
Semi-automatic 3D Object Keypoint Annotation and Detection for

the Masses

Kenneth Blomqvist∗, Jen Jen Chung∗, Lionel Ott∗ and Roland Siegwart∗

∗ Autonomous Systems Lab, ETH Zürich

Abstract—Creating computer vision datasets requires careful
planning and lots of time and effort. In robotics research, we
often have to use standardized objects, such as the YCB object
set, for tasks such as object tracking, pose estimation, grasping
and manipulation, as there are datasets and pre-learned methods
available for these objects. This limits the impact of our research
since learning-based computer vision methods can only be used in
scenarios that are supported by existing datasets. In this work, we
present a full object keypoint tracking toolkit, encompassing the
entire process from data collection, labeling, model learning and
evaluation. We present a semi-automatic way of collecting and
labeling datasets using a wrist mounted camera on a standard
robotic arm. Using our toolkit and method, we are able to obtain
a working 3D object keypoint detector and go through the whole
process of data collection, annotation and learning in just a couple
hours of active time.

I. INTRODUCTION

Most modern computer vision methods use large datasets

to learn to predict features at run time. These have been

demonstrated to enable many new capabilities in robotic object

manipulation. While the methods are impressive, they are

data hungry and require sizeable datasets of ground truth

annotations to train. If we could quickly and cheaply create

datasets, we could expand to more environments and enable

many downstream tasks.

The data requirements force researchers of downstream

robotics tasks to either use standard objects, for which trained

models and computer vision pipelines have been made avail-

able, or a large investment has to be made upfront to collect

and label a dataset. Creating a dataset requires either hand-

labeling thousands of frames one-by-one, having a data col-

lection setup with environment markers, as done in [1], or a

tool such as LabelFusion [2] can be used to partially automate

the annotation process. However, LabelFusion requires mesh

models of the objects. Creating a known model for objects

in turn requires a high-fidelity object scanning setup, which

is often unavailable. It also requires the objects to be rigid,

or additional parameters need to be estimated to model defor-

mation. Additionally, the objects and environment have to be

such that depth sensors are able to accurately measure depth,

excluding reflective or transparent objects.

In this paper, our goal is to track category-level semantic

points in an object’s coordinate frame relative to the camera

frame for downstream robotic manipulation tasks. “Category-

level” meaning that objects vary, but the intra-category seman-

tic meaning of keypoints are the same. Specifically, we want

a system with the following properties:

1) Can estimate 3D object keypoints on arbitrary objects

2) Requires little effort to handle novel objects

3) Can be used in the wild without having to use mark-

ers, motion tracking systems or otherwise modify the

environment

4) Does not rely on accurate depth sensing

5) Can track multiple objects simultaneously in the image

frame

Existing methods, such as PVN3D [3] and kPAM [4] require

semantic segmentation maps to train or they rely on external

object instance segmentation. Semantic segmentation maps

are time consuming to annotate, making the systems more

expensive to deploy in new scenarios and for new objects.

In contrast, we present a complete 3D object keypoint track-

ing system, including both a learning-based object keypoint

algorithm and a method to very quickly obtain the training

labels needed by the algorithm. Our method builds on the

insight that we can forgo using semantic segmentation maps

to distinguish between objects, if we instead introduce a center

keypoint and predict a center map that associates each keypoint

with a center keypoint. The amount of objects in the scene is

inferred from the amount of detected center keypoints. This

makes the labeling task a lot faster, as we can simply label

2D keypoints instead of having to also create dense instance

segmentation masks.

We present a way to speed up data collection by capturing

many views of the scene and propagating labels from two la-

beled viewpoints to all the others. We show that by calibrating

our robot and making use of calibration and the kinematics of

a robot arm, we can forgo using a motion tracking system

or environment markers, as done by previous works. Using

our system, data can be collected in the wild wherever

our robot goes. This means that our tools can be deployed

directly on the hardware intended for the downstream robotic

task, streamlining the full problem definition and solution by

avoiding additional steps. Calibrated robots are now commonly

available and by using one, the data collection can be further

automated and enables collecting data autonomously.

We show two different versions of our learning-based al-

gorithm that leverages our data collection pipeline to track

keypoints of multiple objects in a scene. The first one uses

both views of a stereo camera. The other one is a variation of

the algorithm that can work with a monocular RGB camera.

We validate our method and tracking pipeline in experi-

ments on two different object keypoint tracking scenarios. The

first one is a single object valve tracking scenario. The second

is a multiple object cup tracking task, showcasing that we

can handle multiple objects simultaneously in a frame. We



Fig. 1. StereoLabel, our keypoint labeling tool. The user is presented with two images of the scene to label. The images are selected to maximize the
orthogonality of the views.

show that using only 22.5 minutes of recorded data across 45

sequences, and using less than 15 minutes of labeling time,

we can learn a model that can track keypoints on objects of

interest. We demonstrate that the resulting tracker is accurate

enough to enable manipulation tasks, such as rotating a valve.

Code for our project is made available at

github.com/ethz-asl/object_keypoints.

II. RELATED WORK

A. Datasets and Labeling Tools

Several object pose datasets have emerged which use ground

truth meshes. The most commonly used meshes are of the

YCB object set [5]. The YCB-video dataset from [6] provides

labeled 6D poses for objects in RGB images. The authors

demonstrated that the dataset was capable of training their

PoseCNN 6D object pose estimator. An initial estimate of the

object poses from PoseCNN were used to generate the YCB-

M dataset [7]. This dataset was collected with seven depth

cameras and they used fiducial markers and depth refinement

to obtain the common frame of reference between cameras.

While a robot arm was used to facilitate data collection, the

authors did not use the kinematics of the robot nor did they use

hand-eye calibration in the labeling process. Moreover, both

of these datasets are limited to the YCB object set. [8] uses

object models, simulation and rendering to obtain a dataset of

ground truth object poses.

While other labeling tools exist to create datasets of a

priori unknown objects, these often have other limitations.

[9] provides a semi-automated tool for creating 2D and 3D

bounding box labels for multi-object scenes in RGB-D video.

Their algorithm uses a GrabCut-based approach [10] to in-

terpolate annotations over timesteps. However, the user still

needs to adjust the propagated bounding boxes in each of

the following frames. LabelFusion [2] can handle cluttered

scenes, however, object meshes are required and must either

be given or created manually using a scanning routine (e.g.

with a handheld scanner or turntable). Our proposed method

avoids this requirement altogether.

Finally, several methods train keypoint detectors using only

a small set of labeled data. Simon et al. [11] bootstrap a key-

point detection dataset for hand pose estimation using multiple

views of the scene. The authors ensure that each iteration

introduces new information via multiview geometry. However,

because of this, performance is tied to the number of cameras

in the setup. Multiview geometry is used by [12] for human

and animal pose estimation by deriving a differentiable semi-

supervised loss function which is equivalent to minimizing

epipolar divergence. They show that they can train a keypoint

detection network using a large set of unlabeled images and

comparatively few labeled images.

B. Object Keypoints and 6D Pose Estimation

Methods exist which predict keypoints, in 2D or 3D, to

calculate the 6D object pose. Some estimate 2D points on an

RGB image and solve for the pose using a PnP algorithm [13]–

[17]. Others predict keypoints directly in 3D space [3], [18].

6-PACK [19] presents a way to track single objects in real-

time using keypoints which emerge in an unsupervised way. As

the keypoints are learned end-to-end, additional components

such as an attention mechanism are required in their keypoint

tracking pipeline. S3K [20] is a self-supervised approach to

learn semantic 3D keypoints. Similar to our approach, the

authors use multiple camera views to propagate labels across

images. However, in their case, they require a four-camera

setup while our method is designed to work with a single

camera. NOCS [21] uses a representation shared within an

object category. The authors learn a model to regress to this

representation from RGB and depth maps. PVN3D [3] learns

a model which produces semantic segmentation maps as well

as per pixel keypoint and center votes from RGB-D frames.

Similarly to PVN3D, we use a center prediction map to track

multiple objects. However, PVN3D uses ground truth semantic

instance segmentation maps to distinguish objects from each

other, which are hard and expensive to label. We avoid this by

associating keypoints directly with their corresponding object’s

center. This also circumvents the need for the expensive

clustering step to aggregate pixel-wise predictions.

KPAM [4], [22] presented a way to track category-level

object keypoints. However, their system can only track single

objects due to the integral pose regression step it relies on

[23]. Furthermore, for the same reason, it can’t deal with many

keypoints of the same type. KeyPose [1] is an object keypoint

detection method and dataset, which also uses stereo views

of a scene. This method is only applicable in single object



scenes; detected keypoints are not associated to objects, which

makes tracking multiple objects infeasible. Further, KeyPose

only works with objects that have unique keypoints. Modeling

objects such as the valve in our experiments is not possible,

as it has several ambiguous keypoints. This limitation is due

to the spatial softmax operation that is used in the output

heatmaps. The dataset collection method proposed by KeyPose

relies on fiduciary tags that are placed in the scan environment.

We propose and demonstrate the feasibility of a method that

does not require modifying the environment and that relies

solely on a calibrated robot with a camera.

III. METHOD

Here we describe the components of our framework: the

hardware setup, the procedure to collect video sequences with

camera poses, our algorithm to compute ground truth labels,

a stereo multiple object keypoint detection pipeline and a

variation that uses only a monocular RGB camera.

A. Hardware Setup

Our method requires a calibrated image sensor along with

a way to control it into different known viewpoints. For this,

we use a StereoLabs ZED Mini stereo RGB camera, mounted

on the wrist of a Franka Emika Panda robot arm. The robot

arm has accurate encoders at each joint which give readings

on the position of each joint. Using a model of the robot and

the position readings, we can accurately compute the position

of the wrist, relative to the base frame of our robot.

We compute the intrinsic parameters and left-to-right-

camera transformation of the stereo camera using Kalibr [24].

The wrist-to-camera frame transformation we calibrate using

the ethz-asl/hand eye calibration package [25].

B. Data Collection

For training a neural network to detect keypoints, we need

a dataset of image frames and a set of keypoint locations for

each image. To obtain these, we collect 30s long sequences

while our robot scans the target objects, observing the objects

from multiple viewpoints. We save the pose of both camera

frames, relative to the base frame of the robot and the RGB

frames from the left and right camera sensors. In the next

section, we describe how we obtain the keypoints in image

coordinates for each image.

C. StereoLabel: Labeling and Generating a Dataset

For each object category of interest, we define a set of

keypoints that is most convenient for manipulating objects

from the category. For example, in the case of coffee cups, we

can define the keypoints to be the bottom center, center top

and the outermost point on the handle of the cup (see Fig. 1).

This allows us, if desired, to solve for the orientation of the

cup. Or, we can grasp the cup by approaching the cup from the

top center and grasping the side wall of the cup with a parallel

jaw gripper. If there are several ambiguous keypoints, as is the

case for the valve in our experiments (see Fig. 3a), then all

occurrences of the keypoints are labeled and considered to be

of the same type.

We developed a tool, StereoLabel, to label 3D keypoints

from a sequence of images taken from different viewpoints.

Fig. 1, shows the tool in use. The user is shown image frames

from two viewpoints. The viewpoints are picked such that the

z-axes of the image frames are as close to perpendicular as

possible. The image frame is defined to be z-axis forward,

y down and x to the right of the image. The user labels

2D keypoints on both frames by clicking on the keypoint

location in the image. In case a specific keypoint is occluded

or otherwise hard to pinpoint, the user can swap out either

frame with a new one.

Once corresponding keypoints are labeled, we triangulate

their 3D positions in the base frame of our robot using the

homogeneous direct linear transformation method [26]. We

backproject the triangulated points to both frames using each

frame’s projection matrix, so that the user can validate that the

point was appropriately placed. The user can further validate

correct placement by cycling through images in the sequence

by pressing a button and checking the backprojected points.

In addition to the labeled keypoints, we augment the set with

one additional 3D keypoint; this is the average of all the other

3D keypoints which we call the center keypoint.

Once we have all the image sequences labeled and triangu-

lated, we can generate a dataset for training a computer vision

model. Fig. 2 shows the proposed triangulation-based (stereo)

and depth-based (monocular) keypoint tracking pipelines. For

each frame in a sequence, we create a set of ground truth

heatmaps, one heatmap for each type of keypoint. Should

there be several keypoints of the same type, we pack them

onto the same heatmap. We compute the 2D image coordinate

for each 3D keypoint by backprojection. We place a Gaussian

distribution over the 2D keypoint location computed using an

RBF kernel (output of the prediction step in Fig. 2). Finally,

we normalize each heatmap to have values in the range [0,1].
As there might be multiple objects in a frame, we compute

2D vector fields with vectors pointing from non-center 2D

keypoints to the center keypoint. We compute one vector

for output pixel having a non-zero heatmap value. With the

center maps, we can associate keypoints to objects and detect

multiple objects in a frame.

For the monocular version of our pipeline, we additionally

compute a keypoint depth map containing the z-value of each

3D keypoint for each pixel within a fixed radius from each

keypoint.

D. Learning the Keypoint Network

We use a convolutional neural network (CNN) to predict

the heatmaps, along with center maps. We use CornerNet-

Lite [27] as a backbone network. CornerNet-Lite is a stacked

hourglass-style CNN architecture. The input is first downsam-

pled through a series of convolutional layers and then upsam-

pled through transposed convolutional layers in an hourglass

module. Two hourglass modules are composed together.

We predict target maps with two prediction modules which

take as input the output of each respective hourglass module.

The prediction modules consist of three convolutional layers



Prediction 
Step

Keypoint
Extraction Object 

Association

Left-to-right 
Keypoint

Association

2D-to-3D Lift

Triangulation

RGB frame(s)

Heatmap(s) 2D keypoints 2D object keypoints Associated 2D keypoints

3D keypoints

3D keypointsCenter map(s)

Keypoint depth

Triangulation-based
(stereo)

Depth-based
(monocular)

Both

Fig. 2. The components for both of the proposed keypoint tracking pipelines.

with batch normalization, 1×1 kernels with stride 1 and relu

activation functions, except for the last layer. We use sigmoid

activation functions at the heatmap heads and no activation

function for the center map and relu for the depth map.

The input to our network has size 511×511 pixels and the

output map resolution is 64×64. We initialize the backbone

network weights by pretraining on COCO [28].

We use three types of losses to train our network: a heatmap

loss, a center loss and a depth loss. For the heatmap loss we

use binary cross entropy:

Lh =−

C

∑
c=1

H

∑
i=1

W

∑
j=1

yci j log pci j +(1− yci j) log(1− pci j). (1)

pci j is the predicted heatmap value for a keypoint of type c

at output index i, j. yci j is the ground truth heatmap value for

keypoint map c at index i, j. C, H and W denote the amount of

keypoint types, and the height and width of the output maps.

For the center loss, we simply use a smooth L1 loss:

Lc =
C

∑
c=1

H

∑
i=1

W

∑
j=1

smooth L1(ĉci j − cci j)y̌ci j, (2)

where ĉci j is the center vector prediction for keypoint type c at

index i, j. cci j is the corresponding ground truth center vector.

y̌ci j is a binary value denoting whether the heatmap value for

keypoint type c at index i, j is nonzero. The smooth L1 loss is

squared below a value of 1 and linear otherwise and is applied

elementwise.

To enable using a monocular camera, we additionally need

an estimate of how far along the z-axis each keypoint is. To do

this, we predict a pixelwise depth estimate for each keypoint

type. We learn this using an L1 loss function:

Ld =
C

∑
c=1

H

∑
i=1

W

∑
j=1

∥

∥zci j − ẑci j

∥

∥

1
y̌ci j, (3)

where zci j is the ground truth depth value for keypoint c at

location i, j, while ẑci j is the corresponding estimate.

All losses are applied at both stages of the hourglass

network and are combined by weighting parameters λ·:

L = λh(Lh1 +Lh2)+λc(Lc1 +Lc2)+λd(Ld1 +Ld2). (4)

Lh1 denotes the heatmap loss at the first hourglass, Lh2 for the

second hourglass, Lc1 the center loss for the first hourglass

and so forth. When training the triangulation-based pipeline,

we set the depth loss weight λd to 0 to disregard it entirely. We

train our network using the dataset generated in Section III-C.

E. Keypoint Extraction

At runtime, we extract keypoint locations from the heatmaps

by first applying a version of non-maxima supression, where

we zero the non-maximum values in 5×5 regions surrounding

each location. We then zero out all values below a threshold of

0.25. From each of the remaining heatmap values, we compute

keypoint locations by weighing image indices by the predicted

heatmap density in a 5×5 region on the unprocessed heatmap

predictions centered at the maxima location.

For each non-center keypoint, we compute the object center

estimate by summing the center vector with the corresponding

image index. We associate each keypoint with the center

keypoint closest to the keypoint’s predicted center position in

pixel coordinates.

F. Keypoint Association and Triangulation

After predicting and extracting keypoints in left and right

image frames, we need to associate each keypoint in the left

frame, to its counterpart in the right frame. To do this, we

select the keypoint in the right image where x′Fx is below a

cutoff value of 32.0. F is the fundamental matrix derived from

the camera calibration, x is the homogeneous pixel coordinates

of the keypoint in the left image and x′ is the homogeneous

pixel coordinates of the keypoint in the right image.

If several keypoints match, which happens when two key-

points are on the epipolar line, we shift the point by a

fixed amount and pick the closest match. The fixed shift is

equivalent to the difference in pixel coordinates between a

point, projected onto both the left and right image frames,

that is 60cm in front of the center of the left camera frame.

Finally, we triangulate the 3D location of the keypoints

using the same direct linear transformation method used when

creating the dataset.

G. 2D-to-3D

In the monocular version of our pipeline, we use the depth

prediction, combined with the camera matrix K to compute

the 3D point X corresponding to the 2D detection x:

X = K−1xẑ, (5)



(a) (b)

Fig. 3. (a) Valve setup showing keypoints for the value. (b) An image from
the cup tracking scene.

where ẑ is the depth estimate for keypoint x.

IV. EXPERIMENTS

We are interested in the following questions:

• Can we use our method to quickly build up object

keypoint tracking datasets?

• Can we train our keypoint tracking method on an amount

of data that can be easily collected by one user?

• Is the object tracking performance good enough to enable

robotic manipulation?

A. Valve: Single Object Tracking

In this experiment, we track a valve with three spokes. We

define four keypoints: one at the center hub of the valve, and

three at the front center points where the spokes meet the rim

of the valve, shown in Fig. 3a. The three keypoints at the rim

are indistinguishable from each other, and are thus considered

to be of the same type and packed onto the same heatmap.

We collect 50 sequences of 30s using our data collection

method, which we label using StereoLabel. The sequences

differ in object arrangement, clutter, occlusion, background

and lighting conditions. We split the resulting dataset into 45

sequences for training and 5 sequences for testing.

B. Label Accuracy

Our semi-automatic labeling approach has a few sources

of error: synchronization between camera frames and joint

encoder readings, intrinsics calibration error and hand-eye cal-

ibration error. These all result in some error in the triangulation

and reprojection steps of our pipeline. Without the ground

truth 3D keypoint locations, we instead manually label 2D

keypoints frame-by-frame on 100 randomly sampled frames

in our valve dataset and compare the human labels to ones

produced by our system. This allows us to quantify how much

the 2D keypoint labels drift as we observe the target object

from different viewpoints. As the user does not always place

the keypoints perfectly, even the human labels will have some

error. We therefore establish a baseline by doing two manual

frame-by-frame labeling passes to measure the variance.

C. Comparison with KeyPose

We compare our method against KeyPose [1]. KeyPose

doesn’t support multiple objects nor is it possible to detect

keypoints on objects with multiple keypoints of the same type.

We therefore can’t run KeyPose on our datasets, but instead

opt to evaluate our method on the KeyPose mugs dataset.

D. Cups: Multi-object Tracking

In this experiment, we seek to track up to four cups

simultaneously in a scene. We collect a dataset with 100

sequences observing the cups from various viewpoints, varying

the number of cups between 1 and 4 in the scene, changing the

clutter, lighting conditions and background of the scene across

sequences. For each scene, we randomly select between 1 and

4 cups from a set of 25 different cups. We split this dataset

into 87 sequences for training and the rest for testing. We split

the sequences such that 2 cups only ever occur in the test set.

V. RESULTS

A. Valve: Single Object Tracking

We timed how long it takes to label a sequence of images.

Labeling a pair of valve images took us just under 15 seconds.

With 50 sequences, this makes for a total of ∼12 minutes and

30 seconds to label all 19’507 frames in our dataset.

Table I shows the keypoint tracking performance on a held

out test set. Mean refers to the mean error of the 3D keypoints

in centimeters. xy is the mean error, disregarding the depth axis

in the left camera frame of reference. < 3 cm is the percentage

of measurements that were within 3 centimeters of the labeled

ground truth location. 25th and 75th respectively denote the

25th and 75th percentiles of the combined keypoint errors. GT

refers to the tracking performance using ground truth heatmaps

and center maps as input with the stereo pipeline, Stereo is the

stereo pipeline with a learned model, Mono is using only the

left view of our stereo camera and our monocular pipeline.

Both the stereo- and depth-based pipelines perform reason-

ably well. For both pipelines, errors are within the range of

the width of a parallel jaw gripper, and much smaller in scale

than the size of the object.

1) Valve Manipulation: We deployed our keypoint tracking

system on a mobile manipulation system. The goal of the

experiment was to use the system to rotate the valve in Fig. 3a

using the manipulator. In this case, we know the type of the

valve and have a CAD model of it. We first detect the valve

using keypoint tracking, and when we have detected all four

keypoints (center and three spokes), we further refine the pose

using ICP to match the depth readings from our camera to the

TABLE I
RESULTS FROM THE VALVE AND CUP TRACKING EXPERIMENTS.

Valve

Method Mean (cm) xy (cm) < 3 cm 25th (cm) 75th (cm)

GT 0.39 0.18 99.3% 0.17 0.30
Stereo 3.63 1.43 59.5% 1.29 4.26
Mono 2.99 1.06 65.0% 1.61 3.55

Cups

Method Mean (cm) xy (cm) < 3 cm 25th (cm) 75th (cm)

GT 1.14 0.39 97.7% 0.09 0.22
Stereo 6.71 2.24 68.5% 1.29 3.53
Mono 3.1 1.56 62.2% 1.43 4.02



object model. After refining the object pose, we command

the arm to track a trajectory that rotates the valve. See the

supplementary video for a successful completion of the task.

B. Label Accuracy

Comparing our generated keypoints to a manually labeled

dataset, we found that the mean label difference is 6.3 pixels

on average with a standard deviation of 3.4 on images with

a size of 1280x720. Comparing two manually and separately

labeled instances of the same datasets yield a mean difference

of 2.9 pixels with a standard deviation of 1.7 pixels. While the

manually labeled examples have slightly less variance, they are

of the same order of magnitude for both methods.

C. Comparison with KeyPose

Table II shows results on the KeyPose mugs dataset eval-

uating on the unseen mugs 0 instance. Keypose performs

slightly better. We attribute this to its more restricted problem

formulation and the learned stereo image fusion employed in

its network architecture.

D. Cups: Multi-object Tracking

It took us an average of 19 seconds to label a scene with 2

cups. Which makes for a total of roughly 32 minutes to label

the 66’419 frames in our dataset.

Table I shows the accuracy when tracking multiple cups on a

held out test set. Similarly to the valve tracking experiment, the

error is larger in the depth direction. Performance of both the

stereo and depth pipelines is acceptable, i.e. errors are within

the width of a parallel jaw gripper. Performance is slightly

worse than on the valve tracking experiment. However, we

note that this is a harder task with several different objects

and significantly more keypoint occlusion.

Failure modes for both pipelines include misdetecting a

keypoint or associating a keypoint with the wrong object.

Failure modes of the stereo pipeline also include misasso-

ciating keypoints from left-to-right and a bad triangulation

due to slightly misdetected 2D keypoints. Additionally, both

approaches fail when two keypoints of the same type align,

either from the same or different objects, and occlude each

TABLE II
OUR MONOCULAR PIPELINE ON THE KEYPOSE MUGS DATASET.

Method MAE (cm) < 2 cm

KeyPose 1.6 78.6%
Ours monocular 2.0 66.4%
Ours Stereo 1.9 69.7%

TABLE III
TIME SPENT ON EACH STEP OF THE STEREO PIPELINE.

Stage Mean time (ms)

Prediction 32.9
Keypoint extraction 6.8
Object association 0.62
Left-to-right association 0.1
Triangulation 0.2

other. In such cases, the keypoints will get detected as one

and the center prediction might point toward either object in

the case of multiple objects.

Table III shows how long each step of our stereo pipeline

takes on average for our implementation. The measurements

were made on a computer with an Nvidia RTX 2080 GPU and

AMD EPYC 7742 CPU.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a method to quickly collect

and label object keypoint tracking datasets and a system that

learns to recover the labels at runtime on unseen examples.

We showed that we fully rely on calibration to avoid having

to place markers in the environment. In experiments, we

showed that we can generate accurate object keypoint labels

much quicker than using a 2D labeling approach, while

also annotating the z-dimension and without having to create

segmentation maps. We showed that our presented system is

able to detect keypoints on multiple objects simultaneously at

real-time rates, using the produced datasets. We showed that

it can be successfully used as part of a system to solve real

world manipulation tasks.

While we presented two different keypoint tracking algo-

rithms, the actual keypoint and object detection algorithm can

be replaced with any other pipeline, as long as the labels can be

derived from our data collection method. Additional informa-

tion about the objects could also be used to further improve the

estimated keypoints. The Perspective-n-Point algorithm could

be used for known objects or a category-level object model

could be fitted to the keypoint detections to further improve

them, similar to what is used in [29]. Additional computation

could be traded for accuracy by predicting keypoint heatmaps

at a higher resolution. The 64x64 pixel output resolution we

used is quite limiting.

One weakness of our data collection method, is that it relies

on measurement timestamps from different sensors. On our

platform, these are not hardware synchronized. Some cameras

can be tightly synchronized, while triggering boards such as

the VersaVIS board exist [30] which are able to synchronize

several cameras and IMUs. Extending these to cover other

types of sensors, such as joint encoders, would improve the

usability and accuracy of our proposed method.

Finally, when collecting our data, we manually guide the

robot into different viewpoints. This could be automated. Fur-

thermore, the robot could semi-autonomously improve upon an

initial learned model using an active learning type approach.

Different models and viewpoints could be used to bootstrap a

dataset, similar to what is done in [11].

VII. ACKNOWLEDGEMENTS

This project has received funding from the European

Union’s Horizon 2020 research and innovation programme

under project PILOTING No H2020-ICT-2019-2 871542 and

under grant agreement No 101017008 (HARMONY).



REFERENCES

[1] X. Liu, R. Jonschkowski, A. Angelova, and K. Konolige, “KeyPose:
Multi-view 3D labeling and keypoint estimation for transparent objects,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 11 602–11 610.

[2] P. Marion, P. R. Florence, L. Manuelli, and R. Tedrake, “LabelFusion:
A pipeline for generating ground truth labels for real RGBD data of
cluttered scenes,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2018, pp. 3235–3242.

[3] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A
deep point-wise 3D keypoints voting network for 6DoF pose estimation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 11 632–11 641.

[4] W. Gao and R. Tedrake, “kPAM-SC: Generalizable manipulation plan-
ning using keypoint affordance and shape completion,” arXiv preprint

arXiv:1909.06980, 2019.

[5] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks for
manipulation research,” in 2015 international conference on advanced

robotics (ICAR). IEEE, 2015, pp. 510–517.

[6] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
convolutional neural network for 6D object pose estimation in cluttered
scenes,” in Proceedings of Robotics: Science and Systems, 2018.

[7] T. Grenzdörffer, M. Günther, and J. Hertzberg, “YCB-M: a multi-camera
RGB-D dataset for object recognition and 6DoF pose estimation,”
in 2020 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2020, pp. 3650–3656.

[8] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

[9] D. Stumpf, S. Krauß, G. Reis, O. Wasenmüller, and D. Stricker,
“SALT: A semi-automatic labeling tool for RGB-D video sequences,”
in Proceedings of the 16th International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Applications -

Volume 4: VISAPP, 2021, pp. 595–603.

[10] C. Rother, V. Kolmogorov, and A. Blake, ““GrabCut” - Interactive
foreground extraction using iterated graph cuts,” ACM Transactions on

Graphics (TOG), vol. 23, no. 3, pp. 309–314, 2004.

[11] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection
in single images using multiview bootstrapping,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1145–1153.

[12] Y. Yao, Y. Jafarian, and H. S. Park, “MONET: Multiview semi-
supervised keypoint detection via epipolar divergence,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 753–762.

[13] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot
6D object pose prediction,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 292–301.

[14] K. Park, T. Patten, and M. Vincze, “Pix2Pose: Pixel-wise coordinate
regression of objects for 6D pose estimation,” in Proceedings of the

IEEE International Conference on Computer Vision, 2019, pp. 7668–
7677.

[15] S. Zakharov, I. Shugurov, and S. Ilic, “DPOD: 6D pose object detector
and refiner,” in Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 1941–1950.

[16] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “PVNet: Pixel-wise
voting network for 6DoF pose estimation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp.
4561–4570.

[17] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6D
object pose estimation,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 3385–3394.

[18] S. Suwajanakorn, N. Snavely, J. J. Tompson, and M. Norouzi, “Dis-
covery of latent 3D keypoints via end-to-end geometric reasoning,” in
Advances in Neural Information Processing Systems, 2018, pp. 2059–
2070.

[19] C. Wang, R. Martı́n-Martı́n, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu, “6-PACK: Category-level 6D pose tracker with anchor-
based keypoints,” in 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2020, pp. 10 059–10 066.

[20] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute,
T. Rothörl, C. Schuster, R. Hadsell, L. Agapito, and J. Scholz, “S3K:
Self-supervised semantic keypoints for robotic manipulation via multi-
view consistency,” arXiv preprint arXiv:2009.14711, 2020.

[21] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6D object pose
and size estimation,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019, pp. 2642–2651.
[22] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kPAM: Keypoint

affordances for category-level robotic manipulation,” in International

Symposium on Robotics Research, 2019.
[23] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral human pose

regression,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 529–545.
[24] L. Oth, P. Furgale, L. Kneip, and R. Siegwart, “Rolling shutter camera

calibration,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2013, pp. 1360–1367.
[25] F. Furrer, M. Fehr, T. Novkovic, H. Sommer, I. Gilitschenski, and

R. Siegwart, Evaluation of Combined Time-Offset Estimation and Hand-

Eye Calibration on Robotic Datasets. Cham: Springer International
Publishing, 2017.

[26] A. M. Andrew, “Multiple view geometry in computer vision,” Kyber-

netes, 2001.
[27] H. Law, Y. Teng, O. Russakovsky, and J. Deng, “CornerNet-Lite: Effi-

cient keypoint based object detection,” arXiv preprint arXiv:1904.08900,
2019.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European Conference on Computer Vision. Springer, 2014,
pp. 740–755.

[29] H. Yang, C. Doran, and J.-J. Slotine, “Dynamical pose estimation,” arXiv

preprint arXiv:2103.06182, 2021.
[30] F. Tschopp, M. Riner, M. Fehr, L. Bernreiter, F. Furrer, T. Novkovic,

A. Pfrunder, C. Cadena, R. Siegwart, and J. Nieto, “VersaVIS—an open
versatile multi-camera visual-inertial sensor suite,” Sensors, vol. 20,
no. 5, p. 1439, 2020.


