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Abstract— Obtaining an accurate estimate of the local wind
remains a significant challenge for small unmanned aerial
vehicles (UAVs). Small UAVs often operate at low altitudes near
terrain, where the wind environment can be more complex than
at higher altitudes. Combined with their relatively low mass,
this makes small UAVs particularly susceptible to wind. In this
paper we present an approach for predicting high-resolution
wind fields based on a terrain elevation model and known
inflow conditions. Our approach uses a deep convolutional
neural network (CNN) to generate 3D wind estimates. We
show that our approach produces wind estimates with lower
prediction error than existing methods, and that inference
can be performed on an on-board computer in less than two
seconds. By providing the wind estimate to a sampling-based
planner we show that the improved estimates allow the planner
to generate safer paths in strong wind scenarios than with
alternative wind estimation techniques.

I. INTRODUCTION
Small UAVs provide the capacity to conduct inspection

and monitoring tasks in challenging environments. In partic-
ular, fixed-wing UAVs enable long endurance flights (com-
pared to multi-rotor UAVs) and can therefore be used in areas
that are inaccessible to humans and potentially beyond visual
line of sight. Under such circumstances, robust platform
autonomy is key to mission success, and this relies on a
combination of situational awareness and fast reactive (if not
pre-emptive) planning. Further, the robust autonomy required
for long-duration flights must also be executed on-board the
aircraft, since external communication can be unreliable and
have limited bandwidth, and the aircraft must be able to react
to unforeseen environmental changes.

Unfortunately, small UAVs are particularly susceptible
to wind because naturally-occurring wind speeds can often
approach or exceed the airspeed of the UAV. For example, in
mountainous areas, the yearly average wind speed can exceed
10 m/s [1], a speed similar to the normal cruise speed of a
small UAV [2]. Further, small aircraft have correspondingly
low rotational inertia properties, so roll or pitch moments
caused by spatial variations in wind at a similar scale to
the aircraft size can result in significant rotational moments.
These conditions mean that small UAVs often cannot be
flown safely in high wind speeds or turbulent wind conditions
without risking the safety of the aircraft [3].

Currently, one of the primary sources of data for wind
predictions used in UAV flight planning is from large-scale
numerical weather prediction (NWP) models. These models
generally incorporate observations made using satellite and
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Fig. 1. Paths generated by a sampling-based planner to minimize air-
relative distance using wind fields estimated by different approaches. Our
wind prediction approach allows the planner to find a safe trajectory to
the goal (red path), while baseline methods (green, yellow, blue) lead to
generating infeasible paths that would cause the UAV to crash due to its
airspeed limitations. This highlights the value of accurate wind prediction for
autonomous UAV navigation. Green, yellow, and blue paths were obtained
by predicting zero wind everywhere, replicating inflow conditions, and
linearly interpolating between the vertical edges of the volume, respectively.

ground-based sensors with forward simulations based on flow
transport equations (such as Navier–Stokes) to solve for flow
estimates on a discretized grid [4]. The smaller scale effects
of terrain and local thermal variations are often neglected
or reduced because the simulation resolution is generally of
order 1 km or larger. This limitation often means that NWP
predictions are not sufficiently accurate or reliable for use in
small UAV operations [3].

Estimating the wind at a resolution relevant to UAV flight
planning remains a challenging task, especially because true
wind is a spatially and temporally varying three-dimensional
vector field. The processes that drive variations in wind range
from large-scale atmospheric forces such as pressure differ-
ences and Coriolis forces down to smaller-scale influences
such as thermal differences and terrain. Furthermore, air is
transparent to many remote sensing modalities, while in-
situ measurements provide limited value since they often
arrive too late for the platform to react. Previous work has
shown that (in simulation), if a small UAV could accurately
predict the wind, it would allow planning methods that
avoid dangerous flows or even make use of favourable wind
conditions to improve endurance [5]–[7].

In this paper, we present a learning-based method for
predicting the steady (time-averaged) wind flow at meter-
scale resolutions from terrain elevation data and upstream
wind conditions suitable for inference on an on-board CPU.
To generate sufficient training data, we leverage existing

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 2311



(and computationally expensive) Reynolds-averaged Navier–
Stokes (RANS) computational fluid dynamics (CFD) estima-
tion techniques to solve for the wind field given any terrain
model and inflow condition. Our generated wind flow data,
along with the terrain and inflow data, are then used to train a
deep CNN, which can then be queried online by an on-board
flight controller to generate flight plans that avoid dangerous
wind speeds and exploit the flow to improve flight efficiency.

Validation studies on the accuracy of our CNN wind
estimates demonstrate a mean absolute prediction error of
0.44 m/s on unobserved terrains and inflows. Furthermore,
this error drops to 0.33 m/s when only considering winds
within our targeted flight altitudes of 30 m - 500 m. We
also tested the efficacy of our wind prediction in a flight
planning pipeline. We use a sampling-based planner with a
cost function based on air relative distance (equivalent to
travel time) to plan paths using the predicted wind field
(Fig. 1). Our results show that the planner generates feasible
(safe) paths with a higher likelihood and achieves a more
accurate cost estimate when using our wind predictions as
compared to using existing wind prediction techniques.

II. RELATED WORK

A. Computationally-efficient fluid flow estimation

A range of applications require timely or low
computational-cost estimates of fluid flows. One such
application is computer graphics [8], [9]. The goal here
is typically to calculate the temporal variation of a fluid
(including liquids and gases) in response to disturbances in
a way that results in stable and visually-realistic solutions.
This can be achieved with particle-based methods that
simulate larger scale flow by modeling individual particles
and solving pressure and flow based on the Navier–
Stokes equations across finite volumes in the region of
interest. Such methods can solve and render flows with
thousands of particles in real time on a standard desktop
computer [10]. Recently, traditional particle-based fluid
simulation approaches are being combined with data-driven
methods to further speed up the simulation. In this line of
work, both random forests [11] and deep networks [12], [13]
have been used to increase the speed of fluid solutions by
multiple orders of magnitude. However, the particle-based
methods used in graphics are typically optimized for visual
appearance, not physical accuracy, and therefore cannot
readily be used for UAV planning applications. Moreover,
most particle-based methods assume a closed volume
and often a constant number of particles, rather than the
flow-through type cases we expect in terrain wind flow.

Steady (time-averaged) flow is commonly used for design
and analysis, such as estimating drag for automobile and
aircraft design. Umetani and Bickel [14] demonstrated an
approach to estimate drag, flow velocities, and pressure
around 3D bodies using a Gaussian process based on a novel
parameterized shape representation. Baqué et al. [15] use
a similar shape parameterization approach combined with
a geodesic CNN for shape optimization in aerodynamics
applications. Of most relevance to the current paper is the

work by Guo et al. [16], who use a CNN to predict time-
averaged laminar fluid flow around shapes to speed up indus-
trial aerodynamics applications. They use Lattice Boltzmann
Methods to generate training data on two-dimensional shapes
of medium complexity such as cars, as well as low-resolution
three-dimensional geometric primitives. In contrast, we use
RANS CFD solutions on complex and diverse 3D terrain
geometries to generate training data, as RANS solutions have
demonstrated high-quality predictive performance compared
to other methods for complex terrain flow models [17]. We
validate our CFD setup against a microscale flow model
benchmark [17], [18] to ensure that the generated training
data is realistic. Additionally, we propose a CNN architecture
that is conditioned on inflow conditions and is capable of
predicting high resolution wind fields (643) that are required
for accurate planning.

B. Wind estimation

A number of research and industrial applications require
wind estimates at lateral resolutions higher than 1.1 km,
which is the resolution typically provided by numerical
weather prediction [19]. One such application is wind turbine
‘micro-siting’ – identifying and evaluating installation sites
based on power potential and safety. CFD remains one of
the most popular techniques for turbine siting applications,
including both steady (time-averaged) and transient methods
such as large eddy simulation (LES) [20]. Modelers also
use wind tunnels and simpler numerical methods to analyze
energy potential and characterize turbulence [21]. We drew
on publications from turbine siting to inform the CFD
methods used in this paper, and we view this as a potential
application area for the work presented here.

Industrial aerodynamics, particularly for analysis of wind
around built environments, is also relevant in terms of desired
quantities and scale. Traditional methods used databases and
parametric models [22], but CFD has increased in popularity
with increased computational capacity [23]. We selected
RANS CFD methods for this project due to their maturity in
commercial and open source CFD solvers, proven capabili-
ties and low computational cost relative to LES methods.

C. UAV planning in wind

There is also a body of work that deals with gathering in-
situ measurements of the wind using UAVs. Applications
include monitoring tornado genesis [24]–[27] and cloud
evolution [28], [29], as well as autonomous soaring for long
endurance flight [30]–[32]. These works tend to focus on the
information gathering aspect of the problem since precise
wind sampling is constrained along the UAV trajectory.
However, in many cases, data from external sensors such
as radar [24] or weather balloons [33] are also incorporated
into the wind field estimate to enable informative planning.

In our work, we develop a wind prediction pipeline that
does not rely on external sensor data and can be executed
entirely on-board the UAV. Our system only requires knowl-
edge of the terrain beneath the flight operation region and
any coarse weather (wind speed) predictions provided for
example by NWP.
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III. CFD WIND DATA
In this work, we are interested in predicting the flow

over natural terrain. In particular, we approach this as a
machine learning problem of training a model offline using
representative data and performing online inference during
flight. To obtain suitable training data, we used a CFD solver
to generate a large dataset of fluid flow solutions over a set
of real terrain samples.

A. Terrain models
The terrains used to generate our training data were

collected from the Swiss geodata service, which provides
access for Swiss researchers to high-resolution (2 m lateral,
0.5 m vertical) elevation data across all of Switzerland1. We
manually sampled 370 patches of terrain, each measuring
approximately 1.2 km square. We favoured selecting terrain
patches that contained one side with near-constant elevation,
as this allows us to simulate a formed boundary layer flowing
into the region from that edge. Each terrain sample was
collected as a geographically aligned GEOTIFF elevation
file, which was then converted to an STL representation.
An example of a terrain patch along with the corresponding
CFD flow solution (represented by the streamlines colored
by velocity magnitude) is illustrated in Fig. 1.

B. CFD solutions
We are primarily interested in time-averaged estimates as

predicting the dynamic wind needs good knowledge of the
initial conditions, which is not available on-board on the
plane. We elected to use a RANS solver, namely the popular
k−ε two-equation turbulence closure [34]. To solve the flow,
we used the open source solver OpenFOAM [35]. We created
an automated pipeline that ingests terrain patches as STL files
and outputs flow solutions over the terrain.

For each terrain, we use the OpenFOAM SnappyHexMesh
utility to generate a mesh around the terrain and solve using
the steady simpleFoam solver. Wind enters through one
face of the domain, perpendicular to the face. The input
wind speed U , turbulent kinetic energy k and turbulence
dissipation rate ε across the inflow face vary with height z,
defined using a standard logarithmic boundary layer profile:

U =
U∗

κ
log

(
z − z0
z0

)
, k =

(U∗)
2

C
1/2
µ

, ε =
(U∗)

3

κ (z − z0)
,

where the friction velocity U∗ is

U∗ = κUref

[
log

(
(Zref + z0)

z0

)]−1

. (1)

We use standard values for flow constants (κ = 0.4, Cµ =
0.09), and a fixed reference height of Zref = 10 m. All
simulations use a constant surface roughness height z0 of
0.01 m, corresponding to grass with few trees [36]. Future
work will explore developing more complex estimates of sur-
face roughness by inferring from geolocated aerial imagery.

For each terrain, we solved with reference speeds Uref
from 1 m/s to 15 m/s in 1 m/s increments. Although we

1geodata4edu.ch, Geodata © swisstopo

simulated 15 wind speeds for each terrain, not all simulations
converged and we discarded solutions that did not reach our
specified solution tolerance. On average, each solution took
approximately 4 hours to converge on a single processor.
Solutions were resampled from the irregular CFD mesh onto
a regular 643 grid after convergence. In total, we generated
3318 converged CFD solutions from 370 terrain patches.

IV. WIND PREDICTION
Given the training data provided by CFD simulation,

we now develop a model that can approximate these in
a computationally efficient manner. We chose to use a
CNN as a function approximator, since CNNs are highly
expressive while allowing for efficient inference even on
mobile platforms.

For our model, the input consists of four volumetric
channels, each with a spatial resolution of 643. The input
channels are the inflow conditions (Ux,in, Uy,in, Uz,in) and
a terrain model T represented as a binary occupancy grid.
The inflow conditions are only specified at the input face, but
to maintain consistent volumes we replicate the same wind
across the entire volumetric input domain before feeding
it to the network. The network outputs three channels of
dimension 643 representing the predicted velocity (Ux,out,
Uy,out, Uz,out).

To increase the size of the training dataset, we augmented
the data by rotating each CFD solution around the vertical
axis in the cardinal directions, and flipping the lateral dimen-
sions. This resulted in an eight-fold increase in the number
of training samples to 26,544. We partitioned the resulting
dataset into three parts: 19,728 samples from 290 terrains for
training, 5,120 samples (64 terrains) for validation, and 1,704
samples (16 terrains) for testing. The data was split across
terrains, meaning no terrain that was seen during training is
in the validation or test set.

A. Network architecture

We use an encoder-decoder CNN based on U-net [37]. Our
final network architecture is illustrated in Fig. 2, and contains
5.14×106 trainable parameters. We store all floating points
numbers in single precision (32-bit), and a single forward-
pass inference requires 1.07×1010 floating point operations.
The encoder consists of a sequence of 3D convolutional
and max-pooling layers, followed by a fully connected
layer. The decoder applies upsampling and 3D convolutional
layers to generate the three output channels at the original
resolution. We found that upsampling with nearest-neighbor
interpolation combined with stride-1 convolution resulted in
smoother outputs with lower error than standard transpose
convolution layers, which tended to introduce artifacts in the
output channels [38]. The network utilizes skip connections
to preserve high-resolution feature information from the
encoder to aid in the decoding to higher resolution. On a
single CPU core one forward-pass inference requires 2.5 GB
RAM and is finished on average in 1.6 s. We experimented
with training the network both with L1 and mean squared
error (MSE) loss functions, and found that extrema values
were better predicted when training with MSE loss than with

2313



3 ⨉ 3 ⨉ 3
convolution

2 ⨉ 2 ⨉ 2
max pool

upsampling

4 ⨉ 4 ⨉ 4
convolution

skip
connection
fully connected
layer

terrain
mask

8 @ 643

4 @ 643

8 @ 323

16 @ 323

16 @ 163

32 @ 163

32 @ 83

64 @ 83

64 @ 43

3 @ 643

3 @ 643

16 @ 643

8 @ 643

16 @ 323

8 @ 323

32 @ 323

32 @ 163

16 @ 163

64 @ 163

32 @ 83

64 @ 83

128 @ 8364 @ 43

1 @ 512

Uz, in

Uy, in

Ux, in

Terrain

Uz, out

Uy, out

Ux, out

Fig. 2. CNN architecture. We use a 3D encoder-decoder with skip-connections.

L1 loss. Such extrema often occur close to ridges or steep
slopes and can be critical for safe navigation.

Removing the skip connections or the fully connected
layers resulted in increases in MSE loss on the test set of 37%
and 25% respectively. We also explored alternative minimum
code sizes in the fully connected layer, and found that 512
resulted in the best performance compared to 256 (+4.6%
MSE test loss), 1024 (+2.4%), 2048 (+10.0%) or 4096
(+12.6%). Using trilinear interpolation instead of nearest
neighbor reduced visual artifacts in the output, but increased
error slightly (+6.9%).

V. EXPERIMENTS

We now evaluate the proposed approach experimentally.
We start by validating the CFD pipeline that was used to
generate our training data. We then evaluate the accuracy of
the network predictions. Finally, we demonstrate the value of
the predicted wind fields for planning safe UAV flight paths.

A. Verifying the CFD solution

To verify that our CFD pipeline generates realistic flow
estimates, we compared predictions from our CFD pipeline
against a microscale flow model verification benchmark. The
verification tests described in [17], [18] provide benchmarks
of prediction quality from a range of microscale prediction
models, including multiple CFD solver schemes, against in-
situ measurements.

To validate our CFD setup, we used our CFD pipeline
to generate a flow solution on the Bolund hill case and then
evaluated the result against the published data. We attempted
to keep the solver setup as similar as possible to that used to
generate the training dataset, however, we had to make minor
adjustments to meet the specifications of the benchmark: we
changed the domain shape to be 700 × 500 m, rather than
the 1.2km2 patches used in our pipeline, and we applied the
specified surface roughness on the hill and surrounding areas.

We ran one inflow case (case 2 out of 4 in [18]) with
incoming wind at bearing 270◦, as this is the same setup
as our pipeline (single incoming wind face). Using the wind

speed-up error defined in Eq. 15 of [17], our method showed
a mean absolute error of 10.3%. The mean error across all
models (and all cases) in [17] was 15.8% and the mean for all
RANS 2-equation models was 13.6%. The best performing
model (a RANS model) had a mean absolute speed-up error
of 10.2%. Thus, our approach is competitive with current
methods, validating our CFD setup.

B. Wind flow prediction

We compare the accuracy of the network predictions
against three baselines. The first is the trivial approach of pre-
dicting zero wind everywhere. The second baseline assumes
known inflow conditions and replicates them across the entire
domain. This is essentially the same as the input to our
wind-predicting CNN. The final baseline simulates using an
accurate meteorological-scale wind model. In Switzerland,
the high-resolution NWP model has a lateral resolution of
1.2 km [19]. We simulate having perfect (no-noise) obser-
vations of each vertical edge of a cube enclosing a terrain
patch (with 1.2 km side length) by collecting the ground
truth wind values from the CFD solution, and then using a
trilinear interpolation to estimate the wind inside the region.

Table I shows prediction error metrics for each method,
averaged across the whole domain (excluding points inside
terrain) and across all samples in the test set. We report MSE
and mean absolute error for the Ux and Uz components of
the flow, as well as the complete flow vector U. The Ux
component represents lateral flow accuracy since the error
in the Uy component is almost identical to Ux due to the
terrain rotation used in data augmentation.

The quantitative evaluation shows that the network is able
to predict the wind with an average absolute error of less
than 0.5 m/s for the full wind vector. Both the interpolation
and the inflow replication baselines also perform surprisingly
well. However, their absolute errors exceed the error of the
network prediction by a factor of 1.7 and 2.2, respectively.
The relatively good performance of these simple baselines
can be attributed to the fact that the flow far away from the
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Fig. 3. Distribution of mean absolute prediction error for target altitudes
(between 30 and 500m above terrain). We show error for the lateral flow
(top) and vertical flow (bottom). Labeled red bars indicate mean values.

terrain is generally smooth and easy to predict, with low
amounts of vertical or cross-wind flow.

For our application, the UAV would generally maintain
an altitude of at least 30 m above the terrain, thus the
prediction accuracy of regions very close to the terrain is
not as critical. To highlight the predictive performance of the
models in the flight region, we analyze the estimation error
for altitudes between 30 m and 500 m above the terrain.
Figure 3 illustrates the distributions of mean absolute error
for lateral and vertical flow in this target altitude range. The
network performs well on lateral predictions, with a mean
error of 0.3 m/s, outperforming the closest baseline by a
factor of 1.6. The advantage of learning is highlighted even
more significantly in the vertical errors, where interpolation
does not produce significantly better results than either zero
wind or copying the inflow (which both estimate no vertical
flow). Here the network outperforms the best baseline by
a factor of 1.9. As shown by the distribution plots, the
improvement is not only in the average error, but also in
the maximal error, which can be particularly important for
safe path planning.

To understand where the network has the poorest pre-
diction performance, we visualize the magnitude of the
estimation error as a volumetric plot for a terrain sample
from the test set in Figure 4. This example illustrates one
of the poorer performing predictions, and shows that the

TABLE I
WIND PREDICTION ERROR

MSE loss (m/s)2 Mean abs. error (m/s)

Method Ux Uz U Ux Uz U

Zero wind 2.392 0.070 1.617 6.008 0.312 11.872
Inflow copy 0.115 0.070 0.100 0.490 0.312 0.962

Interpolation 0.059 0.040 0.061 0.372 0.281 0.743
Network (ours) 0.012 0.017 0.014 0.238 0.152 0.436

Fig. 4. Prediction error between CFD solution and network prediction for
a member of the test set. Note that flow enters from the right. Areas behind
complex geometry have the highest magnitude errors.

network prediction is worst in the regions behind prominent
terrain features. These areas also contain the most complex
flow, where the flow detaches and can form recirculation
zones. These regions are also difficult to properly resolve
for CFD solvers, as they usually contain a high amount
of turbulent flow. We think that increasing the number and
variety of training terrain samples may help with improving
generalization across terrain variations. In future work we
will be exploring how to improve the prediction performance
in these regions and developing uncertainty measures, poten-
tially based on learning from the turbulence estimate outputs
of the CFD solver.

Figure 5 compares the qualitative performance of differ-
ent methods, visualized as two-dimensional slices of the
predicted three-dimensional volumes. While lateral flow is
qualitatively similar for the network prediction and the
interpolated result, the vertical flow is predicted much better
by the network, even in the challenging case shown at the
bottom.

C. Results: UAV path planning

We demonstrate that wind estimates from our network
allow a basic planner to more reliably generate feasible
plans. We use RRT∗ [39], a probabilistically complete and
asymptotically optimal sampling-based planner. We selected
RRT∗ because it provides anytime behaviour (monotonically
improving path cost with execution time) after finding an
initial solution. The planner searches for a valid path between
specified start and goal positions that minimizes total cost
along the path and avoids collision with the terrain.

We define the cost function as the air-relative distance
based on the wind estimate which is also a proxy for travel
time with a constant airspeed:

C =

∫
1

‖~a+ ~w‖2
ds, (2)

where ~a and ~w are the airspeed and wind vectors respectively.
In our model, the aircraft airspeed is set at 15 m/s, and we

impose vertical rate limits of 3.8 m/s. We provide the planner
with the wind estimates from each prediction method, the
terrain model, and start and goal locations. The planner then
returns the lowest-cost path found within a fixed time budget
(20 seconds). We evaluate the true cost of each path using the
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TABLE II
WIND-AWARE PATH PLANNING PERFORMANCE

Case Prediction method Valid Planned cost [s] True cost [s]

1

Network 8/10 329.6 386.0
Interpolation 0/10 - -

Inflow 0/10 - -
Zero Wind 0/10 - -

2

Network 5/10 299.2 478.6
Interpolation 1/10 336.5 488.2

Inflow 1/10 356.8 495.9
Zero Wind 0/10 - -

3

Network 0/10 - -
Interpolation 0/10 - -

Inflow 0/10 - -
Zero Wind 0/10 - -

4

Network 10/10 38.2 38.5
Interpolation 10/10 39.3 38.2

Inflow 10/10 39.2 38.0
Zero Wind 10/10 68.3 37.7

5

Network 10/10 213.9 213.4
Interpolation 10/10 196.2 247.0

Inflow 10/10 197.5 234.3
Zero Wind 10/10 64.2 242.2

same planner with the wind field generated by the CFD. We
do not quantify path risk (the likelihood of collision with the
terrain), but rather classify a path as invalid if any segment
cannot be completed, either because the headwind is higher
than the airspeed, or because the vertical speed is higher than
the vertical rate limit.

We evaluate the performance for five different cases with
varying terrains and wind speeds. For each of these cases
a feasible path exists. Table II summarizes the results over
ten runs of each scenario and setting. Planned cost is the
cost estimated by the planner using the predicted wind,

averaged over feasible plans. True cost is the average cost
of the feasible planned paths evaluated with the true (CFD)
wind field. Over two out of five cases, using the network
prediction for planning significantly increased the chance to
find a feasible path compared to the best baseline (0% to
80% and 10% to 50%). However, in some configurations,
such as in Case 3, the network prediction is not good enough
to result in feasible paths. When finding a feasible path, the
network wind prediction typically provided a better estimate
for the true cost of the planned path and a lower overall true
cost than the baselines.

VI. CONCLUSIONS

We have proposed a deep-learning-based approach for
meter-scale wind prediction from a terrain profile. The
approach can operate on a single CPU core, and therefore
could be deployed on-board a UAV. To showcase the use
of the predicted wind fields for UAV flight control, we
integrated the wind predictions with a trajectory planner and
demonstrated that safety of the planned trajectories can be
significantly increased by taking the predicted wind into
account. This work could be extended in multiple ways.
In reality, wind fields vary over time, and future work
will consider temporal variation (transient flow) and local
turbulence in the wind field. Online wind measurements that
are performed on-board the aircraft could be incorporated in
the wind prediction pipeline to further increase its accuracy.
Furthermore, a terrain model, incorporating both geometry
and terrain roughness, could be extracted online from the
visual stream recorded by the UAV. Finally, alternative
network structures may improve prediction performance and
will be explored in future work.
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