 5. RGB renderings and semantic segmentation maps of our repre-
sentation from our real-time experiment in an office environment given the
prompts shown below the images.

C. Query Performance

We time the latency and throughput of queries performed
with our implementation on an Nvidia RTX 3070 GPU. 3D
semantic and density point queries can be performed at over
7 million lookups per second with a latency of less than 10
milliseconds. 2D ray queries can be rendered and segmented
at roughly 30 000 pixels per second using 256 samples per
ray, but this can be adjusted to to suit the desired fidelity.

V. DISCUSSION AND CONCLUSIONS

While the results obtained are an encouraging first step
towards open-set 3D semantic segmentation there are still
many open questions to improve such approaches, some of
which we discuss in the following.

Currently, the largest factor limiting segmentation perfor-
mance is the quality of the vision-language features. While
LSeg uses natural language features from CLIP trained

on a very large dataset, the visual encoder is trained on
the small closed-set ADE20K dataset. If we were able to
compute dense pixel-aligned visual-language features from
open-set web scraped data without requiring any human
annotations, we believe that results could eventually surpass
supervised learning methods. [13] presented some promising
initial results on learning pixel aligned features without using
segmentation masks or other expert annotations.

In real-time experiments, our system relied on poses com-
ing from a SLAM system. If many bad poses are computed
by the SLAM system, the 3D representation could become
corrupted by bad updates. Possible solutions include treating
the sparse SLAM poses as initial guesses and optimizing the
poses jointly with scene geometry, as in [49], [50], or bad
poses could be filtered out by analyzing the photometric or
geometric error across frames.

In robotics, downstream modules, such as motion planners
and high-level planning systems, might benefit from a more
explicit and principled representation of geometry than what
we presented in this paper. For example, signed distance
function based approaches [51] might provide better surface
and occupancy reconstruction and have other favorable prop-
erties, such as the ability to compute the normal of a surface
by differentiating through the distance function. For the time
being, our method is limited to static scenes. Dealing with
moving objects within scenes remains an open problem, but
promising recent research [43] suggests that extending neural
implicit representations to dynamic scenes might be feasible.

To conclude, we proposed a volumetric neural represen-
tation which is able to jointly learn geometry, radiance, and
semantic feature information of a scene. We have shown that
by using dense pixel-aligned vision-language features, our
resulting learned representation can be used to volumetrically
segment scenes into, at run-time, user defined categories.
We have also shown how the representation can be used to
produce dense 2D segmentation maps for queried viewpoints.
Experiments on the ScanNet dataset showed competitive
performance and our real-world experiments demonstrate
that the method could be run onboard a robotic system.
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[40] Y. Siddiqui, L. Porzi, S. R. Buló, N. Müller, M. Nießner, A. Dai, and
P. Kontschieder, “Panoptic Lifting for 3D Scene Understanding with
Neural Fields,” arXiv preprint arXiv:2212.09802, 2022.

[41] Z. Liu, F. Milano, J. Frey, M. Hutter, R. Siegwart, H. Blum, and
C. Cadena, “Unsupervised Continual Semantic Adaptation through
Neural Rendering,” arXiv preprint arXiv:2211.13969, 2022.

[42] A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. J. Guibas,
A. Tagliasacchi, F. Dellaert, and T. Funkhouser, “Panoptic Neural
Fields: A Semantic Object-Aware Neural Scene Representation,” in
IEEE/CVF CVPR, 2022.

[43] X. Kong, S. Liu, M. Taher, and A. Davison, “vMAP: Vectorised Object
Mapping for Neural Field SLAM,” arxiv preprint arXiv:2302.01838,
2023.

[44] S. Kobayashi, E. Matsumoto, and V. Sitzmann, “Decomposing NeRF
for Editing via Feature Field Distillation,” in NeurIPS, 2022.

[45] V. Tschernezki, I. L. D. Larlus, and A. Vedaldi, “Neural Feature Fusion
Fields: 3D Distillation of Self-Supervised 2D Image Representations,”
in Conference on 3D Vision, 2022.

[46] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis,” in ECCV, 2020.

[47] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant Neural Graphics
Primitives with a Multiresolution Hash Encoding,” arXiv preprint
arXiv:2201.05989, 2022.

[48] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene Parsing through ADE20K Dataset,” in IEEE CVPR, 2017.

[49] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit Mapping
and Positioning in Real-Time,” in IEEE/CVF ICCV, 2021.

[50] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald,
and M. Pollefeys, “NICE-SLAM: Neural Implicit Scalable Encoding
for SLAM,” in IEEE/CVF CVPR, 2022.

[51] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning Neural Implicit Surfaces by Volume Rendering for Multi-
view Reconstruction,” arXiv preprint arXiv:2106.10689, 2021.


