
ROS kinetic and Gazebo7 Interface for the Pioneer3dx Simulation

Ubuntu 16.04 LTS (Xenial Xerus)

Jen Jen Chung

May 6, 2019

Abstract

This document outlines the basic setup required to operate the Pioneer3dx simulation in Gazebo
and ROS. The latter half of this document also provides a brief tutorial on the ROS publish/subscribe
and rosservice message passing mechanisms in C++. These instructions are for an Ubuntu 16.04 LTS
(Xenial Xerus) machine with the ROS kinetic distribution, which interfaces with Gazebo7. Future
ROS distributions may require different versions of Gazebo, users are encouraged to check online for
the latest information at http://wiki.ros.org and http://gazebosim.org.

1 Installation

1.1 ROS Installation

The complete installation procedure and documentation for a Desktop-Full Install can be found at
http://wiki.ros.org/kinetic/Installation/Ubuntu. An abridged version of these instructions are
given below.

In a new shell, copy and paste each of the following commands:

sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.

d/ros-latest.list’

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421

C365BD9FF1F717815A3895523BAEEB01FA116

sudo apt-get update

sudo apt-get install ros-kinetic-desktop-full

sudo rosdep init

rosdep update

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

sudo apt-get install python-rosinstall python-rosinstall-generator python-wstool build-essential

If you only want to run and use ROS packages and do not wish to use Gazebo, go to Section 2.

1.2 Gazebo Installation

The installation instructions at http://gazebosim.org/tutorials?tut=install_ubuntu&cat=install
are for Gazebo9, however the setup for Gazebo7 is very similar and is provided below. Note that ROS
kinetic currently interfaces with Gazebo7, this may change in the future and new packages will be required.

In a new shell, copy and paste each of the following commands:

sudo sh -c ’echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable ‘lsb_release -cs‘ main" > /

etc/apt/sources.list.d/gazebo-stable.list’

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

1

http://wiki.ros.org
http://gazebosim.org
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://gazebosim.org/tutorials?tut=install_ubuntu&cat=install

sudo apt-get update

sudo apt-get install gazebo7

When attempting to install gazebo7, apt-get may fail due to additional required dependencies (unlike
in other cases, apt-get will not automatically include these in the install). You can proceed with the
installation by listing all the package dependencies together with gazebo7 in the install line.

Check the installation by typing in the command line:

gazebo

This will run two programs, gzserver and gzclient. The first time gzserver is called, it may take a
few minutes to load all the Gazebo models. Once both programs are running, you will see a new Gazebo
window with an empty world (ground plane model only). In the Insert tab on the left will be two ex-
pandable menus, one listed as ∼/.gazebo/models and the second as http://gazebosim.org/models.
The first is a local directory of Gazebo models and the second is its online model repository. You can op-
tionally download these models to your local directory by visiting http://old.gazebosim.org/models/,
downloading and unzipping the model.tar.gz files in each folder to ∼/.gazebo/models/.

To fully set up the Gazebo environment variables copy and paste the following commands into a shell:

export GAZEBO_MODEL_PATH=~/.gazebo/models:$GAZEBO_MODEL_PATH

export GAZEBO_RESOURCE_PATH=/usr/share/gazebo-7:$GAZEBO_MODEL_PATH

source ~/.bashrc

1.3 Install gazebo ros pkgs

Documentation for these packages is provided at http://wiki.ros.org/gazebo_ros_pkgs. The ROS
package gazebo ros pkgs includes three sub-packages: gazebo msgs, gazebo plugins and gazebo ros,
which are necessary to interface with the Gazebo simulator.

To install, open a new shell and copy and paste the following command:

sudo apt-get install ros-kinetic-gazebo-ros-pkgs

Check the installation by typing in the command line:

roscore & rosrun gazebo_ros gazebo

This will open a new Gazebo window with an empty world. In a new shell, you can type:

rostopic list

to see a list of the available rostopics that are being published by Gazebo such as:

/clock
/gazebo/link states
/gazebo/model states
/gazebo/parameter descriptions
/gazebo/parameter updates
/gazebo/set link state
/gazebo/set model state
/rosout
/rosout agg

To close Gazebo and end ROS, hold Ctrl+C in the shell from which you opened it and then type:

killall roscore

2

http://old.gazebosim.org/models/
http://wiki.ros.org/gazebo_ros_pkgs

2 Simulating the Pioneer3dx

2.1 Set Up catkin Workspace

A good set of tutorials for how to set up a catkin workspace is given in http://wiki.ros.org/catkin/

Tutorials. The pertinent parts of these tutorials are reproduced below.
The following commands will set up your catkin workspace in your home folder and source your shell

environment. Be careful to change user name to your user name in the echo command.

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/src

catkin_init_workspace

cd ~/catkin_ws

catkin_make

echo "source /home/user_name/catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

To check that your workspace is properly overlaid by the setup script, enter the following command in
a shell:

echo $ROS_PACKAGE_PATH

You should see the output:

/home/youruser/catkin ws/src:/opt/ros/kinetic/share

2.2 Install Additional ROS Packages

Additional ROS packages (may not be included in the full desktop installation) are required for 2D
navigation and robot control. These can be downloaded and installed via the command line:

sudo apt-get install ros-kinetic-navigation ros-kinetic-slam-gmapping ros-kinetic-ros-control ros-kinetic-

ros-controllers ros-kinetic-rviz

The navigation package provides waypoint navigation capabilities. It takes in information from
odometry, sensor streams, and a goal pose to output safe velocity commands that are sent to a mobile
base. Documentation is provided at http://wiki.ros.org/navigation.

The slam gmapping package provides SLAM capabilities. It takes in laser and pose data to generate
a 2D occupancy grid map of the environment. Documentation is provided at http://wiki.ros.org/

slam_gmapping.
The ros control package contains controller interfaces and allows the simulation of actuators in the

robot model. Documentation is provided at http://wiki.ros.org/ros_control.
The ros controllers package is a library of available controller plugins. It is used in conjunction

with the ros control package. Documentation is provided at http://wiki.ros.org/ros_controllers.
The rviz package is a 3D visualisation tool for ROS, it is able to display published rostopics of various

message types and is often used to show sensor data and SLAM maps. URDF models can be interpreted by
both Gazebo and RViz to aid visualisation. Documentation is provided at http://wiki.ros.org/rviz.

The following subsections describe how to download and run the Pioneer3dx simulator. For instructions
on how to set up your own packages go to Section 3.

2.3 Download pioneer gazebo ros

The pioneer gazebo ros package is by no means solely my own code. Much of the code is adapted
from the p2os package (available through apt-get and at https://github.com/allenh1/p2os), as
well as from the gazebo ros demos package (see the tutorials at http://gazebosim.org/tutorials/
?tut=ros_urdf and http://gazebosim.org/tutorials/?tut=ros_control, package available from
https://github.com/ros-simulation/gazebo_ros_demos.git).

3

http://wiki.ros.org/catkin/Tutorials
http://wiki.ros.org/catkin/Tutorials
http://wiki.ros.org/navigation
http://wiki.ros.org/slam_gmapping
http://wiki.ros.org/slam_gmapping
http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_controllers
http://wiki.ros.org/rviz
https://github.com/allenh1/p2os
http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_control
https://github.com/ros-simulation/gazebo_ros_demos.git

Figure 1: Gazebo static maze world including Pioneer3dx robot with Hokuyo laser sensor and forward-
facing camera.

The pioneer description package was originally contained within pioneer gazebo ros but is now
extracted into its own repository for greater portability.

The pioneer 2dnav package contains the relevant .yaml configuration and launch files to run the
navigation stack with the outputs of the pioneer gazebo ros package. In essence, this package should
be able to run with any Pioneer3dx robot or robot simulator given the required odometry and laser sensor
observations.

From the command line, navigate to your ROS workspace /src folder:

cd ~/catkin_ws/src

Download the packages by entering:

git clone https://github.com/JenJenChung/pioneer_gazebo_ros.git

git clone https://github.com/JenJenChung/pioneer_description.git

git clone https://github.com/JenJenChung/pioneer_2dnav.git

git clone https://github.com/JenJenChung/nav_bundle.git

git clone https://github.com/JenJenChung/simple_navigation_goals.git

Make the packages:

cd ~/catkin_ws

catkin_make

You can now run the Pioneer3dx simulation by entering:

cd ~/catkin_ws/src/pioneer_gazebo_ros

./run_pioneer_gazebo

This will start an instance of gazebo ros and rviz and launch the necessary files to perform 2D goal
point navigation for a Pioneer3dx robot.

Note that occasionally, ROS or Gazebo may fail to run due to various runtime connection issues.
Under these circumstances, hold Ctrl+C in the shell where the program was called and run htop to make
sure all all Gazebo processes have terminated (SIGTERM any running instances of gzserver or gzclient).
You can also run killall roscore to terminate a running roscore instance. After these programs have
been terminated you can again attempt ./run pioneer gazebo.

If launched successfully, you will see the pioneer simulation in the Gazebo window and the rostopic
outputs in the RViz window as shown in Figures 1 and 2, respectively. In the RViz window, you can specify
a 2D navigation waypoint by clicking on the 2D Nav Goal button along the top bar and then selecting
a location in the RViz map. Holding down the cursor will also allow you to adjust the goal point heading.
A method for sending goal poses to the navigation stack via a ros node is shown in http://library.isr.

ist.utl.pt/docs/roswiki/navigation%282f%29Tutorials%282f%29SendingSimpleGoals.html.

4

http://library.isr.ist.utl.pt/docs/roswiki/navigation%282f%29Tutorials%282f%29SendingSimpleGoals.html
http://library.isr.ist.utl.pt/docs/roswiki/navigation%282f%29Tutorials%282f%29SendingSimpleGoals.html

Figure 2: RViz world representation showing the Pioneer3dx robot with forward-facing camera and 360◦

laser sensor, as well as laser returns, SLAM map, global and local costmaps. The camera frame is shown
in the bottom left inset.

If a valid goal point is selected, that is, a collision-free path can be computed from the current robot
pose to the goal, then the planned path will display as a green line in RViz and the robot will begin to
move along this path. The pink line shows the current lookahead section of the path and the blue line
shows the local path of the robot.

Three maps are overlaid in RViz, the SLAM map, global costmap and local costmap. The two costmaps
are used by the navigation stack to plan paths to the goal pose. The global costmap is essentially a
blurred SLAM map that expands the boundaries of obstacles to accommodate the size and kinodynamics
of the robot through user-defined parameters. The local costmap is used to perform a similar planning
task with the corresponding local planner aiming to achieve the final lookahead pose along the global
path given the locally observed obstacle constraints. If the robot strays beyond a threshold distance of
the global path or the current global and local costmaps invalidate the current path, a new path will be
planned from the current pose to the goal pose.

2.4 The Code Explained

There are three packages within pioneer gazebo ros that each contain launch files or publishers that
are called by the main bash script ./run pioneer robot.

2.4.1 pioneer description

This package contains the URDF models (.xacro extensions) of the robot and sensors. URDF (universal
robot description format) is an XML format for representing a robot model. It contains information
regarding the physical components of the model (<links>) and how these components are connected
(<joints>). Links have three main sets of properties: <visual>, <collision> and <inertial>. Visual
properties define how the model will appear in Gazebo and RViz, collision properties define the physical
space that the link occupies, and inertial properties define the mass and inertia of the link. Joints simply
define the connection type between a parent and a child link as either fixed, revolute or continuous. The
<origin> property specifies the location of the child link origin with respect to the parent link origin.
For revolute and continuous joints. the axis property must be specified and defines the axis about which
the child link can rotate. In addition, revolute joints must also specify limit efforts, joint damping and
friction.

The main model is the pioneer3dx.xacro file and was adapted from the p2os package. Changes from
the original package include setting the collision and inertial properties for each link, the addition of the
camera and laser models as well as updating link1 to base link to follow navigation naming conventions.
Two transmissions were also included to act as the actuators at each wheel.

The URDF model is used to determine the transformations of each link as the robot moves. Moreover,
it provides a transformation from the sensor frames to the odometry frame to enable SLAM mapping. To
view the complete transform tree, you can use the command:

rosrun tf view_frames

5

odom

base_link

Broadcaster: /gazebo
Average rate: 110.092 Hz

Most recent transform: 1384.333
Buffer length: 3.270 sec

right_wheel

Broadcaster: /gazebo
Average rate: 154.128 Hz

Most recent transform: 1384.334
Buffer length: 3.270 sec

left_wheel

Broadcaster: /gazebo
Average rate: 154.128 Hz

Most recent transform: 1384.334
Buffer length: 3.270 sec

back_sonar

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

front_sonar

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

top_plate

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

swivel

Broadcaster: /robot_state_publisher
Average rate: 10.326 Hz

Most recent transform: 1384.222
Buffer length: 3.099 sec

chassis

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

map

Broadcaster: /slam_gmapping
Average rate: 20.314 Hz

Most recent transform: 1384.379
Buffer length: 3.249 sec

right_hub

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

left_hub

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

camera_link

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

hokuyo_link

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

center_wheel

center_hubcap

Broadcaster: /robot_state_publisher
Average rate: 50.309 Hz

Most recent transform: 1384.811
Buffer length: 3.240 sec

Broadcaster: /robot_state_publisher
Average rate: 10.326 Hz

Most recent transform: 1384.222
Buffer length: 3.099 sec

Figure 3: Complete transform tree for the Pioneer simulator.

This will produce a .pdf displaying the URDF link connections and any other transformations that are
broadcast. See Figure 3 for an example of the transform tree for the Pioneer simulation.

Supplementary RViz model details are provided in pioneer3dx wheel.xacro and materials.xacro, while
pioneer.gazebo includes ROS plugin details for the Gazebo interface.

2.4.2 pioneer gazebo

This package contains the .world models and .launch file to spawn the specified robot model and Gazebo
world when running gazebo ros. The Gazebo .world files are in XML format and existing models are
easily added into the world by specifying the <uri>, e.g. model://model name, within the <include>
environment. The model name should match a folder name inside ∼/.gazebo/models/ or a model name
from the online model repository http://gazebosim.org/models. Note that requesting models from
the online repository requires a solid internet connection and will take a minute or so to load, if you need
things to load quickly, it is best to have a local copy in your ∼/.gazebo/models/ folder.

Changing the .world file to launch is simply a matter of changing the file name in pioneer world.launch
(line 12). This launch file will also spawn the robot model from the URDF file provided on line 22. Note
that the two find commands on lines 12 and 22 are referring to the ROS packages (catkin folders) where
it expects to find the specified files.

2.4.3 pioneer ros

This package contains the C++ files to perform robot odometry and controller housekeeping. There are
three .cpp files in the /src folder that are each required for the normal operation of the slam gmapping
package and the move base controller. The pioneer tf broadcaster.cpp file requests the robot state from
Gazebo through the rosservice /gazebo/get model state, which returns the robot pose and twist. A
tf::TransformBroadcaster is then generated to broadcast the transformation from the robot base link to
the odometry frame. The pioneer odom publisher.cpp file works in conjunction with the broadcaster to
perform the transformation and then publish the robot pose in the odometry frame. More information on
transform broadcasters and rostopic publishers can be found in the next section.

The final .cpp file in this package, pioneer pid controller.cpp, is used to apply PID control to the
/cmd vel messages published by the /move base package. At the moment, this code is only set up to
run as a P controller; the integral and derivative gains are not used to tune the commanded velocities.
The program reads in the PID gains from the pioneer controller params.yaml and applies these values
through a callback function, which is triggered whenever a new /cmd vel message is received. The tuned
velocity commands are published under a new topic name, /pioneer/cmd vel; this topic name must
match the <commandTopic> specified in the Gazebo controller plugin definition in pioneer.gazebo (inside
pioneer gazebo). Note that the <robotNamespace> property can be used to prefix all following topics,
this may be useful when simulating multiple robots.

6

To link the .cpp files such that they are compiled in a catkin make call, the program details must be
included in the CMakeLists.txt document inside the package folder. Any changes to the .cpp files will
require a call to catkin make from the catkin folder to compile the new code.

2.4.4 pioneer 2dnav

The pioneer 2dnav package contains the relevant .yaml configuration files and a .launch file to load
these parameters and run the move base node in the navigation stack. Typically, to run the navigation
stack for 2D waypoint path planning, you will need a package similar to this one that contains parameter
values relevant to your robot. The parameters in the four configuration files are described below. More
information on the available parameters and how to tune them can be found at http://wiki.ros.org/
navigation/Tutorials/RobotSetup.

base local planner params.yaml
This file contains parameters related to the robot kinematics. Minimum and maximum command

velocities are defined here as well as robot acceleration limits. Most properties are self-explanatory; a few
less-obvious parameters are:

• escape vel---the velocity to apply when robot is stuck (should be negative so that robot reverses)

• sim time---amount to time to forward-simulate trajectories in seconds

• meter scoring---boolean to denote if distance measurements are in metres

• heading lookahead---distance in metres along in-place rotation trajectories to compare headings

• pdist scale---weight describing importance of robot sticking close to path

• gdist scale---weight describing importance of robot reaching goal

The pdist scale and gdist scale seem to operate on a relative manner, a much higher gdist scale will
cause the robot to cut corners more aggressively, while a higher pdist scale will encourage the robot to
closely track the planned path. See http://wiki.ros.org/base_local_planner for more information
about the adjustable parameters.

costmap common params.yaml
As suggested by the file name, the parameters set in this .yaml file are applied to both the local and

global planners. The robot footprint and the sensor parameters would typically be included in this file. It
is also acceptable to not include a costmap common params.yaml file if you choose to define the required
parameters separately in the local and global parameter files. The opposite (i.e. only use the common
configuration file) is not advisable since the local and global planners perform quite different planning
tasks and often need different to operate at different resolutions. See http://wiki.ros.org/costmap_2d

for more information.

global costmap params.yaml
The global costmap update and publish frequencies can afford to be lower than that of the local

planner since it does not need to account for local collision avoidance. The inflation radius determines the
obstacle buffer size (either in cells or metres depending on the meter scoring parameter). The buffer zone
contains a varying cost field and exists outwards from the region of collision (region occupied by obstacle
+ robot footprint). The shape of the cost field, that is, how quickly the cost decays to 0, is determined by
the cost scaling factor. The larger this value, the faster the cost decays. Setting the value too high causes
the planner to suggest paths that traverse very close to regions of high cost and this can result in jerky
execution. If noisy sensors or a less-agile robot is used, map updates may frequently find the robot in
unexpected high cost regions, forcing aggressive correction manoeuvres.

local costmap params.yaml
The local costmap update and publish frequencies should be as high or higher than that of the global

costmap to ensure active local collision avoidance. The static map parameter should be set to false
since the local costmap should move with the robot as it traverses the space. Setting the rolling window
parameter to true will allow the planner to discard old maps in the world, which are no longer necessary
for local collision avoidance (the map information will still be stored in the global costmap).

7

http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/costmap_2d

Figure 4: The robot’s local costmap frame is too large and expands across to the other side of a wall that
it has not yet observed. The global path traverses along one side of the wall and in the opposite direction
on the other side, because of this, the robot local planner in its current position is attempting to match
the pose at the end of the pink line, which requires the exact opposite heading to that which will allow it
to progress along the path. These two competing objectives means that the commanded velocity goes to
0 and the robot is stuck.

The width and height of the local costmap should be judiciously chosen, taking into account the robot
sensor range and the environment that it will be operating in. The local planner assigns a path that
attempts to match the final global path heading that is visible within the local map window. Thus, if the
local window is set too large, the local planner will attempt turns much earlier and, depending on the
environment, will be more prone to getting stuck. See an extreme case in Figure 4.

In terms of the local cost scaling factor, experience suggests that setting the local cost scaling factor
lower than the global cost scaling factor results in smoother trajectories. A low local cost scaling allows
for smoother low level collision avoidance manoeuvres when new obstacles are observed, such as when
turning around corners. The difference between the local and global cost scaling can be seen in Figure 4.
In the highlighted square around the robot (local costmap), the obstacles have a larger grey buffer region
than elsewhere in the field (global costmap).

3 Creating a ROS Package

An excellent set of tutorials can be found at http://wiki.ros.org/ROS/Tutorials. The following
section derives partially from the turtlesim example that is described in these tutorials with a focus on
the ROS framework required to set up 2D navigation for a moving robot.

To create a new package in your catkin workspace, navigate to the ∼/catkin ws/src folder in a shell
and type:

catkin_create_pkg pkg_name pkg_dep1 pkg_dep2 pkg_depn

Where pkg name is replaced by the name of your package and pkg dep1, etc. are replaced with the
package dependencies. Package dependencies are defined as the set of other packages that must exist for
this package to compile and operate. Defining them here sets up a compile-time check in CMakeLists.txt
to ensure that the package can run.

If successfully created, a new folder will exist inside the /src folder under the name of your package
and will include:

CMakeLists.txt include package.xml src

The package dependencies will be listed in the CMakeLists.txt file as catkin REQUIRED COMPONENTS and
in package.xml using <build depend> and <run depend> tags. You can add additional dependencies by
including them in these two files using the same format. Any source code for your package should be
stored in the /src folder while launch files should be stored in a separate /launch folder (mkdir launch)
within the package directory.

The following subsection describes how to create your own robot model for use in ROS and Gazebo, if
you are using an existing robot ROS package such as RosAria you can skip to Section 3.2 to learn how to

8

http://wiki.ros.org/ROS/Tutorials

write your own ROS subscribers and publishers

3.1 Robot Model

Many commercial-off-the-shelf robots will have a ROS interface package that handles the robot model
transformations, such as RosAria for Adept MobileRobots and TurtleBot for iRobot. However, if a model
does not exist, then you will need to write your own URDF model. A series of ROS tutorials for how to
write URDF models can be found at http://wiki.ros.org/urdf/Tutorials. A brief summary of the
various components is provided below.

3.1.1 URDF Models

URDF (universal robot description format) is an XML format for representing a robot model. It contains
information regarding the physical components of the model (<links>) and how these components are
connected (<joints>). The URDF model can also define the available actuation through <transmission>
blocks.

Links have three main sets of properties: <visual>, <collision> and <inertial>. Visual properties
define how the model will appear in Gazebo and RViz, collision properties define the physical space that
the link occupies, and inertial properties define the mass and inertia of the link. Typically you would set
the visual and collision geometries to be the same and both support the use of .stl and .dae mesh files
(CAD models).

Joints define the connection type between a parent and a child link as either fixed, revolute or
continuous. The <origin> property specifies the location of the child link origin with respect to the
parent link origin. For revolute and continuous joints. the axis property must be specified and defines the
axis about which the child link can rotate. In addition, revolute joints must also specify limit efforts,
joint damping and friction.

As a general rule of thumb, it is easiest to set the link origin to xyz=“0 0 0” rpy=“0 0 0” (in the
visual, collision and inertial properties), and define the translation and rotation of the link through the
joint connection. Furthermore, when using this model with the navigation stack, convention requires the
definition of a “base link” from which to describe the odometry frame. The base link can be a physical
link of the robot or an empty link that simply defines the reference origin for all other links in the model,
as implemented in the Pioneer3dx model and shown in Figure 3.

To enable actuation, <transmission> properties must be included in the model. The transmission
block defines the actuator properties at a specified joint and sets up the interface for various Gazebo
controller plugins. A simple example of a two-wheeled robot with a two actuation joints and a camera is
given below in Listing 1.

<?xml version="1.0"?>

<robot name="three_link" xmlns:xacro="http://ros.org/wiki/xacro">

<link name="base_link"/>

<joint name="chassis_joint" type="fixed">

<origin xyz="-0.045 0 0.148" rpy="0 0 0"/>

<parent link="base_link"/>

<child link="chassis"/>

</joint>

<link name="chassis">

<visual name="chassis_visual">

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<box size="0.43 0.277 0.17"/>

</geometry>

<material name="ChassisRed">

<color rgba="0.851 0.0 0.0 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<box size="0.43 0.277 0.17"/>

</geometry>

</collision>

<inertial>

9

http://wiki.ros.org/urdf/Tutorials

<mass value="5.67"/>

<origin xyz="0 0 0" rpy="0 0 0"/>

<inertia ixx="0.07" ixy="0" ixz="0"

iyy="0.08" iyz="0" izz="0.10"/>

</inertial>

</link>

<joint name="base_left_wheel_joint" type="continuous">

<origin xyz="0 0.155 0.093" rpy="0 0 0"/>

<axis xyz="0 1 0"/>

<parent link="base_link"/>

<child link="left_wheel"/>

</joint>

<link name="left_wheel">

<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="0.092" length="0.04"/>

</geometry>

<material name="WheelBlack">

<color rgba="0.117 0.117 0.117 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="0.092" length="0.04"/>

</geometry>

</collision>

<inertial>

<mass value="0.1"/>

<origin xyz="0 0 0"/>

<inertia ixx="0.012411765597" ixy="-0.000711733678" ixz="0.00050272983"

iyy="0.015218160428" iyz="-0.000004273467" izz="0.011763977943"/>

</inertial>

</link>

<joint name="base_right_wheel_joint" type="continuous">

<origin xyz="0 -0.155 0.093" rpy="0 0 0"/>

<axis xyz="0 1 0"/>

<parent link="base_link"/>

<child link="right_wheel"/>

</joint>

<link name="right_wheel">

<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="0.092" length="0.04"/>

</geometry>

<material name="WheelBlack">

<color rgba="0.117 0.117 0.117 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="0.092" length="0.04"/>

</geometry>

</collision>

<inertial>

<mass value="0.1"/>

<origin xyz="0 0 0"/>

<inertia ixx="0.012411765597" ixy="-0.000711733678" ixz="0.00050272983"

iyy="0.015218160428" iyz="-0.000004273467" izz="0.011763977943"/>

</inertial>

</link>

<joint name="camera_joint" type="fixed">

<origin xyz="0.125 0 0.2595" rpy="0 0 0"/>

<parent link="base_link"/>

<child link="camera_link"/>

10

</joint>

<link name="camera_link">

<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<box size="0.05 0.07 0.10"/>

</geometry>

<material name="CameraGreen">

<color rgba="0.0 0.8 0.0 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<box size="0.05 0.07 0.10"/>

</geometry>

</collision>

<inertial>

<mass value="1e-5" />

<origin xyz="0 0 0" rpy="0 0 0"/>

<inertia ixx="1e-6" ixy="0" ixz="0" iyy="1e-6" iyz="0" izz="1e-6" />

</inertial>

</link>

<transmission name="tran1" type="transmission_interface/SimpleTransmission">

<joint name="base_left_wheel_joint">

<hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>

</joint>

<actuator name="motor1">

<hardwareInterface>EffortJointInterface</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

<transmission name="tran2" type="transmission_interface/SimpleTransmission">

<joint name="base_right_wheel_joint">

<hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>

</joint>

<actuator name="motor2">

<hardwareInterface>EffortJointInterface</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

</robot>

Listing 1: URDF model for a two-wheeled robot

3.1.2 Gazebo Plugins

Gazebo plugins in ROS are the typical method for managing controllers in the Gazebo simulation, from
driving the robot to operating the sensors. Desired plugins are defined within the .gazebo file, which
contains all the Gazebo-specific model properties such as the appearance of the model in Gazebo and
the sensor parameters for simulating observations. This file should be included at the start of the robot
URDF model to be loaded together at runtime.

Standard sensor plugins exist for a variety of common sensors (laser, RGB/D camera, etc.) and
require the name of the sensor link from the URDF model for observation frame to odometry frame
transformation purposes. Other sensor parameters may also be specified in the plugin definition and
vary from sensor to sensor. An example of an RBG camera Gazebo description and plugin is provided in
Listing 2.

<?xml version="1.0"?>

<robot>

<gazebo reference="camera_link">

<sensor type="camera" name="camera">

<update_rate>30.0</update_rate>

<camera name="head">

<horizontal_fov>1.3962634</horizontal_fov>



<clip>

<near>0.02</near>

<far>300</far>

</clip>

<noise type="gaussian">

<mean>0.0</mean>

<stddev>0.007</stddev>

</noise>

</camera>

<plugin name="camera_controller" filename="libgazebo_ros_camera.so">

<robotNamespace>/</robotNamespace>

<alwaysOn>true</alwaysOn>

<updateRate>0.0</updateRate>

<cameraName>camera</cameraName>

<imageTopicName>image_raw</imageTopicName>

<cameraInfoTopicName>camera_info</cameraInfoTopicName>

<frameName>camera_link</frameName>

<hackBaseline>0.07</hackBaseline>

<distortionK1>0.0</distortionK1>

<distortionK2>0.0</distortionK2>

<distortionK3>0.0</distortionK3>

<distortionT1>0.0</distortionT1>

<distortionT2>0.0</distortionT2>

</plugin>

</sensor>

</gazebo>

</robot>

Listing 2: RGB camera Gazebo URDF model and plugin definition

Different driver plugins also exist for a variety of robot configurations (two-wheeled differential drive,
four-wheeled skid steer, etc.). Typically these plugins require access to the transmission joints (joint
name from URDF model) and the rostopics that define the robot odometry frame and the move base
commanded velocity. An example of the differential drive controller plugin for the two-wheeled robot in
Listing 1 is given in Listing 3 below.

<?xml version="1.0"?>

<robot>

<gazebo>

<plugin filename="libgazebo_ros_diff_drive.so" name="differential_drive_controller">

<alwaysOn>true</alwaysOn>

<updateRate>100</updateRate>

<leftJoint>base_left_wheel_joint</leftJoint>

<rightJoint>base_right_wheel_joint</rightJoint>

<torque>5</torque>

<wheelSeparation>0.39</wheelSeparation>

<wheelDiameter>0.15</wheelDiameter>

<commandTopic>pioneer/cmd_vel</commandTopic>

<odometryTopic>odom</odometryTopic>

<odometryFrame>odom</odometryFrame>

<odometrySource>world</odometrySource>

<robotBaseFrame>base_link</robotBaseFrame>

<publishTf>true</publishTf>

<publishOdomTF>true</publishOdomTF>

<publishWheelTF>true</publishWheelTF>

<publishWheelJointState>true</publishWheelJointState>

<wheelAcceleration>0</wheelAcceleration>

<wheelTorque>5</wheelTorque>

<rosDebugLevel>na</rosDebugLevel>

<legacyMode>true</legacyMode>

</plugin>

</gazebo>

</robot>

Listing 3: Differential drive controller plugin

See http://gazebosim.org/tutorials?tut=ros_gzplugins for more details on the available Gazebo
plugins and their parameters.

12

http://gazebosim.org/tutorials?tut=ros_gzplugins

3.2 Subscribers and Publishers

There are a number of ways to access and modify rostopic information. From the command line, you can
identify the available rostopics by typing:

rostopic list

Provided roscore and RosAria are running, this may produce an output such as:

/RosAria/battery recharge state
/RosAria/battery state of charge
/RosAria/battery voltage
/RosAria/bumper state
/RosAria/cmd vel
/RosAria/motors state
/RosAria/parameter descriptions
/RosAria/parameter updates
/RosAria/pose
/RosAria/sonar
/RosAria/sonar pointcloud2
/odom
/rosout
/rosout agg
/tf

To output the value of any topic, you can request an echo to the shell:

rostopic echo -n1 /RosAria/cmd_vel

which will output the next values that are published for that topic, for example,

linear:
x: 0.25
y: 0.0
z: 0.0

angular:
x: 0.0
y: 0.0
z: 0.0

The -n1 term in the echo command requests a single output, if you wish to display all published values as
they arrive, simply remove this component. Other echo options are also available, type rostopic echo

--help in the command line for more information.
To publish to a rostopic, whether through the command line or via an external program, you must send

the information as the correct message type. You can identify the message type through the command
line using:

rostopic type /RosAria/cmd_vel

which in this case will output:

geometry msgs/Twist

As seen in the previous output, twist messages include 3-axis elements representing the commanded linear
velocities as well as the commanded angular velocities. You can verify the individual components of this
message type using:

rosmsg show geometry_msgs/Twist

13

geometry msgs/Vector3 linear
float64 x
float64 y
float64 z

geometry msgs/Vector3 angular
float64 x
float64 y
float64 z

Publishing a new /RosAria/cmd vel message from the command line can be done via a number of
formats:

rostopic pub -1 /RosAria/cmd_vel geometry_msgs/Twist -- ’[1.0, 0.0, 0.0]’ ’[0.0, 0.0, 0.5]’

rostopic pub -1 /RosAria/cmd_vel geometry_msgs/Twist ’{linear: {x: 1.0, y: 0.0, z: 0.0}, angular: {x: 0.0,

y: 0.0, z: 0.5}}’

Both commands will send the same message. Note that the second format is consistent with publishing
for all message types where nesting is indicated using {} and message types are identified by name
followed by a colon and a space. The -1 option means that the message will publish once and then exit,
see rostopic pub --help for information on other options.

3.2.1 Writing Your Own Subscriber/Publisher Node

To subscribe and publish to existing or new topics within your own package can be achieved in a number of
ways, the following will describe the methods that have been implemented within the pioneer gazebo ros
package. See the ROS tutorial at http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%
28c%2B%2B%29 for more information.

To subscribe to a rostopic, you can write a callback function that will be run whenever a new instance
of the particular rostopic is received. For example, say we want to apply gains of 0.5 to the commanded
velocities and then republish the new commands under a new topic name; this can be achieved via the
following node:

#include "ros/ros.h"

#include "geometry_msgs/Twist.h"

ros::Publisher pub ;

void cmd_velCallback(const geometry_msgs::Twist& msg)

{

geometry_msgs::Twist current_cmd_vel = msg ;

geometry_msgs::Twist new_cmd_vel ;

// Tune commanded velocities

new_cmd_vel.linear.x = current_cmd_vel.linear.x*0.5 ;

new_cmd_vel.linear.y = current_cmd_vel.linear.y*0.5 ;

new_cmd_vel.linear.z = current_cmd_vel.linear.z*0.5 ;

new_cmd_vel.angular.x = current_cmd_vel.angular.x*0.5 ;

new_cmd_vel.angular.y = current_cmd_vel.angular.y*0.5 ;

new_cmd_vel.angular.z = current_cmd_vel.angular.z*0.5 ;

// Publish new velocities

pub.publish(new_cmd_vel) ;

}

int main(int argc, char** argv)

{

// Initialise node gain_controller

ros::init(argc, argv, "gain_controller");

// Create the publisher, topic /tuned_cmd_vel with queue size 10

ros::NodeHandle nHandpub ;

pub = nHandpub.advertise<geometry_msgs::Twist>("/tuned_cmd_vel", 10) ;

// Create the subscriber, topic /RosAria/cmd_vel with queue size 10

// to request callback function cmd_velCallback

ros::NodeHandle nHandsub ;

ros::Subscriber sub = nHandsub.subscribe("/RosAria/cmd_vel", 10, &cmd_velCallback) ;

14

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

// Return control to ROS

ros::spin() ;

return 0;

}

Listing 4: ROS package node gain controller, which uses a callback function to tune and republish
commanded velocities

In the main program, the ROS node gain controller is initialised and ROS node handles are used
to access the ROS subscriber and publisher functions. The publisher advertises to a rostopic called
/tuned cmd vel, which may or may not already exist. If it does not exist, a new rostopic will be created.
Be careful when advertising to existing rostopics, if there is more than one source publishing to that
topic, the value of that topic will vary depending on the timing of the various source publications. The
subscriber requests the /RosAria/cmd vel rostopic and calls cmd velCallback whenever a new message is
received. In this example, the subscriber can buffer up to 10 messages if the callback function takes longer
to execute than the message arrival rate. The callback function performs the necessary operations to
the subscribed message and latches the new commanded velocities to the publisher. The final command,
ros::spin(), returns control to ROS.

Note the header requirements in the node; all ROS message types must be imported using #include.
Some message types are nested within others, for example, the nav msgs/Odometry header also contains
the header for geometry msgs/Twist message types. Check the online message type documentation for
more information (links provided in Section 4.2).

If the rostopic to be published does not require input from an existing rostopic, then a callback
function is not needed. In this case, the publisher can simply be written within the main program as
shown in Listing 5. This method uses a while loop whose settings determine the rate at which the rostopic
messages are published.

#include "ros/ros.h"

#include "geometry_msgs/Twist.h"

int main(int argc, char** argv)

{

// Initialise node cmd_controller

ros::init(argc, argv, "cmd_controller");

// Create the publisher, topic /new_cmd_vel with queue size 10

ros::NodeHandle nHandpub ;

ros::Publisher pub = nHandpub.advertise<geometry_msgs::Twist>("/new_cmd_vel", 10) ;

// Publish at 10Hz

ros::Rate loop_rate(10) ;

while (ros::ok())

{

geometry_msgs::Twist new_cmd_vel ;

// Define command velocities

new_cmd_vel.linear.x = 1.0 ;

new_cmd_vel.linear.y = 0.0 ;

new_cmd_vel.linear.z = 0.0 ;

new_cmd_vel.angular.x = 0.0 ;

new_cmd_vel.angular.y = 0.0 ;

new_cmd_vel.angular.z = 0.5 ;

// Publish new velocities

pub.publish(new_cmd_vel) ;

// Return control to ROS for specified loop rate

ros::spinOnce() ;

loop_rate.sleep() ;

}

return 0;

}

Listing 5: ROS package node cmd controller, which publishes commanded velocities

15

Figure 5: RViz transform frame error.

3.2.2 Linking and Compiling Nodes

Any time you create new code in your package /src folder, you must identify it in the package CMake-
Lists.txt file in order to compile and make the code. For example, say that you have written a ROS node
called cmd controller in controller.cpp for your ROS package robot controller, the following lines must
be in the robot controller package CMakeLists.txt to correctly make the node.

cmake_minimum_required(VERSION 2.8.3)

project(robot_controller)

find_package(catkin REQUIRED COMPONENTS

geometry_msgs

roscpp

rospy

std_msgs

)

catkin_package()

include_directories(

${catkin_INCLUDE_DIRS}

)

add_executable(cmd_controller src/controller.cpp)

target_link_libraries(cmd_controller ${catkin_LIBRARIES})

add_dependencies(cmd_controller ${catkin_EXPORTED_TARGETS})

Listing 6: Adding C++ executables to the CMakeLists.txt file

Additional C++ files can be included by repeating the last three lines of Listing 6 and changing the
node and file name. Calls to catkin make will compile all source code listed in the CMakeLists.txt files
of all available catkin packages.

3.3 Managing Frames of Reference

When using sensors or performing SLAM on the robot, transform frame management is critical. If you
have set up your robot URDF model correctly, then this model will take care of the transformations from
the sensors to the robot base link. An easy way to test this is to run RViz and visualise the rostopic data
from the sensors. The sensor returns will display if the model transformations exist, otherwise an error
will appear in the left menu stating that the transform frame does not exist, as shown in Figure 5. If the
error is in the model, you can check for breaks in the transformations by inspecting the transform tree
using rosrun tf view frames and add joints in the model where appropriate.

If you do not have a model, or you wish to define the transformation between the robot odometry
frame and the global map for mapping, then the general methodology is to write a transform frame

16

broadcaster and a transform frame publisher. The broadcaster defines the transformation between the
two listed reference frames and the frame publisher (listener) uses the broadcast transformation to
advertise the data in the transformed reference frame. An example of a broadcaster node that defines the
transformation between the odometry frame and the robot base link is provided in Listing 7.

#include "ros/ros.h"

#include "nav_msgs/Odometry.h"

#include "tf/transform_broadcaster.h"

void poseCallback(const nav_msgs::Odometry& msg)

{

static tf::TransformBroadcaster br ;

tf::Transform transform ;

geometry_msgs::Point pp = msg.pose.pose.position ;

geometry_msgs::Quaternion qq = msg.pose.pose.orientation ;

transform.setOrigin(tf::Vector3(pp.x, pp.y, pp.z)) ;

transform.setRotation(tf::Quaternion(qq.x, qq.y, qq.z, qq.w)) ;

br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "odom", "base_link"));

}

int main(int argc, char **argv)

{

ros::init(argc, argv, "pioneer_tf_broadcaster");

ros::NodeHandle nHandle;

ros::Subscriber sub = nHandle.subscribe("/RosAria/pose", 10, &poseCallback);

ros::spin();

return 0;

}

Listing 7: Example of a transformation frame broadcaster

In this example, the two frames are set to coincide with one another. A translation in the frames is
indicated through the input to the setOrigin class function, while the input to setRotation represents a
rotation between the frames. The corresponding transform publisher is shown in Listing 8.

#include "ros/ros.h"

#include "nav_msgs/Odometry.h"

#include "tf/transform_broadcaster.h"

ros::Publisher pub;

void poseCallback(const nav_msgs::Odometry& msg)

{

geometry_msgs::Point pp = msg.pose.pose.position ;

geometry_msgs::Quaternion qq = msg.pose.pose.orientation ;

tf::Quaternion tf_quat(qq.x, qq.y, qq.z, qq.w) ;

geometry_msgs::Twist current_Twist = msg.twist.twist ;

geometry_msgs::TransformStamped odom_trans;

odom_trans.transform.translation.x = pp.x ;

odom_trans.transform.translation.y = pp.y ;

odom_trans.transform.translation.z = pp.z ;

geometry_msgs::Quaternion geo_Quat ;

tf::quaternionTFToMsg(tf_quat, geo_Quat) ;

odom_trans.transform.rotation = geo_Quat ;

odom_trans.header.stamp = ros::Time::now() ;

odom_trans.header.frame_id = "odom" ;

odom_trans.child_frame_id = "base_link" ;

nav_msgs::Odometry odom ;

odom.header.stamp = odom_trans.header.stamp ;

odom.header.frame_id = "odom" ;

odom.child_frame_id = "base_link";

// set the position

odom.pose.pose.position.x = odom_trans.transform.translation.x ;

17

odom.pose.pose.position.y = odom_trans.transform.translation.y ;

odom.pose.pose.position.z = odom_trans.transform.translation.z ;

odom.pose.pose.orientation = geo_Quat ;

// set the velocity

odom.twist.twist.linear.x = current_Twist.linear.x ;

odom.twist.twist.linear.y = current_Twist.linear.y ;

odom.twist.twist.linear.z = current_Twist.linear.z ;

odom.twist.twist.angular.x= current_Twist.angular.x ;

odom.twist.twist.angular.y= current_Twist.angular.y ;

odom.twist.twist.angular.z= current_Twist.angular.z ;

// publish the message

pub.publish(odom);

}

int main(int argc, char **argv)

{

ros::init(argc, argv, "pioneer_odom_publisher") ;

ros::NodeHandle nHandlePub ;

ros::NodeHandle nHandleSub ;

pub = nHandlePub.advertise<nav_msgs::Odometry>("odom", 50) ;

ros::Subscriber sub = nHandleSub.subscribe("/RosAria/pose", 10, &poseCallback) ;

ros::spin() ;

return 0 ;

}

Listing 8: Example of an odometry publisher

3.4 ROS Services

Aside from subscribing and publishing to rostopics, another way to access data is via rosservices. To see
the available rosservices from the command line, type:

rosservice list

Gazebo provides a number of rosservices through which to access simulation data, these typically
exist in Get/Set pairs that allow users to read and write to various rostopics, respectively. The following
example will demonstrate how to use rosservices to perform the transform broadcast from the odometry
frame to the robot base link, as in the previous section, for a robot simulated in Gazebo.

Listing 9 makes use of the /gazebo/get model state rosservice to access the current robot pose and
orientation. Rosservices typically have request and response components, request components are used to
identify a particular data stream if multiple are available, and response components return the requested
data. In this example, there may be a number of models within the Gazebo simulation, the model name
and relative entity name inputs are used to identify the particular model requested by the rosservice
call. The response components return the pose and orientation of the requested model to variables in the
workspace.

#include "ros/ros.h"

#include "gazebo_msgs/GetModelState.h"

#include "nav_msgs/Odometry.h"

#include "tf/transform_broadcaster.h"

int main(int argc, char** argv)

{

ros::init(argc, argv, "pioneer_tf_broadcaster") ;

// Initialise node and service client

ros::NodeHandle n ;

ros::ServiceClient client ;

// Publish at 10Hz

ros::Rate loop_rate(10);

// GetModelState request variables

18

std::string modelName = (std::string)"pioneer" ;

std::string relativeEntityName = (std::string)"world" ;

gazebo_msgs::GetModelState getModelState ;

geometry_msgs::Point pp ;

geometry_msgs::Quaternion qq ;

static tf::TransformBroadcaster br ;

tf::Transform transform ;

while (ros::ok())

{

// Request robot state

client = n.serviceClient<gazebo_msgs::GetModelState>("/gazebo/get_model_state") ;

getModelState.request.model_name = modelName ;

getModelState.request.relative_entity_name = relativeEntityName ;

client.call(getModelState) ;

pp = getModelState.response.pose.position ;

qq = getModelState.response.pose.orientation ;

// Compute and broadcast transformation

transform.setOrigin(tf::Vector3(pp.x, pp.y, pp.z)) ;

transform.setRotation(tf::Quaternion(qq.x, qq.y, qq.z, qq.w)) ;

br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "odom", "base_link")) ;

ros::spinOnce();

loop_rate.sleep() ;

}

return 0;

}

Listing 9: Example of a transformation frame broadcaster using a rosservice to access the model state

The corresponding publisher can be created using the same /gazebo/get model state rosservice by
combining the rosservice call syntax of Listing 9 with the transformation algorithm in Listing 8.

The request and response message types for each available Gazebo rosservice can be found by navigating
through the message type documentation. A link is provided in Section 4.2.

3.5 Running Your Package

The convention for running multiple nodes from the same package is to write a .launch file, which should
be included in a launch folder inside your package directory. The launch file lists all the ROS nodes to
launch and any initial parameters required by each node. An example is shown in Listing 10

<launch>

<node name="my_node1" pkg="my_pkg" type="my_executable1">

<param name="param1" type="bool" value="true"/>

<param name="param2" type="int" value="2"/>

<param name="paramn" type="string" value="n"/>

</node>

<node name="my_node2" pkg="my_pkg" type="my_executable2"/>

</launch>

Listing 10: ROS launch file my pkg.launch

This launch file can be run from the command line using:

roslaunch my_pkg my_pkg.launch

This will execute two ROS nodes, my node1 and my node2 from the ROS package my pkg, it will search
for these two nodes in the executables listed under the respective type property (note that C++ files
do not use the file extension, whereas the .py extension is required for python scripts). The first node
initialises with three parameters while the second does not access any initial parameters. Launch files can
run nodes from multiple ROS packages, it is common to access inbuilt ROS packages in this way. More
information regarding launch files can be found at http://wiki.ros.org/roslaunch/XML/node.

Sometimes it may be desirable to run individual nodes through the command line, especially when
node execution is order-dependent. A simple way to do this without needing to rosrun each individual

19

http://wiki.ros.org/roslaunch/XML/node

node in a new shell is to combine the necessary ROS commands into a single bash script that will execute
all the components in the correct order. Using this method you can also introduce timings and delays
to allow programs time to startup before running other nodes that depend on its output signals. The
bash script used to initialise the full Pioneer3dx Gazebo and ROS simulation is provided in Listing 11 as
an example. Note that it is possible to create a single launch file that is equivalent to the bash script
shown below, however, roslaunch has a bad habit of launching files out of order and causing crashes due
to unmet dependencies. The interested reader is directed to the ROS rocon1 package for single masters,
which can alleviate these problems within the ROS framework. In practice, however, launching through a
bash script with well-timed sleeps has been demonstrated to provide sufficient robustness.

#!/bin/bash

my_pid=$$

echo "My process ID is $my_pid"

echo "Launching roscore..."

roscore &

pid=$!

sleep 5s

echo "Launching Gazebo..."

roslaunch pioneer_gazebo pioneer_world.launch &

pid="$pid $!"

sleep 5s

echo "Launching transform publishers..."

roslaunch pioneer_ros pioneer_ros.launch &

pid="$pid $!"

sleep 3s

echo "Launching navigation stack..."

roslaunch nav_bundle nav_bundle.launch &

pid="$pid $!"

sleep 3s

echo "Launching controller..."

roslaunch pioneer_ros pioneer_controller.launch &

pid="$pid $!"

echo "Launching Rviz..."

roslaunch pioneer_description pioneer_rviz.launch &

pid="$pid $!"

trap "echo Killing all processes.; kill -2 TERM $pid; exit" SIGINT SIGTERM

sleep 24h

Listing 11: Bash script for launching all components of the Pioneer3dx Gazebo and ROS simulator

This bash script can use both roslaunch and rosrun to execute launch files as well as individual
nodes, respectively. The final trap call kills all processes started within this bash script when Ctrl+C is
held in the executing shell.

4 Useful Links

4.1 Tutorials

Message type URL

All ROS tutorials http://wiki.ros.org/ROS/Tutorials

All Gazebo tutorials http://gazebosim.org/tutorials

1rocon works in kinetic but is only documented for indigo, enter at your own risk

20

http://wiki.ros.org/rocon/indigo/Guide
http://wiki.ros.org/ROS/Tutorials
http://gazebosim.org/tutorials

4.2 ROS Message Type Documentation

Message type URL

gazebo msgs http://docs.ros.org/kinetic/api/gazebo_msgs/html/index-msg.html

geometry msgs http://docs.ros.org/kinetic/api/geometry_msgs/html/index-msg.html

nav msgs http://docs.ros.org/kinetic/api/nav_msgs/html/index-msg.html

std msgs http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html

tf http://docs.ros.org/kinetic/api/tf/html/index-msg.html

21

http://docs.ros.org/kinetic/api/gazebo_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/nav_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/tf/html/index-msg.html

	Installation
	ROS Installation
	Gazebo Installation
	Install gazebo_ros_pkgs

	Simulating the Pioneer3dx
	Set Up catkin Workspace
	Install Additional ROS Packages
	Download pioneer_gazebo_ros
	The Code Explained
	pioneer_description
	pioneer_gazebo
	pioneer_ros
	pioneer_2dnav

	Creating a ROS Package
	Robot Model
	URDF Models
	Gazebo Plugins

	Subscribers and Publishers
	Writing Your Own Subscriber/Publisher Node
	Linking and Compiling Nodes

	Managing Frames of Reference
	ROS Services
	Running Your Package

	Useful Links
	Tutorials
	ROS Message Type Documentation

