
Baking in the Feature: Accelerating Volumetric Segmentation by
Rendering Feature Maps

Kenneth Blomqvist1, Lionel Ott1, Jen Jen Chung1,2 and Roland Siegwart1

Abstract— Methods have recently been proposed that densely
segment 3D volumes into classes using only color images and
expert supervision in the form of sparse semantically annotated
pixels. While impressive, these methods still require a relatively
large amount of supervision and segmenting an object can
take several minutes in practice. Such systems typically only
optimize the representation on the scene they are fitting, without
leveraging prior information from previously seen images.

In this paper, we propose to use features extracted with
models pre-trained on large existing datasets to improve seg-
mentation performance on novel scenes. We bake this feature
representation into a Neural Radiance Field (NeRF) by volu-
metrically rendering feature maps and supervising on features
extracted from each input image. We show that by baking
this representation into the NeRF, we make the subsequent
classification task much easier.

Our experiments show that our method achieves higher
segmentation accuracy with fewer semantic annotations than
existing methods over a wide range of scenes.

I. INTRODUCTION

Neural Radiance Fields (NeRFs) [1] and other neural
implicit representations have recently emerged as a popular
representation for 3D scenes due to their many favourable
properties. They can accurately infer the geometry of a
scene by making use of strong geometric structure and rich
supervision from captured calibrated images. They have few
hyperparameters to tune and are able to handle a wide range
of scales, geometries and materials.

As NeRFs use an MLP to map spatial coordinates to
color values, they can easily be modified to predict other
observable spatial properties. This led to NeRFs quickly
being applied to semantic volumetric segmentation through
SemanticNeRF [2], which is able to propagate semantic pixel
labels from one frame of a scene to another and across
image pixels through generalization. This was subsequently
demonstrated within an interactive semantic segmentation
system, iLabel [3], motivating the use of such a system to
generate ground-truth data for downstream embedded, real-
time computer vision algorithms.

While such systems achieve increasingly high accuracy as
the amount of annotated pixels grows, they still require a
lot of human supervision. SemanticNeRF used one labeled
randomly selected pixel per class, per image. With over
900 training images in a scene, this is a lot of annotated
pixels from a diverse set of viewpoints. If used to annotate

1Autonomous Systems Lab, Swiss Federal Institute of Technology in
Zürich, Switzerland. kblomqvist@mavt.ethz.ch

2School of ITEE, The University of Queensland, Australia.
This project has received funding from EU Horizon 2020 program, project

PILOTING H2020-ICT-2019-2 871542.

Fig. 1. The left side shows an example image from our dataset, overlayed
with a segmentation mask produced by our system. The right side shows
DINO features, which we reconstruct in our algorithm, mapped to RGB
values using PCA.

data, providing such supervision can take an infeasibly long
amount of time. An inherent limitation of current semantic
NeRF approaches is that they blindly map 3D scene coordi-
nates to radiance, density, and semantic class by optimizing
a randomly initialized neural network per scene. Structure
priors or previously learned information is not leveraged.

On the other hand, deep learning has fueled a whole body
of work on representation learning, the goal often being
to learn a feature representation that can be transferred to
another task. Using pre-learned features in the context of
NeRFs is not straightforward, as a NeRF maps scene-specific
point coordinates to output values, which makes inducing
desirable bias or structure into the model challenging. An
example of this is object bias. For example, if a user of a
semantic annotation system clicks on a cookie in a kitchen
scene, the user might ideally want the system to, by default,
automatically segment the entire cookie from other cookies
and the background, without having to select each pixel.

The goal of our work is to infer a dense 3D semantic
segmentation of the scene, and infer dense 2D semantic seg-
mentation maps for each input image, while spending as little
expert annotation time as possible. To this end, we develop a
user interface which allows a user to quickly segment RGB-
D video sequences, by drawing sparse annotations on the
images. While the user is using the system, the program
infers a segmentation given the current user inputs and shows
it to the user. The user can refine the segmentation, until they
are happy with the result.

To infer the best possible segmentation using a sparse
set of labels, we propose a novel algorithm that models the
scene using an implicit NeRF representation and leverages
semantic image features obtained using a neural network
feature extractor. We supervise our implicit scene model on
these features, effectively baking a feature representation into



the learned MLP. We volumetrically render feature maps
from the hidden layer activations of the semantic branch of
the MLP, and minimize discrepancy between the rendered
feature maps and extracted image feature vectors during
training. This forces the MLP to encode additional structure,
inducing desirable object, shape, and appearance bias into
the learned representation, making the subsequent semantic
classification much easier from sparse supervision. Our hy-
pothesis is that such features encapsulate relevant spatial,
object and semantic properties which are hard to learn by
purely regressing color and radiance from position. Figure
1 illustrates how extracted features can encode information
that can help distinguish between objects in a scene.

To summarize, our contributions are:
• A semantic NeRF algorithm that uses extracted image

features to improve segmentation performance
• A hybrid feature encoding that is better suited for the

semantic segmentation task
• A volumetric segmentation system, including a graphi-

cal user interface, that can be used to quickly generate
dense segmentation masks from sparse pixel annotations

In experiments we validate our pipeline on a diverse set
of real-world scenes. We perform a larger scale evaluation
on scenes from the Replica [4] dataset, which contain many
more objects and semantic classes. On these datasets, we
compare the performance against baseline methods, as well
as using different feature extractors, namely Fully Convo-
lutional Neural Networks [5] and DINO [6]. Our results
show that our DINO supervised semantic NeRF formulation
outperforms previously proposed semantic NeRFs on both
accuracy and learning speed across all scenes, and can do
with much less human supervision.

We make visual results, data and code available through
the accompanying web page1.

II. RELATED WORK

A. Automated Labeling

Our goal is to infer a 3D segmentation of a scene and 2D
semantic segmentation maps as quickly as possible. Several
works have tackled a similar problem of inferring scene
properties in an automated manner.

Object-based methods use knowledge of object geometry
or category to speed up the workflow of annotating scenes.
LabelFusion [7] introduced a tool to align an object model
with a 3D scene with ICP refinement. While differentiable
rendering was used to register the shape and pose of objects
using shape priors in [8] and [9]. EasyLabel [10] introduced a
semi-automatic method for obtaining instance segmentations
of 3D scenes by incrementally building up the scene. Rapid-
PoseLabels [11] presented a way to compute object pose and
segmentation masks from sparse 2D keypoints, combining
several pointclouds of an object.

Other approaches have explored speeding up RGB-D data
annotation by leveraging structure in the data. SALT [12]
introduced a GrabCut [13] based approach to speed up

1keke.dev/baking-in-the-feature

(x, y, z)

(φ, θ) E
n
c
o
d
i
n
g M

L
P

M
L
P

M
L
P

M
L
P

c

z
s

z

σ

Viewing direction

Color

Featuremaps

Segmentation

Depth

Position

Fig. 2. Architectural diagram of our model. Scene coordinates and viewing
direction are mapped to RGB, density, depth, feature maps and segmentation
maps.

labeling of RGB-D data. DeepExtremeCut [14] computes
dense object segmentation masks from extreme points of an
object in an image.

B. Neural Radiance Fields

Mildenhall et al. [1] introduced NeRFs for novel view
synthesis using volumetric rendering and have been extended
in various ways. DS-NeRF [15] used depth measurements to
speed up training, which we also levarage. SemanticNeRF
[2] extended NeRF to also infer a semantic field from
sparse pixel annotations and was extended with iLabel [3],
a system for densely annotating scenes. We extend [2]
to leverage representations which capture structure present
in the input images to learn a better segmentation from
fewer labels. While NeRF methods operate on single scenes,
[16] introduced a representation that learns across multiple
scenes. They disregard semantic labels, but their approach
could be extended to segmentation. NeRF-Supervision [17]
learns view-invariant dense object descriptors, generating
image correspondences from a radiance field.

Other semantic fields include PanopticNeRF [18] which
learns from noisy 2D predictions and 3D bounding box
annotations. Panoptic Neural Field [19] learns several 4D
neural fields that can reconstruct and track moving objects.
NeSF [20] similarly uses known calibrated images and NeRF
to learn a semantic field of a scene. Instead of adding a
semantic output to the field, they learn a 3D UNet mapping
density to semantics. They learn the semantic field across
many scenes, not targeting single scene label propagation.

Concurrent work, D3F [21] and N3F, [22] use neural
rendering via [23] and feature maps to supervise a NeRF
model. N3F tackle one-shot object recognition, also showing
some results for object segmentation using a thresholding al-
gorithm, as opposed to propagating sparse labels. In contrast
to [21], [23], our method runs at interactive rates, thanks to
hybrid feature encoding and lower dimensional, autoencoded,
feature rendering.

III. METHOD

We design a NeRF-style algorithm, that maps each point
in the scene to color, density, depth, semantic class, and
semantic feature vector. Figure 2 shows a high-level diagram
of our model, which consists of five main components: a
feature encoder, a geometry MLP, a color MLP, a feature
MLP, and a semantic classifier MLP. In this section, we
first describe how we encode scene positions into feature
vectors that are fed to the neural network. We then describe
how to use volumetric rendering to compute 2D image maps
from the 3D representation and describe how we learn the



parameters of the scene representation from provided data.
Finally, we describe our graphical user interface, which
allows a user to interact with the system.

A. Positional Encoding

NeRF [1] uses a frequency encoding based on sine and
cosine functions:

γ(y) = [sin20
πy,cos20

πy, . . . ,sin2L−1
πy,cos2L−1

πy], (1)

where y corresponds to any of the 3D scene coordinates,
or a viewing direction, normalized to the range [−1,1]. L
defines the number of frequencies used. We use L = 10 for
3D coordinates and L = 4 for the viewing directions.

An alternative hash grid encoding was introduced in [24],
which greatly speeds up the learning of NeRFs. They define
a hierarchical voxel grid over the scene coordinates, with
parameters at cell vertices for every level. To encode a point,
parameters are looked up at each level of the grid, trilinearly
interpolated and concatenated to produce an encoding. Pa-
rameters are learned jointly with the MLPs.

While the hash grid encoding produces great visual re-
sults for view synthesis and greatly speeds up training and
rendering, it is not optimal for our application, as simply
using the hash grid encoding causes the model to overfit to
the sparse user annotations. The resulting segmentation maps
fail to infer the spatial relation between annotated points, and
large areas not belonging to objects are assigned the wrong
semantic class. See Figure 3 for an illustration.

To solve this problem, we propose a hybrid approach
combining both the hash grid encoding with low frequency
positional encoding with L = 2, which we concatenate to-
gether. The low frequency encodings allow the model to
reason about coarse spatial location in the volume, while the
grid parameters allow encoding finer details in the scene. As
we are targeting an interactive system, using only frequency
encoding would not be an option, as it requires many more
iterations to learn high frequency details.

B. Neural Radiance Fields

To integrate the scalar and vector outputs of our spatial
field, we define a function R to volumetrically render vector
or scalar values from a function h along a given ray r:

R(r,h) =
N

∑
i=1

Ti(1− exp(−σiδi))h(xi), (2)

Ti = exp(−
i−1

∑
j=1

σ jδ j), (3)

where Ti is the transmittance function measuring the amount
light transmitted through the ray r to sample i, δ j is the
distance between samples and σi is the predicted density
for encoded point samples xi along the ray r. We use
this rendering function to render pixel color values, depth,

semantic outputs and image features for a given ray r:

ĉ(r) = R(r,c), (4)

d̂(r) = R(r,d), (5)
ŝ(r) = R(r,s), (6)

f̂(r) = R(r, f), (7)

using the following functions: c for color, d for depth, s for
the semantic vector, and f for the intermediate feature vector
of our model for encoded point samples along a ray r.

We define the same photometric loss Lrgb as in NeRF [1]
and a depth loss Ld similar to the one used by [15]:

Lrgb(r) = ∥ĉ(r)− c̄(r)∥2
2 , (8)

Ld(r) =

{∥∥d̂(r)− d̄(r)
∥∥

1 , if d̄ is defined for r
0, otherwise

(9)

where c̄(r) is the ground truth and ĉ(r) the predicted color
for ray r, d̄(r) is the ground truth depth (if available) and
d̂(r) the integrated depth predictions along ray r.

To learn the semantic class, we define a cross entropy loss:

Ls(r) =

− log
exp(ŝ(r)s̄(r))

∑
Cn
c=1 exp(ŝ(r))c)

, if s̄ is defined for r

0, otherwise
(10)

where s̄(r) is the ground truth class for ray r, ŝ(r) is
the integrated semantic MLP outputs and ŝ(r)c the output
corresponding to class c.

C. Learning Feature Maps

We assume that we have a feature extractor, which maps
images IHi×Wi×3 to feature maps F̄H f ×W f ×M containing fea-
ture vectors f̄. I is an input image with height Hi and width
Wi, F̄ has height H f and width Wf and M is the dimensional-
ity of the feature vectors. The purpose of the feature extractor
is to encode semantic and spatial information about a par-
ticular view, providing contextual information that cannot be
inferred from a single scene, but can be learned by observing
other data. Such functions include Vision Transformers [6]
or Fully Convolutional Neural Networks [5] that come pre-
trained a priori on large datasets.

To distill information in the feature maps into our 3D scene
representation and to inform a downstream classifier, we
propose to volumetrically render feature outputs f along a ray
using (2) to produce rendered feature maps f̂ and supervise
on corresponding image features f̄.

The dimensionality of the image features f̄ will vary de-
pending on the chosen pre-trained feature extractor and may
be too large to render with reasonable batch sizes on regular
GPUs. Therefore, to reduce memory use and the amount of
floating point operations when using our system, we use a
simple MLP autoencoder to reduce the dimensionality of the
image features f̄. This step is completely optional and could
be skipped. The autoencoder has an encoder enc and decoder
dec. The encoder maps feature vectors with M dimensions
to D dimensions and the decoder maps them back to M
dimensions. We set D to 64 throughout our experiments. We



SNerf (hg) Ours (hg+freq, fcn) Ours (hg,dino) Ours (hg+freq,dino)SNerf (hg+freq)SNerf (freq)

Fig. 3. Segmentation masks produced on the box scene using the different methods with the same set of annotations. The frequency encoding (freq)
allows for spatial context while the hash grid encoding (hg) allows for a high level of detail locally. The feature supervision again helps in reasoning about
object boundaries.

fit the autoencoder by minimizing a standard reconstruction
loss:

Lae(F̄) = ∥dec(enc(F̄(p)))− F̄(p)∥2 +λae ∥enc(F̄(p)∥1 ,

where F̄(p) is the feature corresponding to sampled pixel
p, and λae is a weight for the sparsity term. We use an L2
loss to minimize information loss. The sparsity term is to
encourage a sparse feature representation that can easily be
classified into different classes.

As image features only depend on raw input images and a
given pre-trained feature extractor, we pre-compute the cor-
responding autoencoder offline before the user interacts with
the system and keep it fixed while the scene representation
is learned.

When fitting a scene in our volumetric segmentation
pipeline, to bake the feature representation f̂ into the scene
representation, we define an additional feature loss:

L f (r) =
∥∥enc(f̄(r))− f̂(r)

∥∥
1 , (11)

where r is an image ray, f̄(r) is the image feature correspond-
ing to ray r, f̂(r) is the rendered feature for ray r. Should
Hi and H f differ, during training, we use nearest neighbor
interpolation to lookup the corresponding image feature.

D. Optimization and Sampling
We optimize the combined loss using stochastic gradient

descent using Adam over rays r sampled from the images:

L(r) = Lrgb(r)+λdLd(r)+λsLs(r)+λ f L f (r), (12)

to jointly fit the positional encoding and MLP parameters.
As most pixels do not have a semantic class associated

with them, we use a sampling scheme to balance the task
of predicting a semantic class with the other objectives.
When sampling examples for optimization, we select half
the samples uniformly from all pixels. For the remaining
half, to not bias the resulting function towards any class, we
first select a class uniformly from the available classes. A
pixel is then sampled from all pixels which are annotated
with the sampled class.

Fig. 4. The graphical user interface. The user provides sparse annotations
by drawing on images with the appropriate class. The system infers a
volumetric segmentation given the current sparse annotations from all views
and renders a dense segmentation map which can be corrected with further
annotations.

E. Graphical User Interface

Figure 4 shows the user interface of our system. The
user can move through frames in a captured RGB-D video
sequence and draw annotations, shown as opaque lines, while
the system fits a model to the scene and annotations. The
translucent mask shows the current segmentation, which the
user can correct. The right side shows rendered color, depth
and features mapped to RGB using PCA.

IV. EXPERIMENTAL RESULTS

In our experiments we investigate whether our method im-
proves segmentation accuracy when given the same amount
of supervision and whether we improve labeling efficiency
as part of an interactive labeling system.

A. Baselines

We compare our algorithm with SemanticNeRF[2]. We
also compare the effect of using different positional en-
codings with both our algorithm and the baseline. For the
positional encoding, freq refers to the frequency positional
encoding in which case we use L = 10 frequencies for the
position, hg refers to the hash grid encoding and hg+freq
denotes hybrid encoding.

As our algorithm can make use of any features, we exper-
iment with features from a Fully Convolutional Network [5]
trained on COCO [25] on the semantic segmentation task,



Scene SNeRF (freq) SNeRF (hg) SNerf (hg+freq) Ours (hg+freq, fcn) Ours (hg, dino) Ours (hg+freq, dino)
apple 2 0.744 0.565 0.853 0.903 0.878 0.942
bench 0.803 0.817 0.816 0.818 0.873 0.912
box 0.901 0.686 0.868 0.951 0.922 0.962
chairs 0.531 0.635 0.705 0.686 0.696 0.761
cup 0.837 0.514 0.586 0.565 0.854 0.934
doughnut 0.653 0.576 0.502 0.673 0.879 0.910
fire hydrant 1 0.838 0.561 0.792 0.805 0.751 0.887
fire hydrant 2 0.757 0.216 0.853 0.598 0.848 0.890
hat 0.911 0.937 0.960 0.950 0.919 0.959
keyboard 0.895 0.699 0.900 0.926 0.943 0.947
shoe 0.791 0.814 0.833 0.894 0.970 0.979
valve 0.588 0.250 0.691 0.721 0.692 0.730
wine bottle red 0.523 0.362 0.521 0.794 0.690 0.856
wine bottle white 0.569 0.233 0.323 0.573 0.830 0.884
Average 0.739 0.560 0.732 0.778 0.703 0.897

TABLE I
INTERSECTION-OVER-UNION AGREEMENT OF PRODUCED SEGMENTATION MAPS ON OUR CAPTURED SCENES AGAINST MANUALLY ANNOTATED

FRAMES.

denoted fcn and DINO ViT-S/8 vision transformer features
[26] trained on ImageNet, denoted dino.

To make the comparison fair, all baselines and our method
use the same sampling and training pipelines. They simply
differ in the scene model and loss functions used.

B. Label Propagation Quality

To investigate the first question, we scan a number of
scenes using an RGB-D camera and run them through [27] to
obtain camera poses. We annotate the scenes using the GUI
by drawing squiggles on pixels belonging to each desired
semantic class on 2 to 10 individual images, depending on
the scene. What the annotations look like from a single
view can be seen in Figure 4. From these annotations, the
algorithms are tasked to segment the scene and infer what
the user considers as belonging to each class. All algorithms
receive the exact same set of annotations. We run each
algorithm on each scene and produce semantic segmentation
maps for all images. We compare the produced segmentation
maps against ground truth masks, obtained by labeling a
reference subset of the images with a polygon mask for
each object. We then compute the Intersection-over-Union
agreement between the inferred and reference masks.

It should be noted that results on this experiment are not
indicative of the performance at the limit on dense segmen-
tation maps, rather they measure the ability of the algorithms
to generalize and figure out where object boundaries lie from
a specific set of reasonable, sparse annotations.

Table I shows IoU agreement between manually labeled
individual frames and the segmentations produced by the
different methods. The best accuracy is achieved using hybrid
encoding, supervised by DINO features on virtually all
scenes.

As illustrated in Figure 3 and quantified in Table I, using
only hash grid encoding causes the model to overfit to
the sparse annotations. Large areas outside of objects are
assigned to the object class. This is especially apparent on the
white wine scene (Figure 3, image row 3, column 2). Using
hash grid encoding with DINO supervision removes some
errors, as the model can reason about visual and contextual
properties in the scene. However, object boundaries are not
captured as sharply when not using feature supervision. The
DINO features perform better than FCN features, indicating
that the choice of feature extractor is an important consider-
ation.

C. Human-in-the-loop Simulation

As our system is designed to quickly create annotated data
for downstream learning algorithms with little human input,
we design a simulated human-in-the-loop experiment to test
the algorithms in a fair, scalable, and reproducible way. As a
dataset, we use the openly available Replica dataset [4] and
more specifically, the rendered sequences published by [2],
which include dense ground truth semantic annotations. This
dataset contains room-scale scenes with multiple objects of
multiple classes, presenting a challenging and realistic test
environment.

We initialize each algorithm by training only on RGB,
depth and features for 15k iterations. We then run an iterative
process predicting semantic labels using the current model
parameters and select five pixels for which semantic classes
are falsely inferred and add their ground truth labels to the
training set. We then run 250 optimization steps with all
labels accumulated thus far, as would be possible between
user actions, and repeat the process.

We record the intersection-over-union agreement with the
ground truth segmentation masks at each iteration step to
observe how quickly the label propagation algorithm is able
to produce high quality semantic labels. The ideal algorithm
would converge to perfect labels after one click per object
class by the user.

Figure 5 shows results on different scenes of the Replica
dataset for the human-in-the-loop simulation. Our method
performs better at the limit than the baseline methods on all
of the scenes. The results show that the biggest benefit of
feature supervision is that the model learns from much fewer
labels, yet still achieves higher accuracy as more pixels are
annotated.

The baseline SNeRF (freq) method takes on average over
5x longer to reach 80% IoU accuracy compared to our
method with DINO features and hybrid positional encoding.
This means a user would spend less than a fifth of the time
using the system to achieve the same accuracy.

V. CONCLUSIONS

We presented an algorithm for volumetric segmentation,
which we showcased in a human-in-the-loop data annotation
and label propagation application. Our algorithm signifi-
cantly speeds up learning and improves performance over
baseline methods across our experiments. We performed an
ablation study showing how different parts of our algorithm



0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_0

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_1

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

room_2

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_0

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100
m

Io
U

 (
%

)
office_1

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_2

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_3

0 200 400 600 800 1000
Annotated Pixels

40

60

80

100

m
Io

U
 (

%
)

office_4

SNeRF (freq)
Ours (hg+freq, fcn)
Ours (hg+freq, dino)

Fig. 5. Performance on different scenes of the Replica dataset. We outperform baseline methods on all scenes for both learning speed and final accuracy.

contribute to the overall performance. We demonstrated how
using only hash grid encoding can cause a segmentation
model to overfit to sparse user annotations and showed
how this problem can be overcome by combining frequency
encoding with hash grid encoding.

As shown by our experiments, the choice of feature is
important. Learning a better feature representation that is
viewpoint invariant, yet allows for efficient segmentation of
objects presents a promising research direction. Furthermore,
our system assumes a static scene, we intend to extend the
work in the future to deal with dynamic scenes.

Our system produces high quality segmentation maps, but
in many robotic applications computing other properties,
such as object pose [7], shape [28] or keypoints [29] might
be required. A framework which could with little input pro-
duce high quality segmentations in combination with object
information, would be a breakthrough to fuel the learning-
based perception algorithms proposed in recent years.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” in ECCV, pp. 405–421, Springer, 2020.

[2] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison, “In-place scene
labelling and understanding with implicit scene representation,” in
IEEE/CVF CVPR, pp. 15838–15847, 2021.

[3] S. Zhi, E. Sucar, A. Mouton, I. Haughton, T. Laidlow, and A. J.
Davison, “ilabel: Interactive neural scene labelling,” arXiv preprint
arXiv:2111.14637, 2021.

[4] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J.
Engel, R. Mur-Artal, C. Ren, S. Verma, et al., “The replica dataset:
A digital replica of indoor spaces,” arXiv preprint arXiv:1906.05797,
2019.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEEE/CVF CVPR, pp. 3431–3440,
2015.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[7] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake, “LabelFusion:
A pipeline for generating ground truth labels for real RGBD data of
cluttered scenes,” in ICRA, pp. 3235–3242, IEEE, 2018.

[8] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon, “Autolabeling 3d
objects with differentiable rendering of sdf shape priors,” in IEEE/CVF
CVPR, pp. 12224–12233, 2020.

[9] D. Beker, H. Kato, M. A. Morariu, T. Ando, T. Matsuoka, W. Kehl, and
A. Gaidon, “Monocular differentiable rendering for self-supervised 3d
object detection,” in ECCV, pp. 514–529, Springer, 2020.

[10] M. Suchi, T. Patten, D. Fischinger, and M. Vincze, “EasyLabel: a
semi-automatic pixel-wise object annotation tool for creating robotic
RGB-D datasets,” in ICRA, pp. 6678–6684, IEEE, 2019.

[11] R. P. Singh, M. Benallegue, Y. Yoshiyasu, and F. Kanehiro, “Rapid
pose label generation through sparse representation of unknown ob-
jects,” in ICRA, pp. 10287–10293, IEEE, 2021.

[12] D. Stumpf, S. Krauß, G. Reis, O. Wasenmüller, and D. Stricker, “Salt:
A semi-automatic labeling tool for rgb-d video sequences,” arXiv
preprint arXiv:2102.10820, 2021.

[13] C. Rother, V. Kolmogorov, and A. Blake, ““GrabCut” interactive
foreground extraction using iterated graph cuts,” ACM transactions
on graphics (TOG), vol. 23, no. 3, pp. 309–314, 2004.

[14] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool, “Deep ex-
treme cut: From extreme points to object segmentation,” in IEEE/CVF
CVPR, pp. 616–625, 2018.

[15] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised
nerf: Fewer views and faster training for free,” in IEEE/CVF CVPR,
pp. 12882–12891, 2022.

[16] V. Lazova, V. Guzov, K. Olszewski, S. Tulyakov, and G. Pons-
Moll, “Control-nerf: Editable feature volumes for scene rendering and
manipulation,” arXiv preprint arXiv:2204.10850, 2022.

[17] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and
P. Isola, “Nerf-supervision: Learning dense object descriptors from
neural radiance fields,” arXiv preprint arXiv:2203.01913, 2022.

[18] X. Fu, S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger, and
Y. Liao, “Panoptic NeRF: 3D-to-2D label transfer for panoptic urban
scene segmentation,” arXiv preprint arXiv:2203.15224, 2022.

[19] A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. J. Guibas,
A. Tagliasacchi, F. Dellaert, and T. Funkhouser, “Panoptic neu-
ral fields: A semantic object-aware neural scene representation,” in
IEEE/CVF CVPR, pp. 12871–12881, 2022.

[20] S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. M.
Sajjadi, E. Pot, A. Tagliasacchi, and D. Duckworth, “NeSF: Neural
semantic fields for generalizable semantic segmentation of 3d scenes,”
Transactions on Machine Learning Research, 2022.

[21] S. Kobayashi, E. Matsumoto, and V. Sitzmann, “Decomposing nerf
for editing via feature field distillation,” in NeurIPS, vol. 35, 2022.

[22] V. Tschernezki, I. L. D. Larlus, and A. Vedaldi, “Neural feature fusion
fields: 3d distillation of self-supervised 2d image representations,” in
International Conference on 3D Vision, 3DV 2022, Prague, Czech
Republic, September 12-15, 2022, IEEE, 2022.

[23] V. Tschernezki, D. Larlus, and A. Vedaldi, “Neuraldiff: Segmenting
3d objects that move in egocentric videos,” in 2021 International
Conference on 3D Vision (3DV), pp. 910–919, IEEE, 2021.

[24] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions
on Graphics, vol. 41, no. 4, pp. 1–15, 2022.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, pp. 740–755, Springer, 2014.

[26] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski,
and A. Joulin, “Emerging properties in self-supervised vision trans-
formers,” in IEEE ICCV, 2021.

[27] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4104–4113, 2016.

[28] W. Gao and R. Tedrake, “kpam-sc: Generalizable manipulation plan-
ning using keypoint affordance and shape completion,” in ICRA,
pp. 6527–6533, IEEE, 2021.

[29] K. Blomqvist, J. J. Chung, L. Ott, and R. Siegwart, “Semi-automatic
3D object keypoint annotation and detection for the masses,” in ICPR,
2022.


