
Go Fetch: Mobile Manipulation in Unstructured Environments

Kenneth Blomqvist∗, Michel Breyer∗, Andrei Cramariuc∗, Julian Förster∗, Margarita Grinvald∗,
Florian Tschopp∗, Jen Jen Chung, Lionel Ott1, Juan Nieto, Roland Siegwart

Abstract— With humankind facing new and increasingly
large-scale challenges in the medical and domestic spheres,
automation of the service sector carries a tremendous potential
for improved efficiency, quality, and safety of operations. Mobile
robotics can offer solutions with a high degree of mobility and
dexterity, however these complex systems require a multitude
of heterogeneous components to be carefully integrated into one
consistent framework. This work presents a mobile manipula-
tion system that combines perception, localization, navigation,
motion planning and grasping skills into one common workflow
for fetch and carry applications in unstructured indoor environ-
ments. The tight integration across the various modules is ex-
perimentally demonstrated on the task of finding a commonly-
available object in an office environment, grasping it, and
delivering it to a desired drop-off location. The accompanying
video is available at https://youtu.be/e89_Xg1sLnY.

I. INTRODUCTION

In order to perform tasks in a human environment that has
not been specifically designed for robotic purposes, a robot
needs to be able to perceive its surroundings, plan motions
to avoid unwanted collisions, dexterously manipulate objects
and use tools to achieve its goals. Yet, perception is hard
due to limitations in both the sensor hardware as well as
the technology needed to process the collected data. Even
in the best possible cases, only a fraction of the information
about the environment can be sensed at any given point in
time. Information has to be aggregated into some internal
representation as the robot goes about its business. Using
this imperfect information, the robot must plan and execute
actions while avoiding possible dangers, such as collisions.

To explore the limits of mobile manipulation systems
today, we developed a robotic system combining state-of-
the-art approaches for mapping, localization, navigation and
handling manipulation tasks. Our robot, RoyalYumi, is an
ABB YuMi robot mounted on top of an omnidirectional
mobile base. It can localize itself within its environment,
find, grasp and retrieve common household objects.

In this paper, we present our system and demonstrate its
performance on an object retrieval task where the robot has
to find, pick up and bring an object to a specified location.
We identify several shortcomings in our system and its sub-
modules. We highlight areas that are ripe for being addressed
by future work on mobile manipulation systems.

∗ Equal contribution
1 School of Information Technologies, University of Sydney, Australia.
All other authors are with the Autonomous Systems Lab, ETH Zrich,

Switzerland.
This work was financially supported in part by the Max Planck ETH

Center for Learning Systems, the Luxembourg National Research Fund
(FNR) 12571953, and ABB Corporate Research.

Ridgeback
Hokuyo LiDAR

Skybotix VI-Sensor

ABB YuMi

Intel RealSense D435

Fig. 1. A picture of RoyalYumi in action. It features a two-arm ABB
Yumi, a Clearpath Ridgeback mobile base, two Hokuyo 2D LiDARs, an
Intel RealSense D435 and a Skybotix VI-Sensor.

II. RELATED WORK

A lot of ink has been spilled on manipulation systems,
mobile or otherwise. We highlight the most closely related
systems-level papers.

One of the earliest examples of a mobile manipulator is
HERB [1], which was able to search for and retrieve objects
in household environments. At the time, the state of the
art was such that the system required checkerboard instal-
lations in areas demanding high localization accuracy, while
action execution was largely open-loop due to the heavy
computational cost of each algorithmic component of the
system. Nevertheless, several major paradigms established
in this seminal work have continued to inform the design
and development of robotic mobile manipulators.

Perhaps most prominent among these is the separation
of manipulation and navigation tasks. In a typical mobile
manipulation scenario, the robot either navigates to a given
location [2, 3] or conducts a search routine through the
environment to move the platform within reach of the target
object [4–6]. Object detection is carried out using a per-
ception pipeline that is distinct from that used for collision
avoidance or localization. This means there are two sets of
sensors onboard the platform, one for navigation (usually us-
ing LiDAR), and another for object detection and interaction
(typically RGB-D). While some works perform multi-sensor
fusion to improve the navigation map [5], these systems
still maintain two separate environment representations for
manipulation tasks and navigation tasks.

The distinction between these two components is further

ar
X

iv
:2

00
4.

00
89

9v
1 

 [
cs

.R
O

] 
 2

 A
pr

 2
02

0

https://youtu.be/e89_Xg1sLnY


driven by the behavior-based high-level planning methods
popular to mobile manipulation scenarios. Behavior-based
planning routines operate on higher-level skills such as
“move to point or “scan object. This allows for planning
over long execution sequences, such as those required in the
Robocup@Home competitions [6, 7], without incurring the
computational overhead needed to plan for individual motor
commands. Implementations vary from using simple state
machines for switching between behaviors [2], to hierarchical
state machines, which are capable of more complex task
representations [3], or the direct use of behavior trees [5].

Of course, when planning at such an abstracted layer,
failure detection and correction can become very challenging.
More recent works such as [7] attempt to improve system
robustness through the use of deep learning methods, which
have demonstrated strong performance particularly for object
recognition [8, 9] and grasp detection tasks [10, 11]. While
others have also investigated the benefits of learning from
human demonstrations [12].

III. SYSTEM

In our work, we integrate our latest contributions in 3D
perception [13], mapping and localization [14] with state-
of-the-art object detection [15] and grasp planning [16]
to enable our mobile manipulation platform RoyalYumi to
perform an autonomous fetching task.

A. Hardware Setup

We mounted a two-armed ABB YuMi manipulator on top
of an omnidirectional Clearpath Ridgeback mobile base. The
Ridgeback is equipped with two Hokuyo 2D LiDAR sensors,
both front and back with a 270 degree field of view each.
An Intel RealSense D435 RGB-D sensor is mounted on the
right wrist of the robot for dense sensing of the workspace
and object detection. Finally, a visual-inertial sensor [17] is
mounted on the back of the Ridgeback. The visual-inertial
sensor is used to perform state estimation and localization
(see Section III-B). It has two monochrome global shutter
cameras tightly synchronized with an IMU. One camera is
pointed backwards and the other camera is pointed at the
ceiling to make sure there are always features to track.

B. Mapping and Navigation

In order to perform the first task of finding the target
object, RoyalYumi must navigate autonomously in the search
environment. For this purpose, a globally consistent sparse
3D map of the whole environment is built beforehand using
maplab [14]. Furthermore, the 2D LiDAR measurements are
accumulated using maplab poses to build an occupancy grid
used for navigation.

During online operation, ROVIOLI [14] performs online
state estimation and localization in the global map based
on the sparse features shown in Figure 2 (a). This global
position in the map is then used together with the occupancy
grid and fixed waypoints (see Section III-F) to perform
global navigation by leveraging the capabilities of the ROS

Fig. 2. (a) Global localization in a sparse keypoint map using maplab [14].
(b) Point cloud reconstruction of the scene and grasp candidates generated
by Grasp Pose Detection [11].

navigation stack1. Furthermore, ROS navigation is also used
to perform local navigation and obstacle avoidance.

C. Object Detection and Object Mapping

During navigation, the system is continuously trying to
find the target object using the RealSense’s RGB camera.

For object detection we use the YOLOv3 [15] network
architecture pre-trained on the COCO dataset [8]. The net-
work is run at 2 Hz, and we only consider those detections
whose semantic class corresponds to that of the target object.
For each valid detection we initialize a separate image-based
tracker [18], that runs at the same frequency as the camera
and propagates the bounding box across frames. Tracked
bounding boxes are associated with new detections based
on a sufficiently large intersection over union.

Once an object has been tracked across at least 30 frames,
we project the center of the detected bounding boxes into 3D
space based on the camera extrinsic parameters. The projec-
tions together with the corresponding camera poses obtained
from the mapping module are then used to triangulate the
position of the object. This position is sent to the approach
module (described in Section III-F), which positions the base
of the robot as close as possible and facing the object.

D. Dense Reconstruction

Besides computing the position of the target object in
the environment, the presented approach includes a step for
reconstructing the dense 3D geometry of the scene when
in proximity to the object of interest. To this end, the
stream of the wrist-mounted RGB-D camera is processed
in real-time with the Voxblox++ [13] framework which
incrementally builds a volumetric object-level semantic map
of the scene. Such a map provides information about the
6-Degrees of Freedom (DoF) pose of the target object in the
environment and densely describes its 3D shape through a
Truncated Signed Distance Function (TSDF) grid. Further,
in the presence of multiple objects in the scene, it can
disambiguate across several instances and identify the desired
target object by its semantic class.

1http://wiki.ros.org/move_base

http://wiki.ros.org/move_base


For the captured 3D model of the object of interest to be as
complete as possible, during scanning the manipulator arm
that is equipped with the RGB-D sensor is programmed to
follow a trajectory consisting of four predefined views around
the target object. Once the scanning trajectory is complete,
the resulting volumetric reconstruction is converted to a
point cloud by extracting the vertices of the surface mesh
computed at the zero crossings of the TSDF grid.

It is worth noting that the semantic mapping in
Voxblox++ [13] relies on the use of a GPU for real-time
object detection and segmentation with Mask R-CNN [9].
Should such hardware not be available, a simplified fallback
strategy for densely reconstructing the scene of interest
would be to execute the scanning trajectory with the ma-
nipulator arm and directly stitch together the point clouds
captured by the RGB-D camera at each of the four views.
Such an approach, however, cannot unambiguously identify
the target element should multiple objects populate the scene
of interest.

E. Grasp Planning

Recent works in grasp planning have moved towards deep
learning approaches to directly detect grasps in sensor data.
In this work, we use Grasp Pose Detection (GPD) [11] to
generate and classify a large set of 6-DoF grasp candidates.
The algorithm takes as input the point cloud representation
of the scene extracted from the Voxblox++ TSDF and returns
a list of scored grasp hypotheses. We then use MoveIt [19]
and a ROS interface to YuMi’s onboard controllers2 to plan
and execute a feasible trajectory to the highest ranked grasp
pose, close the gripper, and retrieve the object from the table.

F. High-level Planning and Execution

To simplify the definition of tasks, we designed high-level
actions based on the components described above.

A search action uses the navigation stack to follow a set
of waypoints while running the object detection. It stops
successfully once the object is detected and localized in the
map. The approach action then computes and navigates the
robot to a collision-free pose, positioning the robot as close
as possible to the target object while facing it.

Once positioned, the scan action moves the wrist-mounted
camera above the table top scene for dense reconstruction,
feeds the resulting point cloud to the grasp planner and
selects the best grasp. If the selected grasp is out of reach of
the robot arm, i.e. reaching the grasp pose is kinematically
infeasible, this action can also re-position the base provided
the object was observed within the initial scans.

Once an in-reach grasp pose is found, the grasp can be
executed using the grasp action. Finally, the drop action
navigates the platform to a user-defined drop location and
moves the arm holding the target object to drop it.

All high-level actions of our system are implemented as
ROS action servers3. A state machine with a pre-defined
action sequence and transition conditions is then used to call

2https://github.com/kth-ros-pkg/yumi
3http://wiki.ros.org/actionlib

Search action
Navigation
Object detection

Approach action
Navigation

Scan action
Semantic mapping
Grasp planning
Arm motion planning

Grasp action
Arm motion planning

Drop action
Navigation
Arm motion planning

Fig. 3. Sequence of high-level actions (Section III-F) in the example task
that is used to showcase the proposed system. Modules that the respective
action relies on are stated in italic.

and monitor these actions at runtime. The unified interface
to our actions simplified and accelerated the process of
designing robot behaviors.

IV. EXPERIMENTS

We tested our system on a long-horizon mobile manipula-
tion task. The goal of the task is to find and retrieve an object
of interest in our lab. We chose a banana as the target object.
The sequence of high-level actions to be used by the state
machine was tailored to this task. The actions are illustrated
in Figure 3. Note that in the experimental setup the target
object is lying flat on a table and with no other graspable
objects nearby. For this reason, as described in Section III-
D, the dense 3D reconstruction of the object of interest was
done using the simplified point cloud stitching procedure
instead of Voxblox++ [13]. The bulk of the computation
was carried out by the on-board CPU, with the exception of
the object detection via YOLOv3, running on an on-board
laptop-grade GPU, and the grasp planning and execution
modules, offloaded to a third on-board CPU. A video of the
robot successfully performing the task is available online4.

V. DISCUSSION AND OUTLOOK

Our system is able to successfully navigate in indoor
environments and manipulate objects. However, our approach
has some limitations, providing insights into high-potential
research directions.

The obstacle detection system is only able to detect
obstacles in an ankle-height plane through the LiDARs on the
mobile base. Being able to handle a wider range of obstacles,
such as different types of tables, would be a big improvement
to the reliability of the system. For example, some tables
have legs which are not in the corners of the table. Our
approach might cut through the corner causing a collision
of the robot body with the table top. Measurements from an
RGB-D sensor could be integrated into a 3D representation.
This representation could then be used with the known robot
mesh to plan paths that are collision free with the full robot.

The motion planner we used for navigation generates
quite jerky trajectories for the base. Adding a trajectory
optimization step could help us achieve smoother motion.

4https://youtu.be/e89_Xg1sLnY

https://github.com/kth-ros-pkg/yumi
http://wiki.ros.org/actionlib
https://youtu.be/e89_Xg1sLnY


The optimizer could minimize changes in acceleration in
addition to avoiding obstacles.

Our current 3D object detection system is very basic
and does not produce very reliable estimates of the object
position. After the first 30-frame sequence of detections,
we directly triangulate the object and place it in our map,
regardless of the triangulation baseline. New observations of
the object are not incorporated and no measure of uncertainty
is associated with the detected object position. Maintaining
(potentially) multiple tracks of the detected object and updat-
ing the position estimate using a Bayesian filter can improve
detection robustness. We could also incorporate additional
sensing modalities, such as the depth channel, to directly
gauge the 3D position of the object.

We used simple heuristics to position the base of the
robot next to the manipulation target. A more comprehensive
system would be needed to be able to deal with the full
variety of workstations out there. A 3D obstacle detection
system combined with a full-body planner would enable
operation across a broader range of environments.

At present, the scanning trajectory during the dense 3D
reconstruction step consists of a set of manually predefined
views. While effective for the task at hand, this could be
replaced by an active scanning approach, potentially yielding
more efficient exploration and higher scene coverage.

The grasp planner provides good grasp proposals and is
mostly agnostic to the type of object being grasped. While
the proposed grasps are reasonable, they do not consider
whether they are feasible in practice regarding kinematic
constraints, potential collisions, etc. A more comprehensive
grasp planner would reason about the feasibility of grasps.
Our grasp execution is currently open loop, thus there is
no feedback during execution. We expect future dexterous
robots to use closed-loop manipulation planning and control
algorithms. In this case, feedback could be used to either ad-
just or completely rethink the grasping strategy, for example,
to enable recovery maneuvers or pre-grasp contact.

Currently, our system’s actions are designed to either
operate the arm or the base exclusively. Combining all
degrees of freedom of the system using a whole-body motion
planning and control framework has the potential to render
current actions more efficient. For example, in case the target
object is out of reach, the base position could be adjusted
simultaneously to the grasp being executed, instead of in
an alternating fashion. Further, whole-body control opens
up new capabilities that cannot be achieved by arm motion
alone, e.g. opening of doors with large radii.

Finally, our system has limited capability to deal with
unexpected failures. If any of the individual steps of the
task fail, we are unable to recover. If the banana falls
out of the hand while bringing it to the goal, this is not
detected. A more flexible plan execution framework could
enable reactivity. Since introducing reactivity using state
machines renders the execution software complex and hard
to maintain and to adapt to other tasks in the future, it would
be worthwhile investigating alternatives such as behavior
trees [20].

REFERENCES
[1] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet,

R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe,
“HERB: a home exploring robotic butler,” Autonomous Robots,
vol. 28, no. 1, p. 5, 2010.

[2] A. Jain and C. C. Kemp, “EL-E: an assistive mobile manipulator that
autonomously fetches objects from flat surfaces,” Autonomous Robots,
vol. 28, no. 1, p. 45, 2010.

[3] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the PR2,” in 2011
IEEE International Conference on Robotics and Automation, 2011,
pp. 5568–5575.

[4] G. Hollinger, D. Ferguson, S. Srinivasa, and S. Singh, “Combining
search and action for mobile robots,” in 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 952–957.

[5] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard,
M. Pivtoraiko, J.-S. Valois, and R. Zhu, “An integrated system for
autonomous robotics manipulation,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2012, pp. 2955–2962.

[6] J. Stückler, M. Schwarz, and S. Behnke, “Mobile manipulation, tool
use, and intuitive interaction for cognitive service robot Cosero,”
Frontiers in Robotics and AI, vol. 3, p. 58, 2016.

[7] R. Memmesheimer, V. Seib, and D. Paulus, “homer@UniKoblenz:
winning team of the RoboCup@Home open platform league 2017,”
in Robot World Cup, 2017, pp. 509–520.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European Conference on Computer Vision, 2014, pp. 740–
755.

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
2017 IEEE International Conference on Computer Vision, Oct 2017,
pp. 2980–2988.

[10] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio,
and K. Goldberg, “Dex-Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Robotics:
Science and Systems XIII, vol. 13, Jul. 2017.

[11] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 598–
605.

[12] M. Bajracharya, J. Borders, D. Helmick, T. Kollar, M. Laskey, J. Le-
ichty, J. Ma, U. Nagarajan, A. Ochiai, J. Petersen et al., “A mobile
manipulation system for one-shot teaching of complex tasks in homes,”
arXiv preprint arXiv:1910.00127, 2019.

[13] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric instance-aware semantic mapping and
3D object discovery,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 3037–3044, July 2019.

[14] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen,
I. Gilitschenski, and R. Siegwart, “maplab: An open framework for
research in visual-inertial mapping and localization,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, 2018.

[15] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[16] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1455–1473, Dec. 2017.

[17] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
FPGA pre-processing for accurate real-time SLAM,” in 2014 IEEE
International Conference on Robotics and Automation, 2014, pp. 431–
437.

[18] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2014.

[19] S. Chitta, I. Sucan, and S. Cousins, “MoveIt!” IEEE Robotics &
Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[20] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.


	I INTRODUCTION
	II RELATED WORK
	III SYSTEM
	III-A Hardware Setup
	III-B Mapping and Navigation
	III-C Object Detection and Object Mapping
	III-D Dense Reconstruction
	III-E Grasp Planning
	III-F High-level Planning and Execution

	IV EXPERIMENTS
	V DISCUSSION AND OUTLOOK

