
Accurate Mapping and Planning for Autonomous Racing

Leiv Andresen1*, Adrian Brandemuehl1*, Alex Hönger1*, Benson Kuan1*, Niclas Vödisch1*, Hermann Blum1,
Victor Reijgwart1, Lukas Bernreiter1, Lukas Schaupp1, Jen Jen Chung1, Mathias Bürki1,3, Martin R. Oswald2,

Roland Siegwart1, and Abel Gawel1

Abstract— This paper presents the perception, mapping, and
planning pipeline implemented on an autonomous race car.
It was developed by the 2019 AMZ driverless team for the
Formula Student Germany (FSG) 2019 driverless competition,
where it won 1st place overall. The presented solution combines
early fusion of camera and LiDAR data, a layered mapping
approach, and a planning approach that uses Bayesian filtering
to achieve high-speed driving on unknown race tracks while
creating accurate maps. We benchmark the method against
our team’s previous solution, which won FSG 2018, and
show improved accuracy when driving at the same speeds.
Furthermore, the new pipeline makes it possible to reliably
raise the maximum driving speed in unknown environments
from 3 m/s to 12 m/s while still mapping with an acceptable
RMSE of 0.29 m.

I. INTRODUCTION

Autonomous racing has grown in popularity in the past
years as a method of pushing the state-of-the-art for various
autonomous robots. While competitions generally allow re-
searchers to test the robustness and applicability of different
solutions, racing in particular presents additional challenges
to computational speed, power consumption, and sensing.
Autonomous car racing started almost 16 years ago, with
the DARPA Grand Challenge [1], and now continues with
Roborace1 and Formula Student Driverless (FSD)2. In addi-
tion to car racing, new platforms such as quadcopters have
recently begun to pick up momentum in new competitions
like the IROS drone racing competition3.

Two main categories can be distinguished in autonomous
racing: racing with and without prior knowledge of the track
layout. For instance in Roborace, the race track layout is
known a priori, whereas in IROS drone racing, the locations
of a set of gates must be discovered during flight. FSD offers
disciplines from both categories.

Racing on unknown tracks is challenging for SLAM al-
gorithms. First, high-speed motion is more uncertain, which
causes higher drift between sensor readings and poses chal-
lenges for data association. Furthermore, the horizon over
which the upcoming dynamic motion must be planned scales
with speed. If a tight corner is detected too late, the robot
is unable to slow down in time for the turn, and inevitably

* These authors contributed equally to this work
1 Autonomous Systems Lab, ETH Zürich. Contact: leiva@ethz.ch
2 Computer Vision and Geometry Group, ETH Zürich
3 Sevensense Robotics AG
1roborace.com
2www.formulastudent.de
3ris.skku.edu/home/iros2016racing.html

Fig. 1: Top: track in the front view of the car. Middle:
accumulated observations of cameras (left), LiDARs (right),
and filtered estimates (cylinders). Bottom: estimated track by
boundaries and middle line.

leaves the track. This need for a longer horizon presents
challenges not only for the planning algorithms but also
for perception and mapping. For perception, the density of
visual and 3D LiDAR sensor data is proportional to the
inverse-square of the distance. Detecting distant landmarks
is thus challenging and noise is unavoidable. The latter calls
for a mapping pipeline that appropriately models and fuses
the uncertainties of different modalities at varying distances.
Finally, a planning approach is required that considers the
uncertainty of the estimated map. In this work, we present a
robotic system that is able to achieve high mapping accuracy
while increasing the maximum speed on unknown tracks
from 3 m/s [2], [3] to 12 m/s. Please refer to Fig. 1 and Fig. 2
for an illustration of the pipeline. A video demonstrating our
work is available online4.

Our work is tested in the context of the FSD competition,
where racing on both unknown and known tracks has been
split after the 2018 season. The competition was previously

4https://youtu.be/1YBFcHY_gWE

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 4743

conducted on an unknown ten lap course and autonomous
racing pipelines [2], [3] focused on the reliability of a
usually slow first ‘mapping lap’, knowing that nine fast laps
would follow and reduce its effect on the total score. With
racing in unknown environments as a separate one lap event
(Autocross), the competition encourages systems to increase
driving speed while still providing a high quality map for the
consecutive ten lap event (Trackdrive) on the same course.

We present a perception, mapping, and planning pipeline
designed to minimize lap time on an unknown track while
still accurately mapping the track for the Trackdrive event.

The contributions of this paper are

• a perception pipeline that combines LiDAR and camera
readings for accurate early fusion of cone detections,

• a two-stage mapping pipeline that allows for planning
on lower certainty data while recording a high quality
map,

• a new path planning algorithm utilizing Bayesian infer-
ence to find the track boundaries, and

• the integration of the aforementioned methods into a
solution capable of planning over long horizons while
driving at high speeds.

II. RELATED WORK

Most related to our work are the Roborace and the FSD
competitions, both including races on known race tracks,
where the emphasis lies on reliable localization and superior
control. The authors in [4] and [5] deal with localization in
known track environments, using only LiDAR and GNSS
in combination with open-source ROS packages such as
AMCL. Our previous works [2], [3], [6] also address this
challenge by improving perceptual robustness with a novel
detector and probabilistic sensor fusion scheme for cone
observations on race tracks.

FSD also includes racing on a previously unknown race
track, which became a separate discipline in its latest edi-
tion. Racing on an unknown track pushes requirements on
detection range as it directly affects the achievable maximum
speed. This is in addition to existing requirements on map
quality as in previous AMZ works [2], [3], [6] and other
FSD teams [7].

A key task of the presented perception system is the
detection of cones. In [7], and [8] the authors present state-
of-the-art CNN-based vision-only detection systems for cone
detection based on versions of YOLO [9], [10]. In order to
make better use of the accurate range measurements from
LiDAR in combination with the rich semantic information
from cameras, we implement an early sensor fusion approach
for accurate color and position detection of cones. State-of-
the-art object detectors that fuse camera and LiDAR data
[11], [12] typically require powerful GPUs to run in real-
time, making them unsuitable for racing systems where
space and packaging for power supplies are challenging. We
achieve real-time performance on a mobile version of the
GTX 1070 without hitting the upper limit of our computing
system.

We combine early fusion for cone detection with a Kalman
Filter based local map. This yields improved cone local-
ization and color estimation performance, by accumulating
and filtering the measurements over time. For redundancy
in case of sensor failures, vision-only and LiDAR-only
measurements can still be incorporated in similar fashion
to our previous work [2]. The authors in [13] develop a
method for tracking dynamic obstacles, including discrete
object categories, using late fusion via an Extended Kalman
Filter. Similarly, [14] implements the fusion as an Unscented
Kalman Filter (UKF). Since the landmarks that we wish to
estimate are static, no nonlinear update terms are needed and
we instead rely on plain Kalman Filters.

Once a partial map is observed, planning in partially
known environments is well studied. Continuous state and
action space planning methods such as RRT* and PRM*
[15] are computationally complex, and do not exploit the
specific patterns of the tracks that we aim to follow. Brandes
et. al. [16] uses binary integer optimization on a fixed number
of cones to find the immediate boundaries of a Formula
Student track, however due to the low number of cones used
it cannot give boundaries far enough from the vehicle to
drive at high speeds safely. We develop an algorithm that
is both computationally efficient and exploits the nature of
the planned paths for highly accurate results with dynamic
numbers of environment landmarks.

III. METHOD

A. Overview of the Autonomous Driving Pipeline

In FSD, tracks are demarcated by yellow, blue, and orange
traffic cones (see Fig. 1). Yellow and blue cones mark the
right and left boundaries, respectively, while orange cones
mark the start line of the lap. In Autocross, track limits such
as min/max cone separation, total track length, etc. are given
by the rules [17], but the track is otherwise unknown.

Fig. 2 depicts the architecture of the autonomous driving
pipeline we developed. The maximum speed of the car on an
unknown track is directly limited by the distance at which
the track boundaries can be reliably identified. Thus, the
perception setup is designed to detect cones over a long range

2 Mono

Cameras

Optical Speed

Sensor

2 LiDARs

Dual Antenna

GNSS

Velocity

Estimation

Local Map

Global Map

Boundary

Estimation

Motor

Resolvers

Vision Cone

Detection

Sensor Fusion

LiDAR Cone

Detection

Perception Mapping Planning

IMU

Fig. 2: Architecture of the autonomous driving pipeline.

4744

Point cloud
packets from

LiDARs

Field of view
trimming

Projection into
world frame

Ground removal

Euclidean
clustering

Cone
reconstruction

Cone legality
verification

Projection onto
images

Image patch
extraction

Cone color
classification

Cone with
position and

color

Images from
cameras

Pre-processing Cone
detection

Cone
classification

Fig. 3: The LiDAR pipeline used to detect cones from point
clouds and to classify them according to their color via image
patches. It consists of three major phases: pre-processing and
cone detection following [2], cone classification is imple-
mented by our early sensor fusion approach.

and with a large horizontal field of view. It comprises two
32 channel rotating LiDARs and two monocular cameras
with global shutter; all devices are time synchronized to
a common GNSS clock. To achieve better cone detection
performance an early fusion approach that combines these
two modalities was used. The longitudinal, lateral, and
rotational velocities v̂t = {vx, vy, ψ} of the car are estimated
for ego-motion compensation and mapping. The estimate is
obtained by fusing raw data from multiple sources including
an Inertial Measurement Unit, dual antenna GNSS, an optical
speed sensor, motor resolvers, and the motor currents with
an Unscented Kalman Filter [18]. Utilizing the cones as
landmarks, a local map fuses velocity estimates and the
cone observations from the perception pipelines over time.
The local map is used to estimate the track boundaries
and middle path for the Autocross discipline with Delaunay
triangulation and Bayesian inference. A globally consistent
map is estimated using GraphSLAM to represent the cone
positions accurately in the world frame for use in the later
Trackdrive event. The definition of local and global mapping
is further explained below in section III-C.

B. Perception

Position and color of cones can be detected independently
by the camera and LiDAR pipelines. An optional early sensor
fusion approach combines both modalities to improve the
overall accuracy and robustness.

1) Camera only: The vision pipeline utilizes a convolu-
tional neural network (CNN), Tiny YOLOv3 [10], that is
trained to detect blue and yellow cones in the images of
the mono cameras. Based on the size of the bounding boxes
and the true dimension of a cone, the distance to the cone is
estimated and the detected cones are projected into 3D space
accordingly.

2) LiDAR only: The LiDAR pipeline consists of three
stages: 1) pre-processing, 2) cone detection, and 3) cone
classification. This pipeline follows the method described
in [2], which presents an approach to estimate the color
of a cone using only LiDAR point cloud data. A neural
network predicts the most probable color based on the pattern
of LiDAR intensity returns across multiple channels, e.g. a
yellow cone is characterized by a bright-dark-bright pattern.

3) Sensor Fusion: Both the vision and LiDAR pipelines
can run independently and therefore make the system robust
to failures of single sensors, as was described in [2]. In the
case that both sensor modalities are available, our sensor
fusion approach on the input data level exploits the respective
advantage of each modality. The overall pipeline is shown in
Fig. 3. Once the positions of the cones have been determined
using the aforementioned LiDAR-based cone detection, the
points of each cone are projected onto the image of either
camera depending on their lateral position. Since every point
contains a timestamp, it is possible to interpolate them to the
exact time of the image using the velocity estimates. The
projected points of each cone are then framed by bounding
boxes, as shown in Fig. 4. Since points on the lower part of a
cone are often missing due to ground removal, the height of
the initial boxes is multiplied by 1.5, which worked best in
our experiments. Afterwards, the boxes’ width is set to match
their height. The resulting squares are scaled to a uniform
size of 32× 32 pixels, for subsequent classification.

Finally, the RGB patches are fed through a customized
CNN, see Fig. 5, which is inspired by [2]. It consists of three
convolutional layers, where each is combined with batch
normalization, dropout, and a max-pooling layer, as well
as four fully connected layers. Softmax is used to compute
probability values for the three available classes: blue cone,
yellow cone, and unknown color. To deal with occlusion,
the training dataset contains samples of multiple cones of
both mixed and the same colors within a single image patch,
where the latter case is less critical for cone color detection.

C. Mapping
The three perception pipelines are filtered and fused to-

gether into a local map. In a second step, the output of this
local map is used to build a global map of the whole track.
The local and global map are detailed in the following:

1) Local map: Redundancy against sensor pipeline fail-
ures requires a mapping approach that works for all combina-

Fig. 4: Projection of the cones’ point clouds onto both image
planes. The points are shown in red, the initial bounding
boxes are black, and the final image patches are indicated
by blue squares.

input
32x32x3 32x32x32

16x16x32
16x16x64

8x8x64 8x8x128
4x4x128

1024
256 64 16 output

3

conv
7x7

max-pool
2x2

conv
5x5

max-pool
2x2

conv
3x3

max-pool
2x2 flatten fc fc fc fc

Fig. 5: CNN used to predict the cones’ color based on RGB
image patches.

4745

tions of functioning pipeline subsets. Single sensor pipelines
prove to be highly uncertain in either cone depth (monocular
vision) or cone color estimation (LiDAR). Furthermore, all
sensor pipelines suffer from significant noise when detecting
distant cones. The global map requires observations to be
sufficiently certain in order to avoid damage stemming from
data association errors. On the other hand, path planning also
requires knowledge of far and uncertain cones in order to
evaluate sufficiently long planning horizons for fast driving.
These two requirements can be satisfied by using a local
map that estimates the position and color probabilities for
all cones that were recently observed.

Sensor pipeline failures are detected by a time threshold
and parameters are adjusted to one of four modes of opera-
tion. When the early sensor fusion pipeline is operational, no
other pipelines are used to update the local map since they
would fuse in redundant information. When the early fusion
pipeline is not operational, the strengths of the individual
modalities are modeled with low covariances on the cone
positions from the LiDARs and cone colors from the cam-
eras. Two modes of operation remain, which correspond to
individual failures of the camera or LiDAR pipeline. Under
pipeline failures, the goal shifts towards reliably finishing
the lap, in order to still generate a map for the Trackdrive
event. A speed of 5 m/s is tested and verified for all modes
of operation.

A feature-based single hypothesis map Mlocal is cho-
sen, since it is sufficient to accurately represent the cones
that were recently observed. The pose estimate x̂t =
{µx, µy, µθ} of the car within Mlocal is computed by
integration of the estimated velocity v̂t, starting at x̂0 =
{0, 0, 0}. New cone observations ẑt are transformed from car
frame to Mlocal using the synchronized sensor timestamps.

Cone positions and uncertainties are filtered using a
Kalman Filter. The colors of the n observed cones at time t
are represented by the random variable ĈCC

t
= [Ĉt1, . . . , Ĉ

t
n].

The normalized sum of the probability distribution of ĈCC
t

over time yields a filtered color estimate up to time t.
This filtered output is represented as C̃CC

t
= [C̃t1, . . . , C̃

t
n],

where each cone i takes one of the following classes,
C̃ti = {yellow,blue,unknown}. The motion uncertainty is
incorporated by growing the pose covariance of all cones
in Mlocal at each time step, using a hand tuned odometry
covariance.

Associations of cone detections between time steps are
challenging, as the noise levels on observed cone positions
often exceed the minimal expected distance between neigh-
boring cones. Each cone observation ẑ is therefore associ-
ated to its closest cone in Mlocal using the Bhattacharyya
distance [19], which incorporates the position covariance of
both the observation and the cone estimates in the map.

Furthermore, a negative observation model is used to
reject non-existent cones resulting from false positives or
outliers within less than 0.5s even for previously highly
certain false positive cones. This is achieved by penalizing
the certainty of cones in Mlocal that are not observed despite

being in the field of view of the sensors. The parameters of
the observation model are derived from ground truth data
analysis of the observation recall rates. The observation noise
is also computed from the ground truth data.

An output Mtn
local containing all cones within the map is

created for every set of new observations measured at time
tn to be used by the global map and planning.

2) Global map: To drive multiple laps as fast as possible
in the Trackdrive event, a global map containing all cones
is generated and used for localization and racing line opti-
mization. The map must be accurate to allow downstream
algorithms to plan trajectories close to the cone delimited
track boundaries.

The global map is generated in real-time on the car using
a pose-landmark GraphSLAM algorithm [20]. Cones are
used as landmarks, and the car and cone poses are jointly
estimated via non-linear least squares using Google’s Ceres
solver [21].

Cone pose estimates are added to the (global) graph as
virtual measurements from every new local map Mtn

local.
In order to reduce the chance of false associations and
outliers, new cones are only added to the global map if
they were observed in the last perception reading and are
in close proximity to the car. For as long as cones are in
the local map, the data associations from Mtn

local are re-
used. Cones that are new in the local map are associated
to landmarks in the graph using euclidean distance. If there
is no landmark within a certain distance threshold, a new
landmark is created. Graph edges connecting car poses are
given by the integration of the velocity estimate between two
subsequent local maps Mtn

local, M
tn�1

local .
Directly using the vision and LiDAR measurement models

in the graph’s factors would improve accuracy. However,
we primarily use GraphSLAM to distribute the accumulated
pose error when revisiting the finish line over the entire
trajectory and map. Improving the measurement models and
incorporating explicit place recognition will be the subject
of future work.

D. Planning

In the Autocross discipline, the car must drive around an
unknown track. Using the filtered cone observations from
the local map as inputs, we estimate the track boundaries
and middle path online in three steps. For the first and
second steps, our approach follows the previous approach
described in the Boundary Estimation section of [6]. In the
first step, the search space is discretized using the Delaunay
triangulation and the second step generates candidate middle
paths from the triangulation. Our approach differs in the
third step: it uses Bayesian inference instead of a single cost
function to select the best middle path and its corresponding
boundary points. The use of Bayesian inference allows the
cone color probabilities to have a better representation of
the validity of the path. This will be explained further in
Section III-D.2.

The normalization term of the Bayesian inference is omit-
ted as it does not affect the final selection result. Thus,

4746

our inference equation consists of only three terms: the
posterior Pr(valid path| C̃CC

t
), the prior Pr(valid path), and

the likelihood Pr(C̃CC
t
|valid path).

1) Prior: The prior is the probability of a cone configu-
ration representing a valid path. The validity of a path is
determined through human experience, which is captured
in the form of six hand-crafted features. The function to
calculate the prior value, consists of a prior weight Wprior

and for each feature instance j, a feature value Fj , scaling
factor Nj , setpoint value Sj , and feature weight Wj . It has
the following form:

Prior = Pr(valid path) = e−Wprior·Cost, (1)

Cost =

6∑
j=1

Wj · (Fj − Sj)2

Nj
. (2)

The hand-crafted features, Fj , are defined as follows: F1

for the largest angle change within the path; F2, F3 and F4

for the standard deviation of the distance between the left
cones, the right cones and the track width respectively; F5

for the number of triangulation edges crossed limited to the
desired number; and F6 for the length of the path.

2) Likelihood: The likelihood is the product of the color
probability of the cones that are required to estimate the
middle path from the prior. The color probability of a cone
is distributed between the classes blue, yellow, and unknown.
Cones on the left boundary can be either blue or unknown
and will be assigned the higher probability value of either
color. The same applies to cones on the right boundary which
are either yellow or unknown. Cones that are not boundary
points of the path will be assigned the highest probabilistic
value amongst all three colors. The likelihood when n cones
are detected, and the assigned color of each cone being
represented by ci, has the following form,

Likelihood = Pr(C̃CC
t
|valid path)

=

n∏
i=1

Pr(C̃ti = ci).
(3)

With this probabilistic approach for the likelihood, the
color probabilities of every observed cone are used to cal-
culate the validity for each candidate path. As compared to
the previous approach [6], where only the color probabilities
of cones belonging to the boundaries of a candidate path are
considered. This results in the color probability information
of the other cones to be ignored.

3) Posterior: The aim of obtaining the posterior value
for each possible middle path is for comparison, so that the
middle path with the highest posterior value can be selected.
To ensure numerical stability, log is applied to the new
posterior. The formulation for the new posterior is now a
sum of the log of the prior in section III-D.1 and the log of
the likelihood in section III-D.2. This formulation is shown
in the equation below,

log(Posterior) = log(Pr(valid path| C̃CC
t
))

∝ log(Prior) + log(Likelihood)

= −Wprior · Cost +
n∑
i=1

log(Pr(C̃ti = ci)).

(4)

IV. IMPLEMENTATION

1) Robotic platform: The methods presented in this paper
were implemented and tested on the autonomous race car
pilatus driverless, a newer base vehicle compared to [2]. It
is also powered by four electric motors and offers a full
aerodynamics package.

All information is processed by a quad-core Intel Xeon
E3-1505M with 16 GB of RAM using ROS and a real-
time capable electronic control unit. The actuators include
an electric power steering system, four self-developed wheel
hub motors with regenerative braking, and an emergency
brake system. Latencies for all pipeline elements can be
found in Figure 6.

Camera Cone Detection
65ms Local

Map
4ms

Boundary
Estimation

18ms

112ms

LiDAR Cone Detection
43ms

Camera Latency
25ms

Fig. 6: Processing times of each pipeline component.

2) RTK ground truth data: Results in this paper are
generated by comparison to ground truth data. Ground truth
maps and trajectories are measured through GNSS with
Real-Time Kinematic (RTK) corrections. A dual antenna
GNSS RTK system installed on the car provides ground truth
position and heading. A hand-held device with a second
GNSS RTK system and user interface enables measuring
cone locations and colors, and generates ground truth maps
of the track with up to 2 cm accuracy for each cone. While
usage of RTK is allowed in the competition, no guarantee of
base station availability is made. Therefore, it is not used in
the autonomous pipeline.

3) Experimental setup: Most experiments are conducted
on pilatus driverless, the aforementioned race car, on various
tracks at competitions and test sites. All tracks contain
challenging segments, i.e. hairpins and parts of the track that
come close to each other. The tracks’ lengths vary between
200 m and 300 m and the race car’s speed is predominantly
in the range of 5-12 m/s. The results are compared to [2].
Where mentioned, some experiments use our approach on
sensor data from [2] to account for the differences in vehicle
and sensor setup.

V. RESULTS

A. Perception

We compared our novel low-level sensor fusion approach
for cone color classification to the LiDAR-only method in

4747

[2]. To account for the improved sensor setup, we re-trained
this network with new data recordings.

Cameras capture richer color information than LiDAR and,
hence, enable more robust cone classification. By artificially
enlarging the area of interest around the projected points
in the image, the method becomes more robust to imper-
fect projection due to errors in calibration and ego-motion
estimation. Especially for larger distances, our image-based
classification benefits from the rich representation. During
the training of both networks, we only utilize data within a
10 m range. The results in Table I show that the performance
of the intensity pattern-based method drops above 12.5 m,
while the performance of our method does not change. Such
an improvement enables higher certainty in the detection of
the track and, ultimately, faster racing.

TABLE I: Accuracy of color classification of correctly de-
tected cones with respect to distance.

Range [m] 0-5 5-7.5 7.5-10 10-12.5 12.5-15

previous approach [2] 0.88 0.93 0.89 0.87 0.80
our method 0.99 0.99 1.00 1.00 1.00

B. Mapping

We evaluate the accuracy and correctness of the global
map generated by our mapping pipeline by aligning the
estimated and ground truth maps with ICP [22], [23]. Then
we compute the RMSE of the estimated cone locations
with respect to their ground truth locations. We compare
our results to the approach described in [2]. To compensate
differences in the sensor setup, we applied our method to
the same input sensor data used in [2]. Finally, we show the
accuracy of our method on the improved sensor setup. The
results are shown in Table II.

These results show that our method allows for more
than a 4-fold increase in maximum mapping speed with a
moderate decrease in mapping accuracy. Additionally, we
show that our method achieves superior accuracy to the
previous implementation when used on the same perception
input data. Fig. 7 shows the mapping performance of our
method for a 213 m long track recorded at a test site.

C. Planning

Using the parameter values, Wk = 0.1 | k ∈ Z : 1 ≤
k ≤ 5, W6 = 0.5 and Wprior = 29 for the Bayesian
inference approach, we compare our implemented system
against [6] using new data and recorded perception data from
[2]. First, we evaluate our local map from section III-C.1 and

TABLE II: Comparison of mapping accuracy (RMSE) with
various speeds and methods

Method Dataset Max. mapping speed RMSE

previous approach [2] 2018 [2] 2.8 m/s 0.20 m
our method 2018 [2] 2.8 m/s 0.16 m
our method 2019 12 m/s 0.29 m

0 20 40 60 80
-50

-40

-30

-20

-10

0

10

20

0 2 4 6 8 10
Speed of car along driven line [m/s]

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Position error of cone [m]

10 m

Fig. 7: Position error of the estimated cone locations relative
to the ground truth. The driven line is colored according to
the speed of the car.

boundary estimator from section III-D using the perception
data from our previous work [6]. Second, we compare our
entire pipeline using the data from our Autocross run in the
FSG 2019 competition.

0 2 4 6 8 10 12 14
0

20
40
60
80
100

Length of path (m)

Pa
th

s
ge

ne
ra

te
d

(%
)

prev. mtd. [6] + prev. data [6]
our mtd. + prev. data [6]
our mtd. + FSG’19 AutoX data

(a) Normalized histogram of percentage of tracks generated for
different distance intervals from the car.

0 2 4 6 8 10 12 14
0

1

2

3

4

Distance from car (m)

Pa
th

s
ou

t
of

tr
ac

k
(%

)

(b) Normalized histogram of percentage of estimated middle paths
being outside of the actual track at a certain distance from the car.

Fig. 8: Histograms to assess the robustness of our system.
The yellow and blue bars represent the previous and current
implementations on the previous dataset [6], respectively.
The red bar represents our implementation on FSG 2019
Autocross dataset.

Fig. 8a, verifies the robustness of our system by illustrating
the distribution of the output paths according to the path
length. It can be observed that when the previous perception
data was used, paths were limited to a maximum length of
10 m, and most of the paths generated with this data had a
length near the 10 m limit. Using the FSG 2019 Autocross

4748

data, the maximum path length was increased to 15 m, due
to the improvement in our perception range and accuracy.

Fig. 8b, shows that although most predicted paths reach
the largest allowable length, some paths went out of the
track midway. Generally, the shorter a path is before going
out of the track, the lower the buffer for correction as well.
Therefore, it is crucial for points on the path that are closer to
the car to be estimated correctly. Furthermore, the histogram
in Fig. 8b shows that the current implementation is more
robust as the previous boundary estimation approach had a
higher percentage of paths going out of the track at distances
close to the car. Additionally, it can be observed that our
improved perception is also a contributing factor, as the value
of the red bar is either lower or about the same as compared
to the other two bars for distances up to 10 m.

VI. CONCLUSION
This paper presented the perception, mapping and plan-

ning components of the autonomous driving system devel-
oped by the 2019 AMZ driverless team for the Autocross
discipline. Our early fusion approach of combining point
clouds and images achieved better results than a previous
LiDAR-only approach across various distances. In mapping,
a local map and global map were generated. Filtering the
cone observations by fusing associated past and current
cone observations generated the local map. Using only high-
certainty observations from the local map, an accurate,
globally consistent map was generated via pose-landmark
GraphSLAM. Our experiments showed that compared to our
previous implementation, a lower RMSE was achieved at
the same mapping velocity, and the mapping velocity could
be increased greatly without a large sacrifice on accuracy.
Lastly, for planning, we presented a Bayesian inference
method for estimating the middle path and its corresponding
boundaries. We demonstrated higher robustness as a lower
fraction of paths that left the track at distances nearer to
the car when compared to our previous implementation on
the same data set. These new methods enable faster driving
with similar mapping performance, even at speeds 4 times
the previous implementation.

ACKNOWLEDGMENT
The authors would like to thank the whole AMZ driverless

team for their dedication and hard work in developing pilatus
driverless, and the team’s sponsors for their financial and
technical support throughout the season. We also wish to
express our appreciation for everyone at the Autonomous
Systems Lab of ETH Zürich for their supervision and support
throughout this project.

REFERENCES

[1] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the darpa grand challenge,” Journal of field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[2] N. Gosala, A. Bühler, M. Prajapat, C. Ehmke, M. Gupta, R. Sivanesan,
A. Gawel, M. Pfeiffer, M. Bürki, I. Sa, R. Dubé, and R. Siegwart,
“Redundant perception and state estimation for reliable autonomous
racing,” in 2019 International Conference on Robotics and Automation
(ICRA), May 2019, pp. 6561–6567.

[3] M. I. Valls, H. F. C. Hendrikx, V. J. F. Reijgwart, F. V. Meier,
I. Sa, R. Dubé, A. Gawel, M. Bürki, and R. Siegwart, “Design
of an autonomous racecar: Perception, state estimation and system
integration,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018, pp. 2048–2055.

[4] A. Wischnewski, T. Stahl, J. Betz, and B. Lohmann, “Vehicle dynamics
state estimation and localization for high performance race cars,” in
IFAC-PapersOnLine, vol. 52, July 2019, pp. 154–161.

[5] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “ROS-based
localization of a race vehicle at high-speed using LIDAR,” E3S Web
of Conferences, vol. 95, p. 04002, Jan. 2019.

[6] J. Kabzan, M. d. l. I. Valls, V. Reijgwart, H. F. C. Hendrikx,
C. Ehmke, M. Prajapat, A. Bühler, N. B. Gosala, M. Gupta,
R. Sivanesan, A. Dhall, E. Chisari, N. Karnchanachari, S. Brits,
M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger,
J. Lygeros, and R. Siegwart, “AMZ driverless: The full autonomous
racing system,” CoRR, vol. abs/1905.05150, 2019. [Online]. Available:
http://arxiv.org/abs/1905.05150

[7] K. Strobel, S. Zhu, R. Chang, and S. Koppula, “Accurate, low-latency
visual perception for autonomous racing: Challenges, mechanisms, and
practical solutions.”

[8] N. De Rita, A. Aimar, and T. Delbruck, “CNN-based object detection
on low precision hardware: Racing car case study,” in 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 647–652.

[9] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[10] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv e-prints, p. arXiv:1804.02767, Apr. 2018.

[11] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2018, pp. 1–8.

[12] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum
pointnets for 3d object detection from rgb-d data,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, June 2018,
pp. 918–927.

[13] A. Ess, K. Schindler, B. Leibe, and L. V. Gool, “Object
detection and tracking for autonomous navigation in dynamic
environments,” The International Journal of Robotics Research,
vol. 29, no. 14, pp. 1707–1725, 2010. [Online]. Available:
https://doi.org/10.1177/0278364910365417

[14] X. Chen, X. Wang, and J. Xuan, “Tracking multiple moving objects
using unscented kalman filtering techniques,” 07 2012.

[15] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms
for optimal motion planning using closed-loop prediction,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
May 2017, pp. 4991–4996.

[16] R. S. Kathleen Brandes, Allen Wang, “Robust lane detection with
binary integer optimization,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[17] Formula Student Germany, FS Rules 2019 v1.1.
[18] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter

to nonlinear systems,” Signal Processing, Sensor Fusion, and Target
Recognition VI, vol. 3068, pp. 182–193, July 1997.

[19] A. Bhattacharyya, “On a measure of divergence between two statistical
populations definedby their probability distribution,” Bulletin of the
Calcutta Mathematical Society, vol. 35, pp. 99–110, 1943.

[20] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” IEEE Transactions on Intelligent Transportation
Systems Magazine, vol. 2, pp. 31–43, 12 2010.

[21] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[22] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, Feb 1992.

[23] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” Image Vision Comput., vol. 10, pp. 145–155, 01 1992.

4749

