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Abstract: While optical cameras are ubiquitous in robotics, some robots can sense
the world in several sections of the electromagnetic spectrum simultaneously,
which can extend their capabilities in fundamental ways. For instance, many
fixed-wing UAVs carry both optical and thermal imaging cameras, potentially al-
lowing them to detect temperature difference-induced atmospheric updrafts, map
their locations, and adjust their flight path accordingly to increase their time aloft.
A key step for unlocking the potential offered by multi-spectral data is generating
consistent, multi-spectral maps of the environment. In this work, we introduce
MultiPoint, a novel data-driven method for generating interest points and associ-
ated descriptors for registering optical and thermal image pairs without knowledge
of the relative camera viewpoints. Existing pixel-based alignment methods are ac-
curate but too slow to work in near-real time, while feature-based methods such
as SuperPoint are fast but produce poor-quality cross-spectral matches due to in-
terest point instability in thermal images. MultiPoint capitalizes on the strengths
of both approaches. An offline mutual information-based procedure is used to
align cross-spectral image pairs from a training set, which are then processed by
our generalized multi-spectral homographic adaptation stage to generate highly
repeatable interest points that are invariant across viewpoint changes in both spec-
tra. These are used to train a MultiPoint deep neural network by exposing this
model to both same-spectrum and cross-spectral image pairs. This model is then
deployed for fast and accurate online interest point detection. We show that Mul-
tiPoint outperforms existing techniques for feature-based image alignment using
a dataset of real-world thermal-optical imagery captured by a UAV during flights
in different conditions and release this dataset, the first of its kind.
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1 Introduction

Figure 1: Remote thermal detection and mapping with TIR
and visible-spectrum cameras.

Robots have long had access to multi-
spectral sensing capabilities that allow
them to observe the world well beyond
the limitations of human vision. Demon-
strated examples include the use of sens-
ing in visible and near-infrared spectra
for monitoring crop health [1], ground
penetrating radar for landmine detec-
tion [2], and others. Since many fixed-
wing UAVs carry both optical and ther-
mal infrared (TIR, a.k.a. long-wave in-
frared) cameras, this potentially allows them to detect regions of warm rising air called thermals
around them, as illustrated in Fig. 1. Thermals arise due to parts of the ground surface absorbing
more solar radiation than surrounding areas and heating up the air immediately above. Birds [3]
and small UAVs [4, 5, 6] can gain potential energy and extend flight duration thanks to a thermal
if they happen to fly through one. Detecting and mapping thermals remotely would enable UAVs
to deliberatively plan their flight paths so as to maximize their time aloft and extend their range.
While thermals themselves are invisible in both optical and TIR spectra, their generating regions on
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the ground can be sensed by a thermal camera on a small UAV. Crucially, generating a TIR map
in-flight using standard mapping pipelines is thwarted by the poor performance of existing feature
matching techniques [7, 8] on cross-spectral data [9]. To enable use cases such as this, we need
a fast, robust, and accurate cross-spectral image registration method that would match features in
thermal images with their optical counterparts and thereby allow us to leverage existing tools for
optical image-based mapping to align and stitch together the corresponding TIR data.

Proposed approach. We present MultiPoint, a method that enables cross-spectral image registration
by detecting and describing interest points common to both visible- and thermal-spectrum images.
MultiPoint is fast enough to run on standard UAV hardware during flight, and makes only mild
assumptions about the optical and thermal camera installation. The cameras can have different
fields of view, may introduce different amounts of warping to the images, and their shutters need
not be perfectly synchronized; all MultiPoint requires is that the thermal and optical images have a
reasonable overlap.

MultiPoint operates via a three-stage pipeline by (1) using a base detector to label interest points,
(2) robustifying the detector via homographic adaptation, i.e., generating multiple warped versions
of an image to recognize only those interest points that can be consistently identified from different
viewpoints, and (3) training a network that jointly identifies interest points and generates associated
descriptors. Compared to SuperPoint [10], a similarly structured method for visible-spectrum fea-
tures, MultiPoint differs in three critical aspects that make it successful at cross-spectral registration.
In stage (1), for identifying interest points in both optical and thermal images, MultiPoint uses SURF
features rather than SuperPoint’s MagicPoint base detector, as the latter performs poorly at identify-
ing consistent features in unstructured images like those of agricultural and forested terrain. In stage
(2), MultiPoint generalizes homographic adaptation [10] to the multi-spectral setting by warping
optical-thermal image pairs to produce an interest point detector that is consistent not only across
viewpoint variations but also across spectra. In stage (3), MultiPoint trains a joint interest point
detector and descriptor model using all three types of image pairs (optical-optical, thermal-thermal,
and optical-thermal), with the pairs matched offline using a mutual information (MI)-maximization
approach. In empirical evaluation on real-world data, we show that, thanks to these techniques, Mul-
tiPoint significantly outperforms existing approaches at cross-spectral feature detection, description,
and image registration.

Related work. Image alignment techniques can be roughly split into pixel-based and feature-based
approaches (a more detailed treatment of related work is in the Supplement). Pixel-based approaches
perform pixel-to-pixel comparisons between images and solve for the optimal alignment, e.g., by
maximizing MI. These methods work well in medical applications for aligning CT, PET and MRI
scans [11], and recent improvements have further increased their accuracy in multi-spectral settings
[12]. However, their computational cost is on the order of seconds for pairwise image alignments,
while we are targeting real-time applications that need to operate at approximately 5Hz. Phase
correlation methods are faster, but perform poorly when attempting to align images from multiple
spectra [13, 14, 15].

Feature-based methods align images by first identifying distinct matching regions (features) and then
performing alignment based only on those features. Unfortunately, classic visual features such as
SIFT [7] and SURF [8] struggle when faced with multi-spectral image alignment [9] due to the non-
linear pixel intensity variations that exist between images from different spectra. To address this,
several methods including log-Gabor histogram descriptor (LGHD) use feature descriptors based
on region information rather than pixel information [16, 17, 18]. This improves performance over
standard descriptors, but the average precision values are still only around 0.24. Furthermore, eval-
uating over regions loses many of the computational benefits of feature-based methods, with LGHD
requiring on the order of seconds to perform alignment. Even with efficiency improvements such as
multi-spectral feature descriptor (MFD) [19], these methods still do not run at real-time speeds.

Contributions. In summary, our contributions are as follows:

• We propose MultiPoint, a method for training a deep neural network capable of performing both
interest point identification and descriptor generation for cross-spectral image registration that is
fast and accurate enough for real-time image alignment and mapping.

• We present a dataset collected from a UAV with a pair of downward-facing RGB and thermal cam-
eras over 10 flights in different conditions. This is the first dataset of this kind, to our knowledge,
and includes a set of aligned cross-spectral image pairs that can be used to train a model such as
the one we evaluate in the experiments.
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2 MultiPoint – Cross-spectral interest point detection and description

MultiPoint is a learning framework for generating labeled interest points with descriptors that are
consistent between images coming from visible and thermal spectra as well as from different view-
points. A trained MultiPoint network takes as input a pair of images from the same or different
spectra and overlapping fields of view (but unknown relative camera poses), and returns a list of
interest points and corresponding feature descriptors from both images. The resulting interest points
can be matched between images and used either to estimate the relative homography between them
(image alignment), or to create a sparse map of optimized multi-spectral feature locations and cam-
era poses in 3D space with the help of a visual mapping framework.

As previously mentioned, training this network consists of three stages and requires a dataset of
aligned optical and thermal image pairs. In the rest of the paper, we refer to each pair as a multi-
spectral image pair. Details on how we collected and processed this dataset from flight data are
provided in Section 3. In this section, we outline the intuition behind each of the three stages
of MultiPoint and describe in detail how each of them works. Our open-source implementation of
MultiPoint and the training and testing datasets are available at https://github.com/ethz-asl/
multipoint.

2.1 Stage 1: Interest point label generation

Interest points are salient features in images that can be repeatably identified in multiple images
under changes in viewpoint, lighting, and, in our case, across multiple spectra. The goal of Mul-
tiPoint’s first stage is to produce a crude interest point identification mechanism that subsequent
stages will bootstrap from and improve upon. In particular, we would like the sets of optical and
thermal interest points produced by this step to have a significant overlap, so that we can use them
to match images from different spectra.

A state-of-the-art approach for aligning visible-spectrum images, SuperPoint [10], trains a base
detector called MagicPoint for a similar purpose. It is trained using a synthetic dataset constructed
by projecting synthetic 3D scenes containing cuboids, checkerboards, and line segments to 2D.
Since the corners of such shapes are naturally stable features, they are used as ground truth targets
to train an interest point detector. After training MagicPoint on the same synthetic data and refining
on MS COCO 14 [20] and multi-spectral data, we observed that in the latter case the interest points
produced by the resulting detector cluster around edges in an image. We suspect that the synthetic
dataset does not represent the multi-spectral data well, causing the transfer from the synthetic to the
real domain to fail.

Our key insight for addressing this challenge is that, counterintuitively, a non-data-driven detector
can be more consistent at generating interest points across multimodal data distributions covering
conventional (optical) and unstructured and otherwise unusual images, e.g., thermal ones. Accord-
ingly, we propose using classical detectors like SURF or SIFT instead of MagicPoint for preliminary
cross-spectral interest point identification. A caveat, however, is that, unlike MagicPoint, SURF and
SIFT return the locations of individual candidate interest points instead of a heatmap. This makes
them very prone to small pixel-wise errors in the detected interest points. To circumvent this prob-
lem, we first construct a binary heatmap using interest points predicted by SURF and SIFT and then
smooth it using a Gaussian filter.

As shown in Fig. 2, the label sets generated by the SURF/SIFT base detectors after multi-spectral
homographic adaptation do not exhibit clustering around strong edges, as opposed to those generated
by the MagicPoint base detector.

MagicPoint SURF

Figure 2: A comparison of different exported labels as a result of multi-spectral homographic adaption. The
learned detector results in clustered interest points while the pipeline based on the SURF detector spreads
interest points more uniformly.
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2.2 Stage 2: Multi-spectral homographic adaptation

Although Stage 1 is designed to generate reasonable interest point candidates, beyond the heuristic
use of SIFT/SURF to identify these candidates it takes no explicit measures to ensure that the iden-
tified points are consistent across spectra. Stage 2 improves on Stage 1’s output by zeroing in on
the cross-spectrally consistent subset of candidate points by employing a generalized version of a
technique called homographic adaptation [10].

Homographic adaptation is a form of data augmentation that effectively simulates viewpoint changes
by sampling and applying multiple homographies to a single image to generate a set of warped
views. Interest points (identified with the detector from the previous step) can be mapped between
the warped images using the known homographies, allowing the network to learn to recognize points
that can be consistently identified after warping. In existing work, homographic adaptation is used
to ensure feature consistency across images from a single, visible spectrum [10].

In this work, we generalize homographic adaptation to the multi-spectral domain, modifying it to
boost the cross-spectral consistency of interest point detections. To do so, we apply homographic
adaptation to multi-spectral image pairs instead of individual frames in a process depicted in Fig. 3.
For a pre-aligned multi-spectral image pair, an ideal interest point detector would return the same set
of locations for both images. Accordingly, we sample homographies like the original homographic
adaptation does, but use each random homography to warp both images, which yields a new multi-
spectral pair of aligned images with effectively a new viewpoint. Next, the detector from Stage 1
is applied to both images to obtain a heatmap pair. The intersection of the heatmap pair is deter-
mined by pixel/element-wise multiplication, represented by the � operator. Finally, the resulting
heatmap is warped back into the original frame and aggregated across the Nh randomly sampled
homographies. To generate “good” homographies, we follow the original homographic adaptation’s
approach of decomposing the transformation into a random scale, translation, in-plane rotation,
and perspective distortion and sample those values from uniform distributions with pre-determined
ranges.

The result is a multi-spectrum-aware scoring function F̂ that takes as input an aligned cross-spectral
image pair and returns an aggregated heatmap for generating consistent cross-spectral interest point
labels for use in Stage 3:

F̂ (Io; It; f) =
1

Nh

Nh∑
i=1

H−1i (f (Hi (Io))� f (Hi (It))) , (1)

where Io and It represent the optical and thermal images respectively, f is the base detector, and H
is a randomly sampled homography1.

2.3 Stage 3: Joint detector and descriptor training

While Stages 1 and 2 could by themselves serve as an interest point detector, running them is far too
slow for real-time use. Stage 3 of MultiPoint distills them into a DNN that, given a pair of unaligned
images, can accurately identify cross-spectrally consistent interest points in them along with their
descriptors in a fraction of a second.

We train this model using image pairs related with a known homography labeled with interest point
locations generated by the multi-spectral homographic adaptation. To get such a pair, we randomly
sample either a multi- or same-spectrum pair of aligned images and warp one of the images using a
random but known homography. This results in the network seeing 50% multi-spectrum pairs and
50% same-spectrum (thermal-thermal or visible-visible) pairs during training.

The loss function is composed of a detector loss – a fully-convolutional cross entropy loss separately
evaluated on each image, and a descriptor loss – a hinge loss on point correspondences. The two
losses are balanced using a manually determined weighting parameter. Overall, the loss function
is identical to the one used to train SuperPoint[10], but we lowered the threshold parameter for the
homography-induced correspondence between the (h,w) cell and the (h′, w′) cell:

shwh′w′ =

{
1, if

∥∥∥Ĥphw − ph′w′

∥∥∥ ≤ 4

0, otherwise.
(2)

1We use the notation introduced in DeTone et al. [10], where H(I) denotes warping the entire image I with
H and Hx represents applying the homography H to the interest points x.
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Figure 3: Multi-spectral homographic adaptation procedure for boosting the cross-spectral consistency of the
interest point detector.

The center of a cell in the warped frame is represented by ph′w′ , and Ĥphw equals warping the
cell centers from the unwarped into the warped frame. We observed a more distinctive descriptor
response by decreasing this threshold from the original 8 to 4. We not only saw this effect when
training MultiPoint with multi-spectral image pairs but also when retraining SuperPoint with optical-
only pairs on the MS COCO 14 dataset.

3 Multi-spectral aerial image dataset

3.1 Data collection

To train the network on representative multi-spectral data, we collected data from an unmanned
aerial vehicle (UAV) and compiled a dataset of aligned multi-spectral aerial images. The images
were taken using a fixed-wing UAV equipped with two downward-facing cameras, one visual (UI-
5261SE Rev. 4 with a 16mm focal length lens) and one TIR (FLIR TAU2 19mm, spectral band
7.5–13.5 µm). The thermal camera captures images at 5Hz and triggers the optical camera at the
same rate, resulting in an average time offset of 63ms determined by Kalibr [21], which was used
to calibrate the cameras using a pinhole radial-tangential camera model. The aircraft was flown at
altitudes from 80 to 150m AGL, above a mix of farmed and lightly forested terrain in Switzerland
(see Fig. 4). In total, 25647 image pairs were captured in ten different flights over two days with
take-off times ranging from 9 a.m. to 3 p.m., resulting in varying thermal landscapes. We observed
temperature changes up to 30◦C between the early morning and afternoon flights.

3.2 Offline multi-spectral feature matching

To provide labeled data for training our network, we require multi-spectral image pairs with known
transformations (planar homographies) between the images. However, raw images from the aerial
dataset can have varying relative transformations between the images due to the trigger time offset,
exposure times, and different motions within that time frame (see Fig. 5). During the data collection
flights we regularly observed roll rates around 20deg /s which leads, together with the average time
offset of 63ms, to a pixel error of 25.5px in the thermal image frame (20px/ deg). To calculate the
‘ground-truth’ homography between multi-spectral image pairs, we developed a pipeline based on
the MI score. We also tested other multi-spectral matching approaches including LGHD but found
that MI produced the most consistent results. At this stage, we were not concerned with running
time since this dataset was generated to provide training data for the proposed MultiPoint approach.

First, we performed limited pre-processing on the raw images. RGB images were converted to
greyscale and normalized. Raw thermal images are single-channel, 14-bit images where each pixel
is the absolute temperature, representing a temperature range of −40 ◦C to 160 ◦C. We normalized
each thermal image to the range between the 1st and 99th percentile of the raw temperature data to
remove large temperature outliers and increase contrast.
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Figure 4: Mixed agricultural region where data were collected, reconstructed offline from visible-spectrum
images using Pix4D (https://www.pix4d.com/). Top insets show the flight hardware. Bottom inset shows
the path taken during one flight overlaid on the Google Earth (https://www.google.com/earth/) image.
Green indicates regions of thermal updrafts and red indicates regions of downdrafts.

Figure 5: Left: Optical image warped with the homography determined from the camera calibration. Middle:
TIR image. Right: cropped and aligned optical image using the optimized homography found with MI.

Next, we used an optimizer to solve for the relative homography between images using the MI score
as the cost function [22]. In our setup, the thermal field of view (FoV) is a subset of the optical FoV,
so we solved for the homography from the optical to the thermal frame maximising the overlap.
This yielded a resolution of 512 × 640 for each image in each aligned image pair. A (fixed) initial
estimate of the relative homography was calculated from the known camera calibration and used as
a starting point for the optimizer. Our method used the Nelder-Mead solver [23] from the Python
SciPy package [24]. Computing the MI score requires binning the data and then computing a 2D-
histogram. We chose twice the number of bins for the thermal compared to the visible spectrum to
match the resolution of the pixel values. We performed alignment with three different visible (bv)
and thermal (bt) bin number pairs in parallel (bv, bt) ∈ {(32, 64), (100, 200), (256, 512)}. The best
match was selected using the MI score. We found using these settings produced the most consistent
results as image quality varied with lighting, exposure, and camera orientation. Each optimization
took approximately 20 s on a single CPU thread.

The image pairs from the MI method were filtered for poor matches in a two-step process. First, bad
matches were automatically rejected using hand-tuned thresholds for the changes in the MI-score
and homography. Second, all remaining image pairs were manually checked for visually acceptable
alignment with the optimized homography estimate. Finally, 13731 out of 25647 image pairs were
accepted (53.54%). See Fig. 5 for an example of an accepted image pair pre- and post-alignment.

4 Results

MultiPoint is intended to provide interest points and corresponding descriptors for multi-spectral
image pairs with different unknown viewpoints. Although the ultimate goal is to incorporate Muti-
Point into a feature-based mapping framework for reconstructing dense aligned optical and thermal
maps from aerial imagery, here we focus on traditional interest point metrics in order to demonstrate
the core capabilities of MultiPoint versus existing detection and description methods. We show the
following properties of MultiPoint on multi-spectral image pairs with different viewpoints:

1. Interest points are detected in the same locations (repeatable).
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2. Descriptors provide distinct and correct matches (descriptor precision and matching scores).
3. Using standard feature-based image alignment with MultiPoint interest points results in accurate

estimates of the relative homography between images (homography estimation).

4.1 Experimental setup

Interest point label generation. We used the implementations of the SURF and SIFT detectors
provided by OpenCV. We evaluated different label sets, where we varied the Hessian threshold, C1,
for SURF and the number of retained features for SIFT. Our multi-spectral dataset has a large variety
of textures where SURF often struggled to detect any interest point locations for a given detection
threshold. In cases where the detector would return less than 50 interest points, we reran the detector
with a lower threshold C2 to mitigate this issue and still generate some interest point labels. The
SIFT detector did not require this two-step process and was directly used as the base detector, as it
would always return the n best interest points according to the local contrast. The final set of labels
to train MultiPoint were generated using the SURF base detector (C1 = 1500, C2 = 300). We
set the filter size of the Gaussian filter Kgb to 3 and used Nh = 100 random homographies for the
multi-spectral homographic adaptation.

MultiPoint training. The training of MultiPoint was done using PyTorch [25]. We used the Adam
solver with default parameters to train the model for 3000 epochs with a batch size of 32 and a
learning rate of 0.001. We used photometric augmentation, specifically applying motion blur, illu-
mination changes, contrast changes, and additive shades, plus random Gaussian and speckle noise.
Additionally, as an augmentation method, as well as allowing for a batch size of 32, we randomly
sampled 240x320 patches out of the full resolution images (512x640).

We partitioned the multi-spectral dataset from Section 3 into training and test sets across flights.
We used a total of seven flights (9340 image pairs) for training and three flights (4391 image pairs)
as test data to assess the performance of the models. All flights are over similar and potentially
overlapping regions, but on different days and under different lighting conditions.

4.2 MultiPoint detector and descriptor performance

We assessed the detector and descriptor performance of all models under comparison on the test
set that contains previously unseen multi-spectral image pairs. We compared MultiPoint, SURF,
SIFT, LGHD, and SuperPoint, for which we used the weights released by MagicLeap2. We used
the default OpenCV implementations for SURF and SIFT and a custom Python implementation of
LGHD. For each image pair, at the resolution of 512 × 640, we computed descriptors and interest
points and then evaluated with the same set of metrics as in DeTone et al. [10].

Repeatability – the ratio of interest points detected in both images (where interest points are detected
at the same reprojected location in both images within a pixel threshold δ = 4) to the total number of
detections [26] – is a measure of interest point stability. We also report the average number of interest
point detections (Nkp). Detecting too many points slows down the subsequent matching steps, and
Nkp tends to be positively correlated with repeatability since more total points are matched within
the threshold but these may not be correct matches. The nearest-neighbour mean average precision
(NN mAP) is the area under the precision-recall curve, and is a measure of the discriminating power
of the descriptors. Matching score (M. Score) is the ratio of true positive matches over the total
number of matches (match precision) and thus measures the combined performance of the interest
point detections and descriptors.

Homography estimation is used to determine if the correct matches would be sufficient for accu-
rate image alignment. An alignment is considered ‘correct’ if all four reprojected corners of the
warped image using the estimated homography lie within a pixel threshold (ε) of the corners of the
true homography projection. We evaluated homography estimation using three different thresholds:
ε = 2, 5, and 10 pixels. We used OpenCV implementations for brute-force (`2-norm) matching
(cv2.BFMatcher) and to estimate the homography between matched interest points that minimizes
back-projection error (cv2.findHomography).

The performance metrics of the different models can be seen in Tab. 1. MultiPoint clearly outper-
forms all baseline methods, boosting the descriptor metrics by a factor of 4. This results in superior
homography estimation abilities. Since LGHD is not viewpoint-invariant, it performs considerably

2https://github.com/magicleap/SuperPointPretrainedNetwork
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Detector Metrics Descriptor Metrics Homography Estimation

Repeatability Nkp NN mAP M. Score ε = 2 ε = 5 ε = 10

SURF 0.195 523 0.002 0.012 0.003 0.013 0.022
SIFT 0.264 624 0.036 0.041 0.027 0.139 0.203
LGHD 0.162 599 0.002 0.005 0.005 0.035 0.062
SuperPoint 0.163 255 0.071 0.032 0.015 0.089 0.148
MultiPoint 0.281 424 0.271 0.134 0.125 0.507 0.667

Table 1: Detector and descriptor metrics on the test set with random homographies applied. Multi-
Point outperforms all baseline methods due to a significantly increased descriptor performance.

worse on estimating the homography the larger the warp between the images. A similar trend can be
noted for MagicLeap’s SuperPoint model. This may be related to the magnitude of warps sampled
during their training process versus the ones used for MultiPoint. This reveals a general drawback
of learned descriptors, which tend to be less effective if test data is not represented well by training
data. However, a preliminary evaluation of MultiPoint on the MS COCO 14 test set shows similar
performance to SuperPoint, indicating that MultiPoint generalises well across different images and
landscapes. A qualitative comparison of the different methods is shown in Fig. 6.

4.3 Timing

We evaluated the running time of the pipeline on flight-grade hardware such as NVIDIA Xavier NX.
On the test hardware, a mixed-precision forward pass of MultiPoint for a single image pair requires,
on average, 112ms. Non-maximum suppression requires 26ms and interpolation for interest points
takes 10ms. The total running time of the detector and descriptor pipeline is 148ms (6.75Hz),
meeting our target performance of 5Hz.

5 Conclusion

We presented MultiPoint, a DNN and a method of training it capable of predicting interest point
locations and descriptors for cross-spectral image registration. Additionally, we introduced a novel
dataset for training MultiPoint that consists of aligned multi-spectral image pairs collected from a
UAV, as well as a pipeline for creating consistent cross-spectral interest point labels.

In future work we plan to extend MultiPoint by: 1) exploring alternative model structures, especially
smaller networks, to further improve prediction performance or inference times, and 2) incorporating
MultiPoint in an online mapping framework to create consistent multi-spectral maps[27, 28].

Figure 6: Qualitative results on the multi-spectral dataset. Correct matches, with a threshold of 4 pixels, are
highlighted in green. Both SIFT and MultiPoint can generate correct matches if there is enough texture present
in the image pair, but MultiPoint does so at a higher rate. SuperPoint struggles in all three examples because of
the large warp between the images, and all three methods break down when cross-spectral differences are too
dramatic (bottom row).
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Appendices
A Related Work

The goal of cross-spectral image alignment is to find the spatial transformation that relates two
images of the same subject (overlapping fields of view) taken in different spectra usually with dif-
ferent cameras. This can be particularly challenging because images can appear quite different in
different spectra, with some features having inverted responses, or not being visible in both images.
Image alignment techniques can be roughly split into pixel-based approaches and feature-based ap-
proaches. Pixel-based methods use a pixel-to-pixel metric to evaluate the difference between images
combined with an optimization scheme to solve for the optimal alignment. Such methods for per-
forming multi-spectral image alignment include the maximization of MI, which has been shown
to work well in medical applications for cross-spectral alignment, in examples such as CT, PET
and MRI scans [11]. More recently, Shen et al. [12] proposed a new matching cost to better han-
dle the dramatic structure inconsistencies and gradient variations observed in multi-spectral and
multi-modal images, showing alignment accuracy improvements over MI and other state-of-the-art
methods. However, the difficulty with these approaches is their computational cost, which achieves
pairwise image alignments in the order of seconds, while we are targeting real-time applications
that need to operate in the range of 5Hz. On the other hand, phase correlation methods using
the frequency domain representation of images provide the computational speedups needed for our
targeted application. However, despite working well for visual image alignment, these methods
perform poorly when attempting to align multi-spectral images [13, 14, 15].

Feature-based methods offer efficient and rapid matching by first detecting distinct regions (fea-
tures) in images and then performing alignment based only on those features. Unfortunately, classic
visual features such as SIFT [7] and SURF [8] struggle when faced with multi-spectral image align-
ment [9]. These feature descriptors operate over pixel gradients, thus the observed performance
degradation is attributed to the non-linear pixel intensity variations that exist between multi-spectral
images. To address this, Aguilera et al. proposed several feature descriptors based on region infor-
mation rather than pixel information [16, 17, 18]. For example, the LGHD method is based on the
distribution of high frequency components in a region around a point of interest. Results for match-
ing TIR to visual images show definite improvement over other standard descriptors; however, the
overall performance is still far from satisfactory, with average precision values around 0.24. Fur-
thermore, evaluating over regions loses many of the computational benefits of feature-based methods
with LGHD still taking on the order of seconds to perform alignment. Although the similar MFD
proposed by Nunes and Pádua [19] was able to halve the LGHD computation time, these meth-
ods still do not provide the real-time image alignment solutions we seek that would enable online
multi-spectral aerial mapping.

B MultiPoint Hyperparameter Study

We evaluated how hyperparameter and model choices in the MultiPoint training pipeline affect the
performance of the trained model. First, we show the performance of alternative interest point label
methods and their parameters compared to the MagicPoint detector trained with synthetic shape
data. Second, we investigate how showing the network different combinations of cross-spectral or
single-spectrum image pairs during training effects final performance. Finally, we show variations
in the MultiPoint architecture. The results for these variations are summarised in Tab. 4, and each
model change is described below.

Interest Point Labels. We generated 10 different interest point label sets using the SURF or SIFT
base detector, varying the detector parameters C1 and C2, as well as the filter kernel size Kgb.
An overview of the parameter choices and the resulting label statistics, where Nkp represents the
number of interest points per image, can be found in Tab. 2.

Image Pair Composition. We studied the effect of always showing MultiPoint cross-spectral im-
age pairs or randomly sampling cross-spectral and same-spectrum image pairs (‘Randomized Pairs’)
during Stage 3 (joint detector and descriptor training). The latter resulted in the model seeing 50%
cross-spectral pairs and 50% same-spectrum (thermal-thermal or visible-visible) pairs during train-
ing.
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Label C1 C2 Kgb Nkp,Min Nkp,Mean Nkp,Max

SURF1 400 100 5 16 623 3852
SURF2 1500 300 3 0 133 2548
SURF3 800 200 3 0 215 2715
SURF4 100 50 0 0 75 749
SURF5 50 50 3 31 916 3092
SIFT1 1000 - 3 0 160 482
SIFT2 2000 - 3 0 359 1021
SIFT3 4000 - 3 0 695 2094
SIFT4 4000 - 5 0 947 4109
SIFT5 4000 - 0 0 122 1027

Table 2: Detector settings and interest point statistics for the different labels used to train Mul-
tiPoint. Nkp,Mean denotes the average number of interest points per image on the dataset and
Nkp,Min/Nkp,Max represent the minimum/maximum respectively.

Descriptor size. We explored a range of descriptor sizes to understand the trade-off between com-
plexity and performance. Allowing larger descriptor sizes has the potential to provide a richer de-
scriptor space at the cost of requiring additional model parameters.

Multiple encoder heads. We evaluated the effect of modifying the network structure proposed by
SuperPoint by using multiple encoding heads, one per spectrum, instead of a single encoder. The
goal of the multi-headed architecture was to determine if having independent encoder heads for
each spectrum would improve performance, by allowing the network to specialize by spectrum. The
network was structured to have two encoder heads that share a common structure but independent
parameters, and the relevant encoder head would be selected by the input image spectrum. The
interest point and descriptor decoders were still shared (see Fig. 7).

Discussion. An overview of the evaluated model configurations is shown in Tab. 3. The Multi-
Point1 X variants are a special case where we only varied the interest point label method. Perfor-
mance metrics of the different MultiPoint variants are presented in Tab. 4.

When comparing the different MultiPoint1 models we observed that the interest point labels used
for training have a large influence on the overall performance of the model. Choosing the right
label leads to 23.9% more accepted homographies with a threshold ε = 5 from the worst, Mul-
tiPoint1 SIFT4, to the best model, MultiPoint1 SURF1. However, even MultiPoint1 SIFT4 sig-
nificantly outperforms the best baseline method in the homography estimation task with similar
descriptor metrics. For subsequent experiments (and the final MultiPoint model used in the paper)
we decided to use the SURF2 label set because it resulted in the highest descriptor metrics while
still performing well on the homography estimation task.

We observed that lowering the descriptor size to 64 (MultiPoint2) slightly boosted performance
versus the standard SuperPoint descriptor size of 256. Further reduction to 32 (MultiPoint3) led to
a minor performance drop leading us to keep descriptor size 64. The model with two encoder heads
(MultiPoint5) performed on par with using only a single encoder for both spectra (MultiPoint2). We
conclude that a single encoder is expressive enough to detect and describe cross-spectral features.

The model trained with randomized image pairs (MultiPoint2) outperforms the model trained with
only cross-spectral pairs (MultiPoint4). We suspect that seeing same-spectrum pairs during training
improves the intra-spectral performance which subsequently influences the cross-spectral perfor-
mance. Training the model with randomized pairs might also help in the case where we still have
minor alignment errors in the training image pairs.

Similar to the findings of SuperPoint on the COCO dataset[10] we observed that the repeatability
is not a strong indicator of the overall performance of a model. In fact, the two models with the
highest repeatability score, MultiPoint1 SIFT4 and MultiPoint1 SIFT5, have the lowest scores in
the descriptor metrics and homography estimation. When comparing the repeatability score and the
number of interest points (Nkp) for every model for every image pair in the test set, we observed a
strong positive correlation (r = 0.791). This leads us to the conclusion that the models still struggle
to find repeatable interest points in both spectra for the image pairs in the cross-spectral dataset
(aerial images of a mixed agricultural region).

The final model selected as MultiPoint in the paper was the MultiPoint2 variant, with SURF2 interest
point labeling, single encoder head, descriptor size 64 and trained with randomized input pairs.
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Figure 7: MultiPoint multiple encoder head architecture. Two different encoders are learned, and the image
passes through either the optical or TIR encoder head depending on the image spectrum.

Model Labels Multiple Heads Randomized Pairs Descriptor Size

MultiPoint1 X X No Yes 256
MultiPoint2 SURF2 No Yes 64
MultiPoint3 SURF2 No Yes 32
MultiPoint4 SURF2 No No 64
MultiPoint5 SURF2 Yes Yes 64

Table 3: Configuration for the different MultiPoint models. The MultiPoint1 X have the same model
parameter but are trained with different interest point labels.

Detector Metrics Descriptor Metrics Homography Estimation

Repeatability Nkp NN mAP M. Score ε = 2 ε = 5 ε = 10

MultiPoint1 SURF1 0.412 1254 0.152 0.105 0.149 0.525 0.671
MultiPoint1 SURF2 0.286 440 0.245 0.128 0.136 0.510 0.668
MultiPoint1 SURF3 0.334 713 0.204 0.116 0.147 0.524 0.670
MultiPoint1 SURF4 0.159 275 0.208 0.108 0.126 0.399 0.522
MultiPoint1 SURF5 0.515 2197 0.083 0.081 0.132 0.467 0.610
MultiPoint1 SIFT1 0.340 750 0.137 0.083 0.144 0.477 0.625
MultiPoint1 SIFT2 0.421 1346 0.062 0.058 0.102 0.391 0.537
MultiPoint1 SIFT3 0.563 2823 0.027 0.045 0.072 0.322 0.475
MultiPoint1 SIFT4 0.571 2974 0.026 0.041 0.061 0.286 0.442
MultiPoint1 SIFT5 0.311 1281 0.073 0.059 0.083 0.326 0.482
MultiPoint2 0.281 424 0.271 0.134 0.0125 0.507 0.667
MultiPoint3 0.293 451 0.187 0.111 0.140 0.487 0.629
MultiPoint4 0.271 473 0.132 0.088 0.114 0.427 0.565
MultiPoint5 0.286 391 0.280 0.136 0.138 0.518 0.670

Table 4: Detector and descriptor metrics on the test set with view-point changes for the different
MultiPoint variants. MultiPoint2 was selected as the best model variant for high performance across
all metrics with relatively few interest points.
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Detector Metrics Descriptor Metrics Homography Estimation

Repeatability Nkp NN mAP M. Score ε = 2 ε = 5 ε = 10

SURF 0.248 630 0.006 0.022 0.028 0.088 0.124
SIFT 0.275 740 0.060 0.049 0.058 0.220 0.286
LGHD 0.151 735 0.088 0.088 0.122 0.576 0.752
SuperPoint 0.190 280 0.327 0.106 0.083 0.371 0.608
MultiPoint2 0.303 446 0.462 0.187 0.257 0.673 0.793

Table 5: Detector and descriptor metrics on the test set without viewpoint changes. In this set of
experiments LGHD and SuperPoint produce better results but are still outperformed by MultiPoint2.

C Additional Experiment without Viewpoint Changes

We conducted a set of experiments with test data consisting only of pairs of pre-aligned images
(with no additional homographic warping applied) to assess the performance of generating cross-
spectral matches without viewpoint change. This more closely simulates the performance of more
traditional alignment approaches such as LGHD, where cross-spectral images are likely to have only
mild translations. We compared the MultiPoint2 model to the baseline methods. The results, shown
in Tab. 5, show that SuperPoint and LGHD perform significantly better compared to the experiment
with viewpoint changes (Tab. 1) but are still outperformed by MultiPoint.

D Additional Experiment on MS COCO 14

We wanted to evaluate how well the MultiPoint model generalises to previously unseen data. To do
so we did compare the performane of MultiPoint, trained only using the multispectral dataset, to the
SuperPoint on the MS COCO 14 dataset. We conducted two sets of experiments where we varied the
magnitude of the viewpoint changes. The results are shown in Tab. 6. While for smaller viewpoint
changes SuperPoint outperforms MultiPoint we observe the opposite for the second experiment.
We conclude that MultiPoint still performs reasonably well on this set of previously unobserved
images. However, both models do not generalise that well to a change in distribution of the viewpoint
changes. We infer that it is more important during training to match the correct distribution in the
viewpoint changes than having as similar images as possible.

E Additional Qualitative Examples

In Fig. 8 we show additional qualitative examples for the cross-spectral matching of MultiPoint,
SuperPoint, and SIFT.

Small Viewpoint Changes

Detector Metrics Homography Estimation

NN mAP M. Score ε = 2 ε = 5 ε = 10

SuperPoint 0.941 0.801 0.972 0.993 0.997
MultiPoint 0.818 0.465 0.832 0.948 0.974

Large Viewpoint Changes

Detector Metrics Homography Estimation

NN mAP M. Score ε = 2 ε = 5 ε = 10

SuperPoint 0.410 0.343 0.506 0.597 0.626

MultiPoint 0.587 0.465 0.612 0.870 0.939
Table 6: Descriptor metrics on the MS COCO 14 test set with small and large viewpoint changes. In
this set of experiments it depends on the magnitude of the viewpoint changes which model performs
best.
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Figure 8: Additional qualitative feature matching results on the multi-spectral dataset. As in Fig. 6, correct
matches with a threshold of four pixels are shown highlighted in green. The first two rows show examples with
no viewpoint change (as in Appendix C).
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